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Abstract
Visual analysis of multidimensional data commonly involves dimensionality reduction to project the data samples into a lower-
dimensional visual space. Star coordinates (SC) provide a means to explore the multidimensional data distribution by interac-
tively changing the linear projection matrix. While SC have the advantages of being intuitive, allowing for relating the data
samples to their original dimensions, having low computation costs, and scaling well with the number of data samples, they
have the disadvantages of not scaling well to larger number of dimensions and being restricted to linear projections. We address
these short-comings by introducing novel SC interactions. First, interactive bundling of axes is proposed to reduce the number
of dimensions. While bundles are fully customizable, the bundling interactions are supported by visualizations of correlation
matrices and hierarchical axes clustering dendrograms. Second, we enhance classical region brushing in SC projections with
axes brushing, which allows for multidimensional cluster selection, even if two (separable) clusters are projected to the same
area of the visible space. Axes brushing is supported by visualizing 1D histograms of data distributions along the SC axes. Our
brushing interactions alleviate the restriction of SC to linear projections. The integration of histograms into SC also eases other
interactions such as moving axes to change the projection matrix. A user study evaluates how analysis tasks for labeled and
unlabeled multidimensional data can benefit from our extensions.

CCS Concepts
• Human-centered computing → Visual analytics;

1. Introduction

Analysis of multidimensional data often includes a dimensionality
reduction (DR) step. Interactive steering of the parameters of the
projection methods is often important for understanding the inter-
play of the parameters, dimensions, and projection spaces. There-
fore, interactive visual analysis systems are desired for the explo-
ration of multidimensional data. Star coordinates (SC) are a popular
tool for multidimensional data projection. SC support interactive
modification of the parameters of the linear projection by dragging
and dropping the end points of the SC axes, which is an intuitive op-
eration for exploring the space of linear projections. A re-projection
of data using the updated operator can be performed at interactive
rates even for relatively large datasets, since an application of a lin-
ear projection is computationally lightweight. The visual encoding
via point rendering also scales well to a larger number of points,
at least, in comparison to other multidimensional data visualiza-
tion methods. These advantages make SC interaction a desirable
approach for multidimensional data exploration.

However, there are downsides to using SC. Most prominently,
they do not scale well to large numbers of attributes. From our ex-
perience, SC interactions are intuitive and effective for roughly up
to 10 axes, but become impractical when the number of attributes
becomes larger due to overplotting of axes and an overwhelming
number of possibly interesting axes configurations. We address this

issue by proposing an axes-bundling strategy, which reduces the
large number of dimension axes to a customizable number of axes
bundles. Interactive bundling is performed in a data-driven man-
ner and supported by a visualization of the dimensions’ correlation
matrix and a dendrogram of a hierarchical dimension clustering.
The user can interactively adjust the amount of bundling and the
bundling strength, which induces a nonlinear component. Bundles
can be handled and interacted with just like original axes in SC.

Given SC axes and bundles thereof, we propose flexible brush-
ing interactions, where the commonly supported region brushing
is complemented with axes brushing, which allows for brushing
of (separable) clusters, even if they are not separated in the cur-
rently selected projection or in case of visual clutter. Axes brushing
is supported by plotting 1D histograms along all axes or bundles.
The 1D histograms allow for a more precise brushing as well as for
more educated selections of axes/bundles configurations. To avoid
overplotting of the (enriched) axes/bundles and the projected point
distributions, we render them in separate linked views.

Our main contributions can be summarized as follows: (1) SC
interactions with bundled axes for better scalability to larger num-
ber of dimensions, (2) an interactive data-driven bundling strategy
for SC axes, (3) a non-linear SC projection layout for bundled axes
with different bundling strengths, (4) more flexible SC brushing
by complementing region brushing with axis and bundle brush-
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ing, (5) enrichment of SC axes and bundles with 1D histograms
for improved interaction experience, and (6) numerical tests and
user studies demonstrating the effectiveness of our approaches.

2. Related Work

DR methods (pre)-process multidimensional data, usually optimiz-
ing the set of attributes by deleting negligible dimensions or by
computing new significant data features. Sufficiently small num-
ber of attributes can be handled interactively. Recently, Sacha et
al. [SZS∗17] proposed a classification of interactive visualization
methods and systems which exploit DR algorithms.

SC [Kan00, Kan01] are a prominent example of an interactive
linear DR technique. SC allow for intuitive exploration of the pro-
jection space by changing the applied projection operator. Teoh and
Ma [TM03] solved data classification tasks using SC. Molchanov
et al. [MFL13a] proposed a continuous representation of the pro-
jected space when exploring volumetric multidimensional data, in-
cluding a progressive rendering approach [MFL13b]. Lehmann and
Theisel [LT16] generalized SC and RadViz [HGM∗97] by mini-
mizing a distortion measure and providing a data-dependent magic
lens. Molchanov and Linsen [ML14] solved an inverse problem of
finding a least-squares optimal SC constellation for a desired pro-
jection layout.

Overpopulated regions in scatterplots are subject to overplotting.
Overdraw makes the data structure difficult to discern. The issue
of overplotting was addressed over decades. A taxonomy of clut-
ter reduction methods for information visualization was developed
by Ellis and Dix [ED07]. Recently, Raidou et al. [RGE19] pro-
posed a scatterplot relaxation technique based on pixel-based map-
pings. Zanabria et al. [ZNGN16] mitigated the SC visual clutter by
grouping the SC axes using a clustering mechanism. In our work,
we perform the next step and bundle the grouped axes, which re-
duces visual clutter and allows for interacting with resulting bun-
dles. Hierarchical edge bundling was proposed by Holten [Hol06]
to reduce clutter in graphs. Trajectory bundling [TE10, EHP∗11,
HET12, HEF∗14, LHT17] is an effective technique for visual ag-
gregation of (poly)linear elements in order to improve readability
of plots.

Parallel coordinates [Ins85, ID90, Ins09] became a popular
tool for multidimensional data visualization and exploration.
Bundling in parallel coordinates was studied by McDonnell and
Mueller [MM08], Heinrich et al. [HLKW12], and Palmas et
al. [PBO∗14]. Data selection in parallel coordinates is usually per-
formed by area, lasso, or angular brushing, probing, and compos-
ite AND/OR brushes [REB∗16]. Recently, Roberts et al. [RLS∗19]
proposed a set of high-order smart brushing techniques for parallel
coordinates. While brushing on axes is common in parallel coor-
dinates, brushing in SC is usually performed by selecting a region
with a lasso tool. We complement this by also allowing for axes
brushing, which we support by histogram visualizations.

3. Background

3.1. Star Coordinates

An arbitrary linear operator L mapping n-dimensional data into
two-dimensional space can be represented by a 2 × n matrix

L = (z1, . . . ,zn), zi = (xi, yi)
T . The mapping itself is then a mul-

tiplication of matrix L with the multidimensional data samples a j
by p j = L · a j, j = 1, . . . ,m, where p j is the projected sample and
m is the number of samples.

The two-dimensional vectors zi corresponding to columns of L
can be visually encoded as line segments starting at the origin and
ending at points with coordinates zi. They form the axes of the SC
system, which uniquely represents a given linear operator and can
be used for interactive steering of L by the user. When the end point
of an SC axis is interactively moved, the system changes the entries
of the respective vector zi. An updated matrix L is immediately
applied for remapping the multidimensional data. Thus, the user
observes which impact the interaction with the SC axis has on the
resulting projection layout. SC allow the user to perform effective
data analysis for tasks such as outlier detection, cluster separation,
feature sensitivity analysis, projection layout design [ML14], and
classification [TM03, MCL15].

The initial SC configuration, by default, spreads the axes uni-
formly on the unit circle, which provides an easy access to each
individual axis for the user interaction. It is convenient to depict
the unit circle in the SC widget to have a visual reference for the
lengths of the SC axes. Alternatively, the initial configuration can
be chosen to represent the two leading dimensions of the princi-
pal component analysis, i.e., to reflect an intrinsic structure of the
multidimensional data. Another option is to place axes according
to their pairwise similarities [ZNGN16].

Since different dimensions may have different ranges, a data nor-
malization step is usually applied in a pre-processing step. Normal-
ization can be performed in various ways, e.g., by subtracting the
mean and dividing by standard deviation. For our work, any nor-
malization scheme can be used (but does not have to). For the pre-
sented examples, we simply scale all dimensions linearly to [−1, 1].

3.2. Bundling

The main purpose of bundling of graph edges or segments of poly-
lines in parallel coordinates plot is to reduce visual complexity and
to free the screen space making the visualization better readable for
the user. In the examples of graphs and parallel coordinates plots,
original unbundled elements are line segments connecting pairs of
nodes determined by the given data. Bundling usually means a non-
linear distortion of such segments towards some curves. A curve of
attraction commonly represents a mean behavior of a group (clus-
ter) of original elements, which are being distorted. Generally, the
distortion does not change the position of the end points of the
segments. Thus, bundling is commonly a non-linear, end-point in-
terpolating geometrical transformation of line segments towards a
cluster-based target shape.

Technical implementations of the distortion transformation of
the line segments may vary significantly. Generally, one has to bal-
ance the attraction strength that positively affects the occlusion re-
duction and the smoothness of the distorted trajectory which is re-
sponsible for the visual appeal and readability of the result. Ideally,
such a balancing is parametrized. Since an optimal parameter set-
ting may be data dependent, the search of the best configuration in
interactive applications can or shall be left to the user.
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One approach is to represent each deformed segment as a para-
metric curve of certain order, e.g., as a quadratic B-spline [MM08]
or a C1-continuous Bézier curve [HLKW12]. The bundling strength
can then be controlled by adjusting the control points. Since the or-
der of the resulting curve is fixed, the geometrical form of the bun-
dled trajectories cannot be made arbitrary. Therefore, this method
works well only if the attraction curve has a simple shape.

An alternative approach for deforming a line towards a curve is
to discretize the line segment and evolve the discrete nodes. The
new positions of the discrete nodes can be recomputed as a lin-
ear combination of their initial positions and the closest points on
the skeleton curve [EHP∗11]. The tightness of bundling defines the
relative advection distance, i.e., is governed by the linear combi-
nation coefficients. Alternatively, one may interactively advect the
discrete nodes along the gradient field of the distance functions in-
duced by the skeleton curve using any integration scheme, e.g., the
Euler scheme [HET12]. A smoothing step is required for removing
small-scale advection artifacts caused by, e.g., discretization errors.

4. Enhanced Scalable SC Interactions

4.1. SC Axes Bundles

Given a set of SC axes selected for grouping into a bundle, then
the bundle is represented by a bundle axis and a set of bundled
axes. The bundle axis can be operated just like an SC axis, i.e., it
is characterized by its direction and length (or by the position of its
end point, respectively). A bundle axis is visually represented by
an arrow, see Figure 1a, while original SC axes are depicted with
dots at their end points. On its creation, the bundle axis direction
is chosen to be close to the first SC axis that was assigned to the
bundle, where a deviation of five to seven degrees is introduced
to avoid overplotting. The bundled axes are visually represented
by curves that are obtained by a deformation of the axes, where the
axes’ endpoints are maintained. Next, we describe how we compute
the deformation.

Each bundle bk has a scalar-valued parameter αk ranging from 0
to 1, which determines the bundling strength, where αk = 0 corre-
sponds to the unbundled state and αk = 1 to the strongest bundling.
Changing the value of αk can be performed interactively by us-
ing the mouse wheel. When scrolling the mouse wheel, a black
dot that moves along the bundle axis visualizes the currently cho-
sen bundling strength, where smaller distances to the origin reflect
a smaller bundling strength, see Figure 1a. By smoothly varying
the bundling strength, we generate a continuous transition between
classical SC and our bundled SC, where the bundling not only af-
fects the rendering of the bundled axes but also adjusts the respec-
tive projection accordingly.

Since the attraction element bk is just a linear segment, discretiz-
ing the original SC axes and advecting the resulting nodes towards
bk, as it was described in Section 3.2, would have been an overly
complicated procedure. Instead, we derive a simple closed-form an-
alytical formula for the deformation of SC axes when bundled. Us-
ing B-splines is technically possible, but one would need to gener-
ate a proper curve parametrization, which is crucial for the resulting
projection. Thus, we opted for a closed-form analytical solution.

(a) bundling and brushing (b) similarity matrix

Figure 1: (a) Bundling of SC axes on a synthetic dataset with 15
dimensions, where end points of conventional SC axes are shown as
black dots and bundles are depicted as arrows. Bundling strength
is visually encoded as small black dots on the bundling axis: Axes
6 and 10 are bundled with a lower bundling strength than axes
3 and 12. Axes 7 and 8 are bundled, but not shown (default) to re-
duce visual complexity. The axes are enhanced with stacked 1D his-
tograms, where colors represent labels and histograms for bundles
are aggregated over bundled axes. Brushing selections are shown
in red. (b) Visualization of similarity matrix computed by Pearson
correlation magnitude using a blue-to-red heatmap. The dendro-
gram above represents a hierarchical clustering of the dimensions.
The dendrogram is used to define bundles by clicking at interior
nodes, which are depicted by the grey horizontal bars at the leaves
of the dendrogram. The color legend at the top right corner repre-
sents classes of labeled samples.

Let us first assume that the end point of the bundle axis has coor-
dinates bk = (1, 0) and that zi = (1, 1) is an original SC axis that is
assigned to the bundle. Then, we define a transformation function

f (x) = (1−αk ) x +αk

(
eβk (x2−1)− e−βk

)
1− e−βk

,

where x ∈ [0, 1], αk ∈ [0,1] is the bundling strength,
βk = (1−αk + ε)−1, and ε is a small constant, which we set
to 0.0005 in our experiments. The graph of f (x) determines the
shape of the bundled axis zi with bundling strength αk. For any
parameter value x, it returns a two-dimensional point (x, f (x)).
As the bundling strength increases, the SC axis’ shape smoothly
changes from the perfect line (αk = 0) to a curve in a small vicinity
of the bundling axis. Thus, the user can interactively control the
transition between the unbundled and bundled states of the axes.

In a general case, i.e., when dropping the assumption made
above, the proposed bundling can be computed by applying a trans-
formation Tki of the coordinate system, which includes a rotation
and a scaling. Let θ be the angle between bundle axis bk and the
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positive direction of the x-axis and zi = (xi, yi). Then, an explicit
formula for the transformation Tki is

Tki = diag
(

(xi cosθ− yi sinθ)−1

(xi sinθ+ yi cosθ)−1

)
·
(

cosθ −sinθ

sinθ cosθ

)
,

where diag(.) denotes a diagonal matrix with the given values as
entries on the diagonal. Then, Tki · zi = (1, 1) and Tki ·bk ‖ (1, 0).
Putting it all together, the general formula for drawing the curve for
axis zi after bundling is given by tki(x) = T−1

ki ·(x, f (x))T , x∈ [0,1].

As our motivation for introducing bundling was to reduce visual
clutter, the bundled axes are only shown on demand, while the bun-
dle axis is always depicted, see Figure 1a.

4.2. Non-linear Projection of Bundled SC

When performing a bundling of selected axes to a bundle bk, all
bundled axes are deformed in a non-linear fashion as described
above. For a consistent view on the data samples, their distribution
needs to be deformed accordingly, leading to a non-linear projec-
tion. Overall, when assuming multiple bundles bk, k = 1, . . . , p, the
data samples a j = (a j1, . . . ,a jn), j = 1, . . . ,m, are projected to the

position p j =
n
∑

i=1
(t1i ◦ · · · ◦ tpi)(a ji), where ◦ denotes the compo-

sition of functions. Of course, each bundle bk only affects those
dimensions, whose axes belong to the bundle. Thus, if axis zi be-
longs to bundle bk, then all functions tli will be the identity except
for l = k.

The bundle axis bk can be interacted with just like any of the
original SC axes. Hence, when shortening or lengthening the bun-
dle axis bk, the impact of the bundle decreases or increases ac-
cordingly. Similarly, changing the direction of the bundle axis bk
affects the projection. Whenever a bundle axis is interacted with,
the non-linear projection is recomputed using the formula above.
Effectively, changing the bundle axis is like changing all original
SC axes belonging to the bundle.

4.3. Bundle Generation

Creation of a new bundle and assigning original SC axes to this
bundle can be done manually, which gives full control to the user.
However, when the number of dimensions is high, further aid is
required. We support the generation of bundles by visualizing the
correlation matrix of the given dimensions as well as the dendro-
gram of a hierarchical clustering approach. Interacting with these
visualization allows for a top-down analysis strategy.

Using a dendrogram of a hierarchical clustering outcome allows
the user to choose how many bundles the user wants to use for the
SC. A top-down analysis would start with few bundles that can be
refined upon demand. The dendrogram is created by hierarchical
clustering on the dimensions with respect to some linkage scheme.
For the experiments presented in this paper, we used single link-
age. Hierarchical clustering has the advantage over other clustering
approaches that no assumptions are made about cluster shapes, den-
sity, etc. and that no parameters need to be tuned. The only choice
that needs to be made is where to cut the dendrogram for cluster
generation, but this decision is what we deliberately give to the

user to steer the process. The user just selects the respective cutting
level in the dendrogram. Alternatively, the user can also define a
similarity threshold using a slider, which leads to bundling all axes
with similarities higher than the threshold.

We still need to decide how we compute pairwise similarities
of dimensions. For comparing dimensions, it is common to com-
pute their correlation, where the Pearson correlation is the most
widely used scheme, which we also used for our implementation.
However, the rationale behind the bundling is that axes with high
correlations shall be bundled, no matter whether their correlation
was positive or negative, i.e., we use the magnitude of the Pear-
son correlation as our similarity measure. Having negatively cor-
related axes in one SC bundle would simultaneously attract and
repel points along the bundle axis. Therefore, we bundle highly
negatively correlated SC axes, but give them opposite orientations
within the bundle, which applies to both the projection computa-
tions and the bundled axis visualization.

To make an educated decision about which bundles to refine dur-
ing a top-down approach, we support the user with detailed infor-
mation about the cluster’s homogeneity. We visually encode the
pairwise Pearson correlation magnitude of all dimensions by draw-
ing a heat map of the correlation matrix of all dimensions. Fig-
ure 1b shows a heatmap for a 15-dimensional dataset using a blue-
to-red color map. The hierarchical clustering outcome determines
the order of the dimensions. We place the dendrogram above the
correlation matrix. The interface between the two visualizations is
formed by horizontal bars that indicate which dimensions are cur-
rently grouped into bundles. Bundles can be created, modified, and
deleted by interacting with the interior nodes and horizontal bars.
The height of the nodes in the dendrogram merely encodes the clus-
tering level and no correlation values, which makes the dendogram
easier to read. The respective correlation values are displayed when
hovering over the nodes with the mouse, cf. accompanying video.
The bundling decisions based on hierarchical clustering and corre-
lation visualization can be complemented with the user’s expertise
about the meaning of individual dimensions. The bundles, there-
fore, are completely customizable.

The correlation analysis can also be restricted to a subset of the
given data samples, e.g., to a selected cluster of data samples using
brushing (see below) or to a class in case of labeled data. Classes
or data sample clusters are shown in the form of colored icons in
the top right corner of the dendrogram view, where the grey icon
corresponds to the entire dataset, see Figure 1b. The icons can be
clicked to select the respective class or cluster and trigger a re-
computation of the correlation matrix for the selection.

4.4. Smart Brushing in SC

Interactive selection and highlighting of subsets of the given data
samples is an important tool in multidimensional data analysis for
visually accentuating interesting patterns, data filtering, and per-
forming manual classification. A common method for data selec-
tion is brushing, which in the SC projection domain is commonly
performed using a lasso tool to select a region. However, if the pro-
jection layout is occluded or the target group of the projected data
overlaps with other data, selection in the projection space is prac-
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tically not possible, even if the group was separable in the multidi-
mensional space.

We propose to complement the brushing interaction in SC by
supporting brushing on the SC axes and bundles similar to brush-
ing in parallel coordinates. However, while parallel coordinates to
some extent allow for a comprehension of the 1D data distribution
of each dimension, a meaningful exploratory brushing on SC axes
is basically impossible. To compensate for this shortcoming, we
support a “smart” brushing on SC axes by depicting 1D histograms
of data distributions along each axis, see Figure 1a. Histograms
are generated by summing values over equally sized bins. If de-
sired, the number of bins can be interactively adjusted, but this was
not necessary for any of the datasets we used. As all dimensions
are normalized to the range [−1, 1], the histograms can directly be
mapped to the axes by adding a unity and scaling by the axes’ half-
lengths. Given the 1D histograms, clusters that separate along one
of the dimensions can be easily spotted and selected. Multidimen-
sional clusters (clusters that do not separate in a single dimension)
can also be found by brushing on not perfectly separated peaks of
a histogram in one dimension and refining the selection by brush-
ing on further histograms in other dimensions, see Section 5. Also,
axes brushing can be used in addition to region brushing.

When dealing with labeled data or when already having defined
clusters interactively, the data distributions of all classes or clus-
ters are shown by stacked histograms, where each class or cluster
is given a different color, see Section 5. The stacked histograms
also ease other SC interactions such as adjusting the projection lay-
out. For example, when trying to separate classes, the histograms
provide hints about which axes to interact with.

Brushing interaction on the axes is supported as follows. Hover-
ing over an axis shows the value at the respective position. Right-
clicking and dragging along the axis then shows the values of the
respective interval. Brushing outwards (from origin to end point)
adds the brushed interval to the selection. Brushing inwards (from
end point to origin) removes the brushed interval from the selec-
tion. Multiple selections on one axis can be combined. Then, the
brushing selects all data samples, whose value lies in the union of
selected intervals for the brushed axis. Brushing on multiple axes
selects all data samples, whose values lie in the union of selected
intervals for all brushed axes. Brushing can be restricted to se-
lected groups such as labeled classes or previously defined clusters.
Brushing is always applied to the currently selected group.

When axes are bundled, the histograms of the SC axes that be-
long to the bundle are aggregated to be represented by a single
histogram. Hence, bundles are handled like original SC axes. The
brushing interaction on bundles selects all data samples, whose val-
ues lie in the union of selected intervals for all SC axes that belong
to the bundle. If the bundle contains negatively correlated dimen-
sions, the selection of an interval [a,b] on the bundle axis is mapped
to a selection of interval [1− b,1− a] for each negatively corre-
lated dimension. Assuming that bundles represent highly correlated
dimensions, bundling the dimensions before brushing can signifi-
cantly reduce the workload. On the other hand, the histograms are
also helpful for deciding on which axes to bundle, especially for
labeled data. While the hierarchical clustering considers all data

samples regardless of their label, the stacked histograms may pro-
vide further information about how labels are distributed.

5. Results

To test the effectiveness of our approach, we performed numerical
tests and a user study using both synthetic datasets and datasets
from the UCI machine learning repository [DG19]. including the
Wine, Breast Cancer Wisconsin (Diagnostic) (WDBC), and Mice
Protein Expression datasets. The datasets contain between 13 and
77 dimensions with 178 to 569 data points.

5.1. Numerical Experiments

In this section, we demonstrate the use of our proposed SC brushing
and bundling methodologies to obtain analysis results for a few
illustrative examples. Interactive sessions with our tool are shown
in the accompanying video.

Brushing for Cluster Detection. We first demonstrate the use of
smart brushing for cluster detection. We load a synthetic dataset
with 15 attributes and 500 samples. The dataset is unlabeled,
but contains three multidimensional Gaussian clusters. Figures 2a
and 2b show the SC widget in its default state (radial layout) and
the respective projection. The SC axes are enhanced with the 1D
histograms. The histograms show a bimodal distribution on axis
12. Thus, we brush on the axis to select the data samples with
higher values in that dimension, see Figure 2c. By elongating the
axis, we give it more weight, which separates the brushed selec-
tion (red) from the unbrushed points (grey) in the projection in
Figure 2d. When making a selection via brushing, the histograms
get re-computed for the selected points only, see Figures 2c. We
observe that for the selection, the histogram of axis 5 is bimodal
too. Hence, we refine the point selection by brushing on axis 5 (se-
lecting high values) and change the SC layout by elongating and
rotating axis 5, see Figure 2e. We observe that the prior selection
splits again into two clusters such that we overall have found a pro-
jection layout that separates all three clusters that are contained in
the dataset, see Figure 2f. In summary, our smart brushing with
histograms allowed us to detect the three clusters by only touching
two of the 15 axes and to assign 496 out of 500 samples, i.e., 99.2%
of data points, to correct clusters. Without the histograms and the
brushing, one would have, in general, had to touch all 15 axes to
observe their impact on cluster formations.

Scalability. Next, we demonstrate the effectiveness of bundling for
reducing high dimensionalities. We analyze the Mice Protein Ex-
pression dataset, containing 77 dimensions and 552 data samples
(after removing those with missing values). The protein expres-
sions of several healthy and trisomic mice were measured. Some of
them have been stimulated to learn (referred to as context-shock),
while others have not (referred to as shock-context), and for some
trisomic mice a drug was injected. In our analysis, we focus on
the distinction between context-shock and shock-context mice. The
analysis goal was to separate these two classes in the projection
space.

Figures 3a and 3b show the initial SC configuration, the projec-
tion layout, and the dendrogram after loading the dataset and per-
forming hierarchical dimension clustering. We observe that the SC
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(a) Default radial layout (b) Projection

(c) Brushing on axis 12 (d) Brushed projected samples

(e) Interacting with axis 5 (f) Separated clusters

Figure 2: Axes brushing for cluster detection on unlabeled syn-
thetic dataset with 15 dimensions, 500 samples, and 3 clusters. (a)
and (b) show default SC layout and resulting projection. Axis 12
with bi-modal distribution is brushed on and elongated in (c). Se-
lected cluster (red) is shown in the projection in (d). Brushing and
interacting with axis 5 in (e) refines the prior cluster, leading to a
projection where the 3 clusters are visible in (f).

configuration has a high visual complexity. Obviously, it would be
a daunting task to interact with all 77 axes to find a good config-
uration. Instead, we performed an automatic bundling by applying
(absolute) correlation threshold 0.4 to the dimension cluster hierar-
chy. All SC axes were bundled, which reduced the number of axes
to a feasible amount. Here, the number of axes was reduced from
77 to 18, see Figures 3c. We interact with the bundle axes, which
results in a much better separation of the two classes, see Figure 3d.
The final silhouette coefficient is 0.697.

Even though the correlation threshold used was quite low (0.4),
we were able to quickly separate the two classes. Had there been
complications, dissolving any of the bundles would have been an
option. In general, a structured analysis can be performed by start-

ing with a low correlation threshold, which results in large bundles
that can then interactively and iteratively be refined during the anal-
ysis process. This top-down approach using bundling (in conjunc-
tion with smart brushing on the bundle axes) makes the analysis of
datasets with many dimensions in SC much more feasible.

5.2. User Study

We conducted a quantitative user study to evaluate our approach
against classical SC.

Set-up. A total of 20 participants (age 20 to 64 with an average of
36.25, 15 male) were recruited to perform three different tasks with
classical SC and with our approach. To compare the scalability of
the two approaches, each task was performed on a dataset with a
lower (about 15) and a dataset with a higher (about 30) dimension-
ality. For each task, we measured the participants’ performance,
total time to complete the task, number of axis pickups, and con-
fidence. We followed an intra-subject design, i.e., the participants
were split into two equally sized groups, one starting with classical
SC and the other with our approach. The interaction mechanisms
of both approaches were explained in detail. Each session took ap-
proximately one hour.

Datasets. Ten of the twelve datasets used for the user study were
synthetic datasets. The other two datasets were the Wine and the
WDBC datasets. They were used for the Class Separation and La-
beling Missing Data tasks, respectively. The synthetic datasets use
isotropic Gaussian kernels that only differ by their means. All gen-
erated classes are separable. The description of all datasets are pro-
vided in Table 1 and can be found in the supplementary material.
Their visualizations with the default radial SC layout (starting point
for the subjects) are shown in the supplementary material as well.

Hypotheses. We tested the null hypothesis that our approach and
classical SC perform equally well for each of the measures. Com-
pletion time, number of axis pickups, and user confidence were
compared for every dataset while some measures are specific to
a certain task.

Tasks. The subjects completed three analysis tasks as detailed be-
low. The accompanying video shows examples of task completions.
Class Separation: Given a labeled dataset with three disjoint
classes, the participants have to optimally separate them in the pro-
jection space. For this task, we compared silhouette coefficients.
Clustering: Given an unlabeled dataset containing three clusters,
the participants have to find the clusters and select them in the pro-
jection space. For this task, we compared the number of correctly
labeled samples.
Labeling Missing Data: Given a labeled dataset with three unla-
beled samples, the participants have to assign missing labels. For
this task, we compared the number of correct labels.

Statistical analysis. For the statistical analysis, we provide p-
values, calculated using a two-sample unpooled t-test, and the ef-

fect sizes S = (µ1− µ2) /
√

σ1+σ2
n1+n2−2 , where µi is the mean, σi the

standard deviation, and ni the number of participants in the group.
In our experiment, n1 = n2 = 10. We consider the effect size to be
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(a) Silhouette 0.014 (b) Initial (c) Silhouette 0.205 (d) Silhouette 0.697

Figure 3: Analysis of Mice Protein Expression dataset with 77 dimensions, 552 samples, and two classes. (a) Initial SC layout and projection
with two classes highlighted in red and green. (b) Similarity matrix and dendrogram for 77 dimensions. (c) Result of automatic bundle
selection. (d) Final separation of classes with silhouette coefficient 0.697.

Class Separation Clustering Labeling Missing Data
Dataset Wine A15_2 A30_1 A30_2 B15_1 B15_2 B30_1 B30_2 C15_1 C15_2 WDBC C30_2

Dimensions 13 15 30 30 15 15 30 30 15 15 30 30
Samples 178 200 300 300 200 200 300 300 200 200 569 300
Classes 3 3 3 3 3 3 3 3 4 4 2 4

Table 1: Descriptions of datasets for user study.

significant, if its absolute value is greater than 0.8, and the p-value
to be significant, if it is smaller than significance level 0.1.

Results. All statistical information about our analysis is provided
in the supplementary material. For many tests, the null hypothesis
could not be rejected. Concerning completion time, only for dataset
C15_1 our approach was significantly faster than classical SC with
an effect size of −0.97. For datasets C15_1, WDBC, C30_2, and
B15_2 our approach resulted in significantly fewer axis pickups,
with effect sizes of−2.41,−1.02,−1.04, and−1.01, respectively.
No datasets used for the Class Separation task showed signifi-
cant differences. The average confidence was, despite the higher
complexity of our approach and the loss of detail when bundling,
smaller only for the B30_1 dataset. In terms of accuracy, the sil-
houette coefficient was significantly higher for our approach for all
four datasets in the Class Separation task with absolute effect sizes
1.82, 0.86, 1.43, and 1.02 and p-values 0.001, 0.082, 0.005, and
0.037. We therefore reject the null hypothesis in favor of our ap-
proach. No significant difference was found neither for correctly
clustered samples nor for correctly sorted samples in tasks Clus-
tering and Labeling Missing Data. There was no significant dif-
ferences in our findings when comparing the results for 15- and
30-dimensional datasets.

Discussion and Conclusions. We conclude that the accuracy sig-

nificantly improved when using our approach in comparison to
standard SC for the Cluster Separation task. For the other two tasks,
subjects achieved almost perfect results for both methods, i.e., there
was no significant difference. We planned to repeat the experiments
with more challenging datasets but due to social contact restrictions
after the outbreak of the pandemic we had to post-pone further user
studies. For several datasets, we observed that less axis interactions
were necessary to complete the tasks when using our approach. It
is also positive that the subjects did not feel less confident in their
findings when using our tool despite the aggregation via bundling.

After completing a session, the subjects were given the chance
to provide some general feedback regarding both tools. 15 subjects
stated that the histograms helped them identify important axes, thus
enabling a more methodological approach. 8 participants said that
bundling helped them in identifying important axes, while 2 partic-
ipants said it helped them to reduce the number of axes they had
to handle. On the other hand, 2 participants found the correlation
matrix and dendrogram to be unnecessary and suggested to only
provide automatic bundling, and 2 participants did not find the his-
tograms helpful at all.
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6. Conclusions

We proposed enhanced interactions with SC axes. Axes bundling
allowed us to reduce the dimensionality of the data, thus, enabling
SC interactions for datasets with larger number of dimensions,
where correlation investigations facilitated bundle selection. En-
hancing axes with visualizations of stacked histograms allowed us
to perform educated axes brushing operations for more efficient and
effective cluster selection and class separation.
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