
Vision, Modeling, and Visualization (2017)
M. Hullin, R. Klein, T. Schultz, A. Yao (Eds.)

Visualization of Neural Network Predictions
for Weather Forecasting

Isabelle Roesch and Tobias Günther

Computer Graphics Laboratory, ETH Zürich, Switzerland

Abstract
Recurrent neural networks are prime candidates for learning relationships and evolutions in multi-dimensional time series data.
The performance of such a network is judged by the loss function, which is aggregated into a single scalar value that decreases
during successful training. Observing only this number hides the variation that occurs within the typically large training and
testing data sets. Understanding these variations is of highest importance to adjust hyperparameters of the network, such as the
number of neurons, number of layers or even to adjust the training set to include more representative examples. In this paper, we
design a comprehensive and interactive system that allows to study the output of recurrent neural networks on both the complete
training data as well as the testing data. We follow a coarse-to-fine strategy, providing overviews of annual, monthly and daily
patterns in the time series and directly support a comparison of different hyperparameter settings. We applied our method to
a recurrent convolutional neural network that was trained and tested on 25 years of climate data to forecast meteorological
attributes, such as temperature, pressure and wind speed. The presented visualization system helped us to quickly assess, adjust
and improve the network design.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Viewing
algorithms

1. Introduction

Modeling relationships and trends in time series data is important
to forecast the future development. In the past, recurrent neural
networks (RNNs) have been successfully used to forecast time se-
ries, e.g., for market prediction [KB96], network traffic forecast-
ing [ETFD97] and weather forecasting [HRLD15]. A common ap-
proach for RNNs is to use a sequence of previous time steps to
predict the next step. Generating predictions for each time step of
the testing data results in very large data sets that cannot be shown at
once. Additionally, each RNN can be trained with a different set of
hyperparameters like the number of neurons, the number of layers
or the number of past time steps. The prediction error of the trained
RNNs varies spatially and temporally across different regions of
the training and test data. In this paper, we present an interactive
visualization tool that allows the user to directly compare the per-
formance of individual networks on both training and test data in
the context of weather prediction. We provide multiple hierarchical
views to extract the levels of detail, including annual, monthly and
daily trends, down to individual data points. We support a direct
comparison of forecasting models that were generated with differ-
ent parameters. This allows meteorologists to analyze the output
of multiple recurrent and convolutional neural networks that were
trained to predict meteorological attributes, such as temperature,

pressure and wind. Among others, users can spot overfitting, system-
atic prediction errors, outliers, trends, temporal patterns and adjust
the training data and hyperparameters to improve predictions.

2. Related Work

For neural networks, most work focuses on visualizing the learned
weights and the structure of the network. Karpathy et al. [KJL15]
implement a method to visualize and interpret RNNs, Liu et
al. [LSL∗17] focus on the visual representation of convolutional
filters of CNNs. The visualization method described by Zint-
graf et al. [ZCAW17] helps to understand classification decisions
made by artificial neural networks (ANNs). Other work that ad-
dresses visualizations of neural network classifiers include [SVZ14]
and [BBM∗15]. Note that forecasting weather attributes needs a re-
gression ANN with a continuous output in contrast to classification
ANNs, which were used in most previous related work.

There have been several approaches to weather forecasting using
ANNs. The forecasting performance of different network structures
has been analyzed by Hossain et al. [HRLD15]. Their work also
describes the influence of different weather attributes on the pre-
diction. To train the network, they use weather data from only one
weather station, while we use adjacent grid data around our loca-

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

DOI: 10.2312/vmv.20171260

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/vmv.20171260


I. Roesch & T. Günther / Visualization of Neural Network Predictions for Weather Forecasting

tion of interest. Grover et al. [GKH15] design a hybrid model for
weather forecasting which combines an ANN with the influence of
atmospheric laws on weather attributes. For the sake of simplicity,
our work does not yet include physical dependencies among weather
attributes and is instead completely data-driven.

3. Background

Artificial neural networks (ANNs) are an excellent tool to discover
hidden patterns in nonlinear and complex structured data. Neural
networks aim to learn the function f (x) of the equation f (x) = y,
where x is the input and y is the target output. Traditional feed-
forward networks consist of three parts: An input layer that receives
input x, one or more hidden layers and an output layer, see Fig. 1a.
Each layer has a number of interconnected hidden units (neurons)
whose weights are adjusted in the training to minimize the error
between the network’s output f (x) and target value y, i.e. the loss.

Convolutional Neural Networks (CNNs) learn spatial features in
data that is given on regular grids, e.g., images or volumes. Instead
of training individual weights for the neurons, convolutional layers
train small weight patches, called filters or kernels, which has two
benefits: (a) Weights are shared between neurons which reduces
the amount of training and redundant parameters. (b) A local con-
nectivity assures that adjacent data in the grid is treated differently
compared to grid points far away. Another necessary ingredient of
CNNs are pooling layers, which reduce the number of parameters in
the network by aggregating patches of data into a single value, e.g.,
using the maximum. A CNN is illustrated in Fig. 1b.

Recurrent Neural Networks (RNNs) are neural networks that
contain loops. Instead of just propagating the input information
straight through the network, a RNN layer also receives its previous
output as input. RNNs have memory and are thus suitable for prob-
lems with a temporal dimension. A schematic RNN architecture can
be seen in Fig 1c. However, standard RNNs do not perform well in
practice when they are used to solve tasks that contain long-term
dependencies, because the error gradient that is propagated back
through the network is prone to either vanish or explode [BSF94].

Long Short-term Memory Networks (LSTMs) are specifically
designed to avoid the vanishing gradient problem of standard RNNs
and are capable to learn long-term dependencies [HS97]. LSTMs
became the most commonly used type of RNN, succeeding in a
wide variety of tasks including speech recognition [GMH13], text
generation [SMH11] and time series prediction [SWG05].

4. Neural Network for Weather Forecasting

The ANN we designed for weather forecasting uses a time series
of regular grids as input, which are centered around a location of
interest. The network architecture is depicted in Fig. 2. A single time
step of the input data consists of an N×N×M grid of measured
normalized meteorological attributes, such as temperature or surface
pressure. The spatial N×N slices provide additional information
around the location of interest (we used N = 7). The number of grid
layers M (depth of the grid) corresponds to the number of meteoro-
logical attributes, which are used to train a particular network. The

ANN consists of a convolutional part (CNN) that is followed by a
recurrent part (RNN). The convolutional part applies F convolution
filters (we used F = 8 with a support of 3×3×M), which results
in an N×N×F feature volume. To reduce the computational cost
of the network training and to reduce overfitting, a max-pooling
aggregates spatial 2×2 patches, which results in a

⌈N
2
⌉
×
⌈N

2
⌉
×M

grid. Convolution and pooling are done for each time step of the
time series individually. After flattening the grid into a vector, the
recurrent layers consider the temporal features of the time series,
using multiple LSTM layers (we used 2–4), each followed by a
20% dropout to prevent overfitting. To conclude the network and to
convert the output into the desired format, a dense layer is used. The
network forecasts all M given meteorological attributes simultane-
ously for the location of interest. We used the mean squared error as
objective loss function to train the network.

5. Comparative Visualization of Time Series

A common problem when designing an ANN is the optimization
of its hyperparameters, such as the number of layers, number of
neurons or which parts of the input data to use. Every combina-
tion of values for those parameters results in a new forecasting
model. While automatic hyperparameter optimization methods ex-
ist [BB12], the performance of the network is usually only assessed
by a single value (the residual or loss) that is plotted over the train-
ing epochs in the Loss History. With our visualization, we provide
an in-depth analysis of the forecasting performance for individual
hyperparameter settings as well as for comparisons between settings,
starting from coarse overviews down to daily events.

5.1. Error Metric

First, we define the error metric that we use to compare different
forecasting models. Input to our method are time series of the var-
ious predictions of meteorological attributes, such as temperature,
pressure and wind components for a given location on Earth. For
each time series, an ensemble is available that was generated using
different weather forecasting models, as described in Section 4. For a
given ensemble member k, the temperature series is tk = (tk

1 , ..., tk
n),

the pressure series is pk = (pk
1, ..., pk

n) etc., where n is the number
of time steps. While the weather forecasting models use one or
several meteorological time series for training, our visualization
will always show the performance of only one attribute at a time.
Let a ∈ {t, p, ...} be the selected attribute. Then, the time series of
ensemble member k is ak = (ak

1, ..., ak
n) and the full ensemble is

A = {a1, ..., aK}, where K is the total number of ensemble mem-
bers, i.e., neural networks trained for weather forecasting. Further,
we denote the ground truth time series of the selected attribute as
ã = (ã1, ..., ãn), which is the measured data.

Given the ground truth ã, we define the error time series εεε
k of a

given ensemble member k as the element-wise absolute difference
to the ground truth (for brevity, we drop the dependence of a in εεε

k):

εεε
k =

∣∣∣ak− ã
∣∣∣ (1)

To compare the errors of two ensemble members k1 and k2, we use
their respective mean absolute errors εεεk1 and εεεk2 as well as their
relative difference (εεεk1 − εεεk2).

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

62



I. Roesch & T. Günther / Visualization of Neural Network Predictions for Weather Forecasting

input fc1 fc2 output

(a) A standard feed-forward neural net-
work with 2 fully connected (fc) layers.

input convolution pooling output

(b) A convolutional neural network with
a convolutional and a pooling layer.

input recurrent output

(c) A recurrent neural network with one
hidden recurrent layer.

Figure 1: Overview of common neural network architectures: feed-forward (a), convolutional (b) and recurrent neural networks (c).

v

for each

time step

v
v

1 2
1 0

Input Convolution

F filters

Pooling

1
31

3

Flatten LSTM

x time steps

Dense / Output

2

te
m

p
.

p
re

ss
.

..
. feature volume

for each

time step

for each

time step

for each

time step

Figure 2: Schematic illustration of our network, which combines
convolutional and recurrent layers to forecast meteorological data.

0

1

2

3

4

5

0

2

4

6

0

2

4

6

8

0

2

4

6

Loss History Box Plots

years

years

years

days

days

days

h
o
u
rs

h
o
u
rs

h
o
u
rs

m
o
n
th

s
m

o
n
th

s
m

o
n
th

s

time steps

time steps

rowrow

column column

row

column

relative diff. relative diff.

row

a) Selection Matrix b) Full Overview c) Month Overview d) Time Step View

Figure 3: Schematic overview of our interactive coarse-to-fine vi-
sualization tool, including a Selection Matrix (a) to select the two
models to compare, a Full Overview (b) to display the performance
and difference for the entire time sequence, a Month Overview (c)
that displays individual data points within a month, and a Time Step
View (d) that shows the past time steps, used to create the predic-
tions. In addition, the Loss History is shown for the row model (a)
and mean and standard deviation are aggregated in Box Plots (d).

5.2. Overview

A schematic overview of our interactive tool is shown in Fig. 3.
The principle of providing linked overview and detail views has
been widely used in information and scientific visualization [Hau06,
VWVS99, SWLL13]. In our visualization tool, the coarse-to-fine
workflow follows from left to right. We precompute and store the
mean absolute errors εεεk of every model k according to Eq. (1),
which are later read for the selected meteorological attribute. For
comparison of the individual models, the relative differences are
displayed pair-wise in a Selection Matrix, see Fig. 3a. The user can
select two models for closer inspection by choosing a row and a
column. Below the matrix, the Loss History is shown for the selected

Figure 4: The entry point of the exploration is the Selection Matrix
(top left). The variables to display, the data to evaluate and the
choice of the box plot are adjusted below (bottom left). The Loss
History (top right) reveals overfitting and underfitting for the row
model. Box Plots (bottom right) show mean and standard deviation.

row. As soon as the models are selected, the mean difference εεε
k

to the ground truth is visualized for each model, as well as the
models’ relative difference, with values averaged for each month,
see Fig. 3b. We denote these three plots as the Full Overview, as they
provide an overview of the full time series. In these plots, the user
can select a month, which is displayed in more detail in the Month
Overview, which shows all data points (individual predictions) for
the specified month, see Fig. 3c. After selecting a time step in the
Month Overview, a detailed plot for this particular forecast is shown
in the Time Step View, in which the prediction, the ground truth
and the time steps are shown that the network received as input,
see Fig. 3d. Below, a Box Plot is shown to compare the obtained
mean and standard deviation of εεε

k for the two selected models. In
the following sections, we explain the visualizations in more detail.

5.3. Selection Matrix

As an entry point for the exploration, we devised a visualization
that allows the user to quickly determine how the individual models
compete with each other. Given the mean absolute errors εεεk of each
model k (averaged over entire time series), Selection Matrix S is:

Si j = (εεεki − εεεk j ) (2)

Each element of this anti-symmetric matrix directly compares two
models, which are identified by the row and column index. The

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

63



I. Roesch & T. Günther / Visualization of Neural Network Predictions for Weather Forecasting

(a) Full Overview (b) Month Overview

Figure 5: The selected month in the Full Overview (left) is viewed
in detail in the Month Overview (right).

models are sorted by their hyperparameters; other choices are imag-
inable. If an entry is positive, model ki (row) is better and if it is
negative, model k j (column) is more accurate. We visualize this
matrix in Fig. 4 (top left) using a diverging color map from [Cyn17].
The exact error value appears as text when the cursor hovers over the
respective texel. Note that the colors orange and purple from now
on refer to properties of the row and column model, respectively.

The green margins on the top and left of the matrix directly show
the mean absolute errors εεεk of the individual models. A brighter
shade of green indicates a small error compared to the ground truth,
whereas a darker shade means the opposite. While here only the
mean error is shown, information on the standard deviation is avail-
able in Box Plots, which show the performance of the two selected
models side-by-side, see Fig. 4 (bottom right). Using radio buttons,
users select whether to average over years, months or hours. In
addition, hyperparameters of the selected models are listed.

To the bottom left of the matrix, the weather parameter k to
display can be chosen. Since not all models use the same set of
weather parameters, only those with the selected parameter are
displayed. Further right, the user can select on which part of the data
the evaluation should happen, i.e., on the training data, the test data
or both. It is useful to see how well the network performed on both
training and test data to spot behavior like overfitting, e.g., in Fig. 7.

For the network of the currently selected row, the Loss History
is shown, see Fig. 4 (top right). In addition, timing measurements
for loading the data, training the network and evaluation on the data
are listed. The loss is shown for 100 epochs of both the training
data and the validation data, which consists of 5% of the training
set. Ideally, the validation loss decreases monotonically. In case of
overfitting, however, it starts to increase, since the network tends to
memorize the observed training data instead of generalizing it.

Time Step View
Figure 6: Side-by-side comparison of predictions for both selected
models, including all past data points received by the networks.

5.4. Overview of Time Series

To visualize the forecast performance, we follow a coarse-to-fine
approach, which includes two overview visualizations, see Fig. 5.

Full Overview. The Full Overview consists of three coordinated
views: from top to bottom there are two individual plots that show
the mean errors εεεk1 and εεεk2 of the currently selected models, and
a difference plot that shows the relative difference (εεεk1 − εεεk2). For
each model, we compute an average error per month and lay out the
data in a 2D matrix, where the columns show the years and the rows
the respective months. Aligning months and years this way allows
observing annual and seasonal patterns, see Fig. 5a for an example.

Month Overview. If the user selects a month in the previous Full
Overview, a more detailed Month Overview of that month appears
next to it to the right, see Fig. 5b. This view uses the same layout and
colormaps as the first overview, but differs in the data it visualizes.
Here, the columns show the days of the selected month and the
rows the hours. The temporal resolution of our data provides a value
every six hours, which results in four values per day. This overview
provides insights into a model’s night and day time performance.

5.5. Time Step View

Selecting a data point in the previous Month Overview opens the
Time Step View, which concludes our coarse-to-fine sequence. The
respective predictions, the ground truth, as well as the previous time
steps that the two selected networks received as input are plotted
side-by-side in Fig. 6. While the Month Overview only shows the
difference to the ground truth, this more detailed view sheds light
onto the past time steps that led to a particular prediction.

6. Results

For the training and evaluation of the models we used an ERA-
Interim reanalysis of the European Centre for Medium-Range
Weather Forecast (ECMWF) [DUS∗11]. We used data from 1990–
1999 to train the models and data from 1990–2016 to evaluate them
(separating testing and training). The data has a spatial grid spacing
of 0.75/0.75 degrees (lon/lat) and a time step of six hours. Around
Zürich (Switzerland), we extracted a time series of 7× 7 grids.
This resolution performed best in our initial tests and is another
hyperparameter. The weather attributes at the grid points include
temperature, surface pressure, cloud cover, and the U and V wind
components. These particular attributes were used to train the net-
works and were selected based on advice from meteorologists. In
the paper, we visualize the prediction result for temperature only.
We refer to the video for visualizations of the other parameters.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

64



I. Roesch & T. Günther / Visualization of Neural Network Predictions for Weather Forecasting

(a) Underfitting: 32 neurons (row)
vs. 64 neurons (column).

(b) Overfitting: temperature (row)
vs. temp. and pressure (column).

Figure 7: Left: 64 neurons (column) learn well, while 32 neurons
(row) underfit, as they only learn summer months (�). Right: using
only temperature as input (row) overfits the training data compared
to a model with temperature and surface pressure (column), see the
light green colors in the training months, i.e., 1990–1999 (�).

6.1. Visualizations

Next, we explore different hyperparameter settings, including num-
ber of neurons in the LSTM layer, forecast range and training data.

Underfitting. The selection of the number of neurons is demanding.
The models shown in Fig. 7a only differ in the number of neurons
in their LSTM layers. While the column model with 64 neurons
learns well on the complete domain, the row model with 32 neurons
learns only a subset. We also tested a model with 128 neurons, but
the results were slightly worse due to overfitting, i.e., the network
memorized the training data instead of generalized from it.

Overfitting. In Fig. 7b, the opposite is observed. The row model
with only temperature as input overfits on the training data (1990-
1999), which appears brighter in the Full Overview than the testing
data (1999–2016). Adding surface pressure as a second weather
attribute as in the column model helps to avoid this undesirable
phenomenon. Both models used 64 neurons.

Training on Specific Season. Fig. 8 gives examples of networks
that trained only on certain months. If only the summer months were
learned (row), the model performed slightly better in the summer
than in the winter, on both training and test data. The opposite, yet
far more pronounced behavior can be observed when only train-
ing on winter months (column), which performed clearly worse in
the summer. In the selected region, summer months are thermo-
dynamically much more difficult to predict (even for operational
weather forecasting models). A generalization from winter models

is therefore not possible. Compared to a model that could learn on
all months, the specialized models do not perform better, which
can be explained by the much larger variety of examples seen by a
model training on the entire year than only on three months. The
Box Plots give further insights into the performance of the models.

12h vs. 6h Forecast. The forecast distance is another parameter of
interest. Most models we trained predict only one time step (6 hours)
into the future. In Fig. 9, we compare a 6 hour forecast (column)
with a 12 hour forecast (row). The 6h model learns to generalize
better compared to the 12h model, which overfits slightly on the
training data. This can be seen in the Full Overview as well as in the
Box Plots summarized over years. The Loss History does not show
an alarming decrease in validation data performance, thus the model
is still capable of learning, though not as well as the 6h model.

Hourly Patterns. An interesting hourly pattern can be observed in
a model (row) that uses temperature, surface pressure and cloud
cover as meteorological attributes. When looking at the Month
Overview in Fig. 10, the 12:00 step stands out. The model fails
to learn this step. The Box Plots show this striking phenomenon
even more clearly. The Loss History reveals a further problem of this
model: Neither the training loss nor the validation loss decreased
during training. They even increased over the epochs, which leads to
the conclusion that this model had problems to generalize from these
attributes. Further experiments involving the cloud cover parame-
ter frequently showed a similarly poor performance. Dropping the
cloud cover led to a clear improvement and led us to the conclusion
that this parameter is not suitable for this network configuration.

Wind Decomposition. The 2D wind direction is a promising atmo-
spheric attribute, since it provides directional information on the
possible pathways of clouds. Following Günther et al. [GGT17], we
locally decompose the air flow v into two components v and ṽ:

v = v+ ṽ, s.t.
∫

U

∥∥∥∥∂v
∂t

∥∥∥∥2

dV →min (3)

to separate features such as vortices from their ambient transport.
Thereby, v is v in a near-steady reference frame (the temporal deriva-
tive is minimized at each point in a local neighborhood U) and ṽ
contains the ambient movement—ideally, the transport direction
of clouds. We trained and evaluated networks with v (row) or ṽ
(column) as input. Fig. 11 indicates that an extraction of the ambient
flow ṽ improves predictions for small numbers of neurons, as visible
in the Box Plots, since networks do not have to learn the feature
extraction themselves, which prevents underfitting. Note that unlike
v, the decomposition of Günther et al. [GGT17] in Eq. (3) is objec-
tive [TN65], i.e., ṽ adapts to any smooth rotation and translation of
the reference frame.

6.2. Performance

The implementation of our network architecture in Section 4, as
well as the training and testing were done with Keras [Cho15] using
the Tensorflow back end with GPU support. The following timings
were measured with an Intel i7-4710MQ CPU, 8GB RAM and an
NVIDIA GeForce GT 730M GPU with 2GB VRAM. The training of
the networks took between 51 minutes and 16 hours for 100 training

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

65



I. Roesch & T. Günther / Visualization of Neural Network Predictions for Weather Forecasting

Figure 8: Comparison of a network that has trained only on summer months (row) with one that only trained on winter months (column). The
specialization is clearly visible in the Full Overview (�). Box Plots that summarize over months give further insight into the behavior of both
networks. They show a higher mean absolute error and standard deviation in months unknown to the network (�).

Figure 9: Comparison of a 6 hour forecast model (column) with a 12 hour forecast (row). The 6 hour forecast performs better, since the 12
hour forecast experiences overfitting, which can be seen in the Full Overview (�) as well as in Box Plots that summarize over years (�). In
the row model, we connect the 12 hour forecast with a dashed line to indicate that the skipped 6 hour data point is not existent.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

66



I. Roesch & T. Günther / Visualization of Neural Network Predictions for Weather Forecasting

Figure 10: The Month Overview (�) as well as the Box Plots (�) show a clear error spike around the 12:00 step for the row model. The Loss
History (�) reveals that this particular model could not generalize since neither the training nor the validation loss decreased over the epochs.
Here, the user chose to evaluate the performance on the test data only.

Figure 11: Extracting the ambient transport using [GGT17] from the flow improved the predictions, as visible in the Full Overview and the
Selection Matrix. The currently selected row model uses the raw wind speed components, while the column model uses the ambient transport
in U and V direction. Both models also received the temperature attribute as input.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

67



I. Roesch & T. Günther / Visualization of Neural Network Predictions for Weather Forecasting

Forecast Model MAE ME SDE Timings
COSMO-1 (Switzerland) 1.6K -0.05K 2.1K 1 min/h
Our network (Zürich) 0.9K 0.14K 3.0K 1 ms/h

Table 1: Forecasting statistics for the temperature 2 meters above
the ground in 2016. The data of COSMO-1 (operational Swiss
weather forecasting system) is courtesy of MeteoSchweiz [Wal17].

epochs, depending primarily on the number of neurons, the number
of input steps and the chosen weather attributes. After a network
has been trained, a forecast of a single time step takes on average
1 millisecond. It took our models between 37 and 61 seconds to
generate forecasts for the whole training and test data.

6.3. Discussion of Neural Network

Our visualizations encode the mean absolute error (MAE), which
does not encode systematic overestimates or underestimates of the
ground truth. This can be overcome by using the mean error (ME).
MAE, ME and SDE (standard deviation of error) are listed in Table 1
for our best network (trained only for Zürich) and an operational
weather forecasting system (entire Switzerland). Compared to a gen-
eral meteorological model, our best network yields a lower MAE
but a higher ME and SDE. For operational models a post-processing
is applied, which is not taken into account here. Our neural net-
works can generate a prediction in 1ms, whereas the meteorological
model needs 1min to forecast one hour. It is expected that a neural
network that uses only few meteorological attributes cannot beat a
physical and operational weather forecasting model. Interestingly,
our network is in a similar order, yet much faster.

7. Conclusions

Our interactive visualization tool helped us to analyze the weather
predictions of multiple neural networks and to directly compare their
hyperparameters. We devised several linked views, including a Se-
lection Matrix for an entry point of the exploration, a Full Overview
and Month Overview to discover annual, monthly and daily patterns,
and additionally showed Time Step Views, Loss Histories and Box
Plots to enable deeper insight into the prediction performance. With
our method, phenomena like underfitting, overfitting, and outliers
are easier to spot and understand than before.

All our networks were trained for Zürich, where weather forecasts
are typically difficult due to the topography. In the future, we would
like to include the forecast location as an additional dimension.
Instead of evaluating only one selected meteorological attribute, we
would also like to analyze the correlations of multiple attributes.

References
[BB12] BERGSTRA J., BENGIO Y.: Random search for hyper-parameter

optimization. Journal of Machine Learning Research 13, Feb (2012),
281–305. 2

[BBM∗15] BACH S., BINDER A., MONTAVON G., KLAUSCHEN F.,
MÜLLER K.-R., SAMEK W.: On pixel-wise explanations for non-linear
classifier decisions by layer-wise relevance propagation. PloS one 10, 7
(2015), e0130140. 1

[BSF94] BENGIO Y., SIMARD P., FRASCONI P.: Learning long-term
dependencies with gradient descent is difficult. IEEE Transactions on
Neural Networks 5, 2 (Mar 1994), 157–166. 2

[Cho15] CHOLLET F.: Keras. https://github.com/fchollet/
keras, 2015. access date: 12 June 2017. 5

[Cyn17] CYNTHIA A.: Brewer. http://colorbrewer2.org, 2017.
access date: 12 June 2017. 4

[DUS∗11] DEE D. P., UPPALA S. M., SIMMONS A. J., BERRISFORD P.,
POLI P., KOBAYASHI S., ANDRAE, ET AL.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system. Quarterly
Journal of the Royal Meteorological Society 137, 656 (2011), 553–597. 4

[ETFD97] EDWARDS T., TANSLEY D., FRANK R., DAVEY N.: Traffic
trends analysis using neural networks. In Procs of the Int. Workshop on
Applications of Neural Networks to Telecommunications (1997). 1

[GGT17] GÜNTHER T., GROSS M., THEISEL H.: Generic objective
vortices for flow visualization. ACM Transactions on Graphics (Proc.
SIGGRAPH) 36, 4 (2017), 141:1–141:11. 5, 7

[GKH15] GROVER A., KAPOOR A., HORVITZ E.: A deep hybrid model
for weather forecasting. In Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (2015),
ACM, pp. 379–386. 1

[GMH13] GRAVES A., MOHAMED A.-R., HINTON G.: Speech recogni-
tion with deep recurrent neural networks. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP) (2013), IEEE,
pp. 6645–6649. 2

[Hau06] HAUSER H.: Generalizing focus+context visualization. In Scien-
tific visualization: The visual extraction of knowledge from data. Springer,
2006, pp. 305–327. 3

[HRLD15] HOSSAIN M., REKABDAR B., LOUIS S. J., DASCALU S.:
Forecasting the weather of Nevada: A deep learning approach. In Inter-
national Joint Conference on Neural Networks (IJCNN) (2015), IEEE,
pp. 1–6. 1

[HS97] HOCHREITER S., SCHMIDHUBER J.: Long short-term memory.
Neural Comput. 9, 8 (Nov. 1997), 1735–1780. 2

[KB96] KAASTRA I., BOYD M.: Designing a neural network for forecast-
ing financial and economic time series. Neurocomputing 10, 3 (1996),
215–236. 1

[KJL15] KARPATHY A., JOHNSON J., LI F.: Visualizing and understand-
ing recurrent networks. CoRR abs/1506.02078 (2015). 1

[LSL∗17] LIU M., SHI J., LI Z., LI C., ZHU J., LIU S.: Towards better
analysis of deep convolutional neural networks. IEEE Trans. on Vis. and
Computer Graphics (Proc. IEEE VAST 2016) 23, 1 (Jan 2017), 91–100. 1

[SMH11] SUTSKEVER I., MARTENS J., HINTON G. E.: Generating text
with recurrent neural networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11) (2011), pp. 1017–1024. 2

[SVZ14] SIMONYAN K., VEDALDI A., ZISSERMAN A.: Deep inside con-
volutional networks: Visualising image classification models and saliency
maps. In ICLR Workshop Papers (2014). 1

[SWG05] SCHMIDHUBER J., WIERSTRA D., GOMEZ F.: Evolino: Hy-
brid neuroevolution/optimal linear search for sequence learning. In Proc.
International Joint Conference on Artificial Intelligence (2005), Morgan
Kaufmann Publishers Inc., pp. 853–858. 2

[SWLL13] SUN G.-D., WU Y.-C., LIANG R.-H., LIU S.-X.: A survey
of visual analytics techniques and applications: State-of-the-art research
and future challenges. Journal of Computer Science and Technology 28,
5 (2013), 852–867. 3

[TN65] TRUESDELL C., NOLL W.: The nonlinear field theories of me-
chanics. Handbuch der Physik, Band III/3, e by Flugge, S., (ed.) , Springer-
Verlag, Berlin, 1965. 5

[VWVS99] VAN WIJK J. J., VAN SELOW E. R.: Cluster and calendar
based visualization of time series data. In Proc. IEEE Symposium on
Information Visualization (1999), pp. 4–9. 3

[Wal17] WALSER A.: Personal communication, 2017. MeteoSwiss. 8

[ZCAW17] ZINTGRAF L. M., COHEN T. S., ADEL T., WELLING M.:
Visualizing deep neural network decisions: Prediction difference analysis.
arXiv preprint arXiv:1702.04595 (2017). 1

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

68

https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://colorbrewer2.org

