
International Conference on Artificial Reality and Telexistence
Eurographics Symposium on Virtual Environments (2014)
T. Nojima, D. Reiners, and O. Staadt (Editors)

Short Paper: #SEVEN, a Sensor Effector Based Scenarios
Model for Driving Collaborative Virtual Environment

G. Claude† , V. Gouranton‡ , R. Bouville Berthelot§ and B. Arnaldi¶

INSA de Rennes, IRISA (- UMR6074), Rennes, France

Abstract
In this paper we present #SEVEN, a sensor effector model that enables the execution of complex scenarios for
driving Virtual Reality applications. #SEVEN is based on an enhanced Petri net model which is able to describe
and solve intricate event sequences. Our model also proposes several useful features for the design of collaborative
scenarios for Collaborative Virtual Environments such as versatile roles and Activity Continuum. We also illustrate
its usage it by describing a demonstrator that presents an implementation of our model.

1. Introduction

In a Virtual Reality (VR) application for training, the sce-
nario engine is one of the main subsystems. Its purpose is
to orchestrate the events that occur in the Virtual Environ-
ment (VE) at runtime. In collaborative virtual environments
(CVE), this adaptation must take into account multiple users.
To illustrate this assertion, let us take a sequence of actions
that must be executed by the same actor even though more
than one actor is able to start this sequence. We want our
scenario model to be able to describe such constraints.

VE for training are a specific category of VR application
that requires the experience of an expert in the targeted area
to define the scenarios and the objectives of the training in
order to design: what must be done, who has to do it and
when it is done. As this expert has the knowledge of the
simulated domain and knows what needs to be learned by the
trainees, we decided to refer to this person as "the specialist"
throughout this paper.

In this paper, we are interested in the inner model of a
scenario engine for CVE. We decided to exclude the edit-
ing formalism of the scenario from the scope of this paper.
Indeed, this formalism is not related to runtime but to the
authoring of the scenario.

† guillaume.claude@irisa.fr
‡ valerie.gouranton@irisa.fr
§ rozenn.bouville_berthelot@irisa.fr
¶ bruno.arnaldi@irisa.fr

Concerning the runtime, we have defined a set of needs:

• The model must allow sequences of actions to be defined
at once that must be performed in a strict order as well
as wide open actions.

• The model must enable the description of complex event
sequences such as branching or parallelism.

• The model must enable both actors’ actions and the vir-
tual environment behaviours to be described, depending
on the needs of the simulation.

• The model must be able to manage continuous events and
discrete events.

• The model must enable complex collaboration connec-
tions such as team organization and the dynamic assigna-
tion of tasks to be described:

– Each actor has an assigned role in the team related to
its capabilities, knowledge and duties.

– This role can evolve dynamically during the simula-
tion depending on the context.

– Actions may be related to multiple roles.
– To be consistent with reality, some sequences of ac-

tions must be performed by the actor who initiated
them.

• The model must allow the description of scenarios with
several levels of detail. It allows a scenario to be used
with every action specified for the training of beginners
and without any guidance from the expert.

c© The Eurographics Association 2014.

DOI: 10.2312/ve.20141366

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/ve.20141366


2. Related Work

In the literature, the modelling of scenarios for VR applica-
tions is divided into two classes: emerging scenario models
and predefined scenario models.

2.1. Emerging scenario models

Emerging scenario models do not define precisely what must
occur in the environment. They drive the simulation from
a set of rules that constrains the behaviour of the differ-
ent involved agents. The scenario then emerges from these
behaviours [PHM∗03, LC06]. This approach did not fit our
needs as we had to describe the events that must occur dur-
ing the simulation precisely: the specialist may not be able
to describe precisely the next possible events.

2.2. Predefined scenario models

Predefined scenario models focus on the sequence of the
events. The specialist defines these sequences when writ-
ing the scenario. Some events may have complex arrange-
ments such as parallelism or branching. This class of model
uses different kinds of automata to model the arrangement
of the events. State machines are widely used to respond to
this problem. HCSM [CKP95] proposed a hierarchical state
machine structure that was later extended in engines such
as the behaviour model HPTS++ [LD02] and the collabo-
rative scenario engine LORA++ [GMA07] in which each
state is a software agent. Other works propose the use of
Petri nets [Mur89] in behaviour models [WH01]. Smith and
Duke [SDM99] propose to consider VE as an hybrid system
and use Hybrid Petri nets to model interaction.

In CVE, the arrangement of the events and, more partic-
ularly, the actions of actors are even more complex to han-
dle. The solution used in VR is to give roles to the actors.
In this case, the role of an actor defines the allowed actions
it can perform at a specific point of the scenario. The role
theory [BT66] states that roles (its attributions and its duties
towards the team and the goals) can change throughout the
life of the team. These evolutions must have been foreseen
and controlled by the specialist during the scenario specifi-
cation. This problem is handled by RoB-MALLET [ZY06]
and LORA++ by allowing the role of an actor to be changed
at runtime. Another problem raised by collaboration is how
to define that the actor who has started a task must be the
only one allowed to complete this task. HPTS++ handles
the problem by being able to model concurrent access to re-
sources (such as the tool needed to perform the actions of
the sequence).

2.3. Synthesis

We have found in the literature many of the features we need
for our scenario model. Nevertheless none of them matches
our criteria:

• HPTS++ proposed the "perception, decision, action" loop
to interact with, and control, the VE but it is not collabo-
rative as its main purpose is to model behaviour.

• LORA++ is able to manage complex teamwork but is fo-
cused on the actions of the users, not on driving environ-
ment

• Others models propose complex modelling of sequence
by relying on models such as Petri nets, but again, collab-
oration is not embedded [WH01].

Event / Transition

Sensor

Effector

Upstream

Place

Downstream

Place

Token

Virtual
Environment

Virtual
Environment

Petri Net

#SEVEN Event model

Scenario

Figure 1: A Petri net enhanced with the event model.

3. Contributions

In the following section we present the #SEVEN scenario
model and its features: in section 3.1, we discuss the moti-
vation for using a Petri net-based model; 3.2 describes our
model and its main features; 3.3 describes the notion of Ac-
tivity Continuum and its integration in the model;Finally, 3.4
introduces the principle of scenario projection.

3.1. Events sequence

Petri nets provide an expressive yet easy to understand for-
malism which allows branching (concurrency) and paral-
lelism [BA06] to be modelled. We use hierarchical, safe Petri
nets as a tool to model the sequence of the events. The places
of a safe net can hold only one token at a time [Mur89]. We
use safe nets because we wanted to model the scenario of our
VR system as a unique process. The transitions are the events
of the scenario. An event is marked as fireable when the tran-
sition is sensitized (i.e. when all of the upstream places of
the transition hold a token). This net model is enhanced by
giving the ability to the places to be Petri nets.

In #SEVEN we have integrated the notions of initial and
final places. Initial places define the initial marking [Mur89]
of the net when it is initialized. Final places define that the
scenario is finished when they all hold a token. Using these
two elements, we have added the ability to the places to also
be Petri nets. When a place which is a sub-scenario receives
a token, it duplicates this token in each of its initial places.
From the parent scenario point of view, the place holds a
token when all of its final places hold one. At the beginning
of the simulation, if a scenario is the root scenario (i.e. it has
no parent scenario) then its initial places are marked with a

c© The Eurographics Association 2014.

G. Claude et al. / Short Paper: #SEVEN64



token. If all of the final places of the root scenario hold a
token, the scenario is completed.

3.2. The event model

The perception and action capabilities of #SEVEN are
brought about by extending the transitions of the net as an
event. An input element - the sensor - and output element -
the effector - are attached to the event. Figure 1 shows the
simplest example of a Petri net with the event model.

Perception The purpose of the sensor is to describe the con-
ditions that indicate that an event has occurred. This element
listens to the VE until it reaches a specific state or an event
occurs. When these conditions are met, the sensor fires its re-
lated event if possible (i.e. it is sensitized as a Petri net transi-
tion as all its upstream places hold a token). For instance, we
have defined specific sensors such as the auto-trigger (fired
instantly when its related event is fireable, without any other
condition) or the action sensor (fired when a user executes a
specific action such as "Pushes the button up" or "Takes the
bridles"). There are no forced behaviours for access of the
sensors to the environment; it depends on the implementa-
tion of the type of the sensor.

Action When an event is fired, it triggers its related effec-
tor. The effector’s task is to modify the elements of the VE
by changing some variables or starting some processes. For
instance, an effector can start an animation or change some
attributes of an object, such as its inner state.

Execution At each simulation step, the system checks all
the sensors one by one. If the conditions of the sensor are
met, it tries to trigger its related event. If all of the upstream
places hold a token, the event is triggered: it executes its re-
lated effector, consumes the tokens in the upstream places
and produces a token in the downstream places. Then it stops
the loop. At the beginning of the next step, the system con-
tinues the checks, starting with the next sensor after the last
triggered one. The system stops when it reaches a sensor it
has already checked, when no sensor is fired in a loop.

Hybrid system The management of the discrete and con-
tinuous components of the simulation is easily handled by
the event model. Sensors can transform a continuous signal
to a discrete one by applying threshold functions or com-
plex conditions. For example: The sensor is waiting for the
winch to reach a defined area. If the coordinates of the winch
are not in the specified area (defined by three hysteresis on
x,y,z) then the event cannot be activated. When the coordi-
nates match, the sensor triggers the event.

3.3. Activity continuum

In some scenarios, the actor who started an action is forced
to complete the started process by executing the following

actions. We have proposed an extension of our Petri net
implementation which allows this kind of behaviours to be
modelled. For this purpose we propose the concept of Activ-
ity Continuum. An Activity Continuum is a set of parameters
that is common to all of the actions in a sequence. In this
paper we have limited these parameters to identifiers related
to the actors.

As in coloured Petri nets [Jen87], we have added some
data to the token. These data define the Activity Continuum
using a set of unique identifiers (one for each actor). The
transitions are labelled with functions whose purpose is to
define the data on the output tokens from the data on the
input tokens.

At runtime, a user can see a sensor as fireable only if its
identifier is present on, at least, one token. As the tokens of a
sub-scenario are viewed as a unique token by its parent, the
token data are equal to the union of the id present on the final
places tokens. Knowing this, if the actions available to a user
is defined by the sensors fireable for this user, it is possible to
restrict the execution of the action to a specific set of actors
based on the execution context. Our adaptation of coloured
Petri nets does not impact the capabilities of the safe Petri
net model we used as a basis. This model adds some predi-
cates on the fireability of the sensors. The scenario labelled
with functions has an equivalent Petri net without function
which is an unfolding of all of the possible executions of the
labelled one (one by identifier).

3.4. Roles and collaboration

In the role theory [BT66], "role" is defined as concepts held
by anyone about the behaviours of a person or a position.
The theory also states that the role of an actor can evolve
with time. In CVE for Training the role defines the skills an
actor has and the actions the actor is able to execute dur-
ing the simulation. In order to fit with role theory, we have
embedded in #SEVEN the ability to give a fine-grained de-
scription of the actions related to roles. Furthermore, these
descriptions of roles can be changed dynamically. To achieve
this, we decorate the events with "assignments".

Assignments Assignments are sets of actions an actor can
do in the environment. Actor handled events are labelled
with potentially multiple assignments. The assignments are
then divided between all of the actors. The role of an actor
is the union of all of its assignments. An assignment is not
specific to an actor and multiple actors can have the same set
of assignments and, by extension, the same role.

Dynamic assignment changes Granting or removing an
actor’s assignments allows the granting or removal of ac-
cesses to subnets of the Petri net. We have created a type
of effector that is able to add and/or remove assignments
from actors depending on their set of assignments. As the
assignments of the actor change, its reading of the scenario

c© The Eurographics Association 2014.

G. Claude et al. / Short Paper: #SEVEN 65



changes too and it may be able to access some actions while
losing the access to others. The set of actions related to an
assignment is the responsibility of the specialist.

3.5. Complete Use Case

Our use case is based on a real situation that implies at least
two coworkers in a maintenance procedure (see https://
vimeo.com/104937822 ).

We used #SEVEN in a collaborative VE for the training
for the maintenance of an injection moulding machine. This
procedure consists of changing the mould of a plastics injec-
tion machine; it requires at least two teammates that coop-
erate to manipulate and fix a new mould which can weigh
several tons.

#SEVEN enables us to easily distribute the two roles re-
quired by the simulated procedure. Using #SEVEN’s assign-
ment feature, we arranged the height assignments attribu-
tions that derived from the tasks that compose the procedure
to define the roles of the actors. Finally, it has been possible
to describe a complex sequence of events that most of the
existing scenario models are unable to define simply. Fur-
thermore, we were able to define several Activity Continuum
(see 3.3) so that the scenario is closer to reality and to the
context of the training simulation.

4. Conclusion and Future Work

We propose #SEVEN, a scenario engine model based on hi-
erarchical safe Petri nets, improved by specific features for
driving CVE. #SEVEN uses a "perception, decision, action"
loop to update itself. Thus, it not only guides users in carry-
ing out their duties, but it also drives the VE by triggering
and perceiving changes. #SEVEN allows the writing of sce-
narios ranging from the constrained to the wide open. More-
over, they can be improved with the dynamic evolution of
roles of the actors. Based on these advanced features, the ex-
ecution of the scenario is modified by taking into account the
history of events as well as the state of the environment. Our
model is able to express all the features we needed:

• It can define complex events and actor actions sequences.
• It can perceive discrete and continuous events.
• It can describe complex collaboration circumstances.
• It can interact with the virtual environment.

We deliberately focused our efforts on the inner model
of the engine, leaving behind the formalism for authoring.
Moreover, the Activity Continuum feature is for now limited
to actors and needs an extension to manage both the actor
and the execution context of the action. In addition, there
is still work to do on the deadlock detection and correction
during both authoring and at runtime.

Acknowledgements

This publication is supported by the S3PM project of the
CominLabs Excellence Center.

References
[BA06] BROM C., ABONYI A.: Petri-nets for game plot. In Pro-

ceedings of AISB artificial intelligence and simulation behaviour
convention (2006), vol. 3. 2

[BT66] BIDDLE B., THOMAS E.: Role theory: concepts and re-
search. 2, 3

[CKP95] CREMER J., KEARNEY J., PAPELIS Y.: HCSM: A
framework for behavior and scenario control in virtual environ-
ments. ACM Trans. Model. Comput. Simul. 5, 3 (July 1995). 2

[GMA07] GERBAUD S., MOLLET N., ARNALDI B.: Virtual en-
vironments for training: From individual learning to collabora-
tion with humanoids. In Technologies for E-Learning and Digital
Entertainment, vol. 4469 of LNCS. Springer Berlin Heidelberg,
2007. 2

[Jen87] JENSEN K.: Coloured petri nets. In Petri Nets: Central
Models and Their Properties, vol. 254 of LNCS. Springer Berlin
Heidelberg, 1987. 3

[LC06] LUGRIN J.-L., CAVAZZA M.: AI-based world behaviour
for emergent narratives. In Proceedings of the 2006 ACM
SIGCHI International Conference on Advances in Computer En-
tertainment Technology (New York, NY, USA, 2006), ACE ’06,
ACM. 2

[LD02] LAMARCHE F., DONIKIAN S.: Automatic orchestration
of behaviours through the management of resources and prior-
ity levels. In Proceedings of the First International Joint Con-
ference on Autonomous Agents and Multiagent Systems: Part 3
(New York, NY, USA, 2002), AAMAS ’02, ACM. 2

[Mur89] MURATA T.: Petri nets: Properties, analysis and appli-
cations. Proceedings of the IEEE 77, 4 (Apr. 1989). 2

[PHM∗03] PONDER M., HERBELIN B., MOLET T., SCHERTEN-
LIEB S., ULICNY B., PAPAGIANNAKIS G., MAGNENAT-
THALMANN N., THALMANN D.: Immersive VR decision train-
ing: Telling interactive stories featuring advanced virtual human
simulation technologies. In Proceedings of the Workshop on Vir-
tual Environments 2003 (New York, NY, USA, 2003), EGVE
’03, ACM. 2

[SDM99] SMITH S., DUKE D., MASSINK M.: The hybrid world
of virtual environments. In Computer Graphics Forum (1999),
vol. 18, Wiley Online Library. 2

[WH01] WILLANS J., HARRISON M.: Verifying the behaviour
of virtual environment world objects. In Interactive Systems De-
sign, Specification, and Verification, vol. 1946 of LNCS. Springer
Berlin Heidelberg, 2001. 2

[ZY06] ZHANG Y., YIN J.: A role-based modeling for agent
teams. In Distributed Intelligent Systems: Collective Intelligence
and Its Applications, 2006. DIS 2006. IEEE Workshop on (June
2006). 2

c© The Eurographics Association 2014.

G. Claude et al. / Short Paper: #SEVEN66

https://vimeo.com/104937822
https://vimeo.com/104937822

