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Abstract

Mammography is the common modality used for screening and early detection of breast cancer. The emergence of machine
learning, particularly deep learning methods, aims to assist radiologists to reach higher sensitivity and specificity. Yet, typical
supervised machine learning methods demand the radiological images to have findings annotated within the image. This is a
tedious task, which is often out of reach due to the high cost and unavailability of expert radiologists. We describe a computer-
aided detection and diagnosis system for weakly supervised learning, where the mammogram (MG) images are tagged only
on a global level, without local annotations. Our work addresses the problem of MG classification and detection of abnormal
findings through a novel deep learning framework built on the multiple instance learning (MIL) paradigm. Our proposed method
processes the MG image utilizing the full resolution, with a deep MIL convolutional neural network. This approach allows us
to classify the whole MG according to a severity score and localize the source of abnormality in full resolution, while trained
on a weakly labeled data set. The key hallmark of our approach is automatic discovery of the discriminating patches in the
mammograms using MIL. We validate the proposed method on two mammogram data sets, a large multi-center MG cohort
and the publicly available INbreast, in two different scenarios. We present promising results in classification and detection,
comparable to a recent supervised method that was trained on fully annotated data set. As the volume and complexity of data
in healthcare continues to increase, such an approach may have a profound impact on patient care in many applications.

1. Introduction

The most common cancer and second leading cause of death among
women is breast cancer [JBC*11] where the medical community is
striving for its early detection. Mammography is commonly used
for screening and detection of breast cancer [CCOS]. In current
practice, radiologists and CADx systems follow a two-stage pro-
cess defined by the detection of abnormalities, followed by their
classification according to the standard Breast Imaging Reporting
and Data System (BI-RADS). Mammogram analysis is challeng-
ing due to the high variability of breast patterns, variations in ap-
pearance, size and shape of the abnormalities, which often make
them difficult to detect and classify even by expert radiologists.
Subsequently, a broad variety of traditional machine learning clas-
sifiers have been developed for automatic diagnosis of different
findings such as masses and calcifications, and ultimately breast
cancer [dOdCFS*15,JY15]. Traditional computer vision and ma-
chine learning approaches suggest task-specific and handcrafted
features for classification and detection problems. Deep learning al-
gorithms outperform these methods in many areas and have solved
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complicated pattern recognition problems, especially in the do-
main of Big Data [SZ14]. The deep architecture can be used to
efficiently learn optimal representations, and ultimately to enhance
detection and classification accuracy. Deep learning methods have
also achieved considerable success in multiple applications, in-
cluding medical imaging, even where the available data is lim-
ited [YCBL14,BAABKHI17].

Several studies [CGGS13, PND*14, KPN*16] have explored
deep learning approaches to address the automatic classification of
lesions in mammography. However, one hurdle to fully utilizing the
potential of Big Data in medical images is the expensive process
of annotating images, which poses a strong bottleneck in super-
vised learning and particularly in medical imaging. In the weakly
supervised paradigm, only image-level tags are necessary to train
a classifier, as opposed to fully supervised classification and detec-
tion, which typically requires exhaustive annotations of the medical
images [DCB16,DCB17]. Yet, there are several other reasons jus-
tifying the weakly labeled approach in medical imaging:

e The tedious annotation produces an additional source for errors
in data labels

e Often lesion margins are ambiguous, creating controversial an-
notations
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e Global labels for training are commonly available through med-
ical records and easy to acquire

e Data-driven class discrimination can lead to new insights

e Weakly methods can be used to complement fully supervised
approaches

Therefore, medical image classification and localization of abnor-
malities with only global tags, is a highly desired task.

Weakly supervised models have recently gained high interest in
the computer vision community [BV16, TWH™17] and in medical
imaging [HK16, YZP* 16, QLC™ 16], facilitating technological ad-
vancements in computer-aided diagnosis. We address the task of
mammogram (MG) classification and abnormality detection, as il-
lustrated in Fig. 1. The associated lesions with each class determine
the classification task as well as the type of alerted findings.

Several studies address the problem of weakly supervised
learning in MG e.g. [QLC*16, HK16, ZLVX16]. Quellec et al.
[QLC*16] use hand crafted features to specifically capture masses
and micro-calcifications and test their method on the digitally
scanned image data set of Digital Database for Screening Mam-
mography (DDSM) [OGA*08] unlike the currently used Full
Field Digital Mammogrpahy (FFDM). Recent studies in medi-
cal imaging for weakly supervised classification tasks, include
[HK16,YZP*16,ZLVX16]. Yan et al. [YZP*16] address a totally
different problem of anatomy recognition in CT scans using MIL.
This work uses a cascade classifier and focuses on background clas-
sification (referred as non-informative patches). The patches are ex-
tracted from CT slices and used to boost learning for recognition
of the large body parts, appearing in the slice images. Hwang and
Kim [HK16] address MG classification on weakly labeled sets us-
ing a CNN, divided into two branches, one for classification and the
other for detection. Their network works on downsized images (500
% 500) with low resolution in localization, and strongly impacting
the low classification performance reaching 0.675 ROC-Area Un-
der the Curve, with results reported on digitally scanned images.

Multiple Instance Learning (MIL) suggests an approach for
weakly supervised learning, namely when the labels are provided
at the whole image level. By representing an image as a bag of
multiple instances, classification can be made based on bag in-
gredient labels instead of the traditional global image features
[DLLP97,MLP98]. MIL has been regained interest recently in the
deep learning framework for weakly supervised object recogni-
tion [WYHY 15, SHLKR 16, TWH* 17], facilitating the demand for
the laborious object annotation.

In this study, we find the recently published arXiv paper
[ZLVX16], close to our work. This study addresses the problem
of MG classification from weakly labeled sets using MIL. Assum-
ing that lesions occupy a small portion of the whole mammogram
the authors add a sparsity constraint in the loss function enforcing
the probability distribution of patches to be sparse (mostly negative,
with zero probability). This study uses the CNN for representation
of the whole mammogram and in order to use a pretrained network
(on ImageNet) they downsize the large MG images by factor 7-14
on each side to reach 224 x224 size. The harsh downsizing action
causes a significant loss of information in the mammogram. It is
well known that malignant lesions often appear as masses or micro-
calcifications and can be as small as 50x 50 pixels (cf. statistics on

INbreast data set in [ZLVX16]). Yet, [ZLVX16] report a signifi-
cantly high ROC-AUC of 0.859 on INbreast dataset [MAD™12].
However, this average AUC is based on 5-fold cross validation,
without declaring the partition regime. Patient-wise partition of the
folds is necessary to avoid images from the same patient to ap-
pear in the training and testing sets, otherwise contamination of
the test set yields optimistic performance as a result of an overfit.
In this study we use a patch-based approach with a max-pooling
loss function, resulting localization in full resolution. Our post pro-
cessing, employs top scored patches in full resolution and the test
augmentations further contributes in improved results. Tang et al.

[TWH*17] argue patch-based CNN advantages over plain CNN,
reporting state-of-the-art results in weakly supervised classification
and detection on natural images. We further conduct extensive ex-
perimental evaluations on a large data set (x5 and x8 of those
used in [ZLVX16] and [HK16] respectively) and two different data
splits, showing also localization results and accuracy.

In this paper, we propose the following major contributions: (1)
We present a novel patch-based deep multiple instance CNN for
classification of a mammograms according to the severity of its
internal findings, while trained on images with only global labels
(without localization of the lesions). (2) Our approach further sug-
gests detection of the lesions in full resolution. (3) We report results
on a large multi-center mammogram data set as well as public data.

Our method further suggests the following advantages: (1) De-
composing the images into patches allows direct change of the lo-
cal scale without the need to alter the CNN internal parameters or
image resize. (2) Our model is insensitive to the image size and
the number of the patches extracted from the image. So there is no
need to warp the image to a fixed size, which often causes the dis-
tortion of the image and the lesion shape; (3) The patch based ap-
proach allows processing of non-rectangular regions in the image
by masking of certain areas, with simply excluding patches from
the collection. (4) A combined pre-trained CNN allows training on
small data sets while shortening the training duration, since only
the fully connected layers are then trained.

Weakly labeled approach using data sets tagged only at the
global image level are particularly useful in medical image anal-
ysis, where the annotations often require expensive and time-
consuming clinical expertise.

2. Methodology

Mammography frequently requires a binary classification task, sep-
arating normal cases from the rest or from those with suspiciously
malignant findings. In traditional supervised learning, training data
is given in pairs {(x;,y;)}),, where x; denotes the input image or
features and y; € {y+,y—} the label e.g. normal or benign versus
malignant class label. Thus, the goal of supervised learning is to
train a classifier 4 : x — y that will accurately predict the label y of
anovel instance x. In the context of deep learning, the classifier be-
comes a multi-layer neural network, possibly convolutional, with
the ability to create efficient feature representations of the global
image data. However, in mammograms, discriminative information
generally comes from relatively small local regions that eventually
determine the global image label.
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(a) Negative-Normal

(b) Positive-Highly Suspicious as
Malignant

(c) Method Result

Figure 1: Illustration of weakly labeled classification task. (a) Normal MG, (b) MG containing a malignant tumor, (c) the same image
correctly classified as malignant overlaid by the radiologist annotation in dashed red contour (used only for validation). Our system alerts
are shown by a heat colored bounding boxes. Lesions can be relatively small with respect to the whole image and occluded under the

parenchymal tissues.

Multiple instance learning is based on two basic ingredients,
bags and instances. Bags can contain variable number of instances.
In MIL, bag labels are given, and each bag consists of a collection
of instances, with a-priori unknown labels (in training). MIL has
two constraints: 1) if a bag is positive, at least one instance in the
bag should be positive; 2) if a bag is negative, all instances in the
bag should be negative. Images are typically represented by bags
and patches as instances. Let the training set A consist of pairs of
bags and their associated labels {(X;,Y;)}Y_;, where X; = {x; j};”’: 1
Here, X; denotes the bag, representing the i-th image with its label
Y; while x;; presents the j-th patch in image i referred as instance.
The goal of MIL is to classify unseen bags or instances based solely
on the bag labels in the training stage. Thus, we assume that in-
stance labels y;; € {y+,y—} can exist for each instance, but are not
known during training. The MIL assumption can then be satisfied
by:

Y= mj?lx()’ij)- €]

Considering the recent successes achieved by deep learning, it
seems a natural choice to employ deep representations instead of
shallow models. We use a deep CNN as our architecture for learn-
ing visual representation of patches, coupled with multiple instance
learning to obtain a global representation. While the CNN archi-
tecture is similar to conventional supervised learning networks, the
loss function must be adapted. In order to discriminate between
classes, most classification frameworks involve cross entropy loss.
However, in our binary scenario, negative patches are also present
in positive images. Since they would obtain high probabilities even
in positive scans, no separation between the two classes can be ob-
tained. Thus, the cross entropy loss is modified to its MIL version,
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which defines a log likelihood loss by:

L£(8)= Z log ( max P(y+|x;;,0)) + Z log (1 — max (P(y+1xi;,6)),
X;eA Xij €X; X,eA Xij€Xi
Y=yt Yi=y—

2
with P(y+ |x;;,0) as the probability that the local patch x;; is clas-
sified as positive, based on the neural network coefficients 0. The
two terms define the loss over the positive and negative sets respec-
tively. Note that local patches (instances) has a-priori no label. The
patch labels are assigned during the training process to optimize the
bag classification.

There are areas in the MG image that carry no information,
such as the breast exterior (see the black region in Fig. 2) or
certain anatomical areas such as the skin or pectoral muscle, as
shown in Fig. 2. In this approach we can use a modified probability
o(x;;)P(y+|x;;,0) where each patch probability is coupled with a
probabilistic geometric prior @(x;;) to alter the weight of patches in
certain areas. One possible choice is to use some notion of distance
such as:

A(xij N B)

3
Alx) 3

(D(x,'j) =1-

where A(x;;) denotes the area of patch x;; and B the determined
restricted area. We recognized two types of such areas. The first
is the breast exterior and outline (skin). Thus patches intersecting
breast outline were excluded from the "bag". The second excluded
area was the pectoral muscle. Considering the pectoral muscle re-
sulted inferior performance particularly due to existence of lymph
nodes having a similar appearance as masses. We therefore disre-
gard this area and consider it’s further analysis in a future work.
Note that findings near the restricted areas are still considered due
to the overlapped patches. In the current experimental tests we used
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a binary weighting:

o)) = 1, x,-jﬂB:@
s 0, XijN B#£0,
This weighting and masking paradigm allows processing of non-

rectangular regions in contrast to previous methods of [HK16,
ZIVX16]. The breast contour was found using a global object pre-

C)

Figure 2: Excluding areas from the process, such as the breast
exterior separated by the white curve and the pectoral muscle
bounded by the blue curve and the top right corner.

serving threshold, and the pectoral muscle by a dynamic program-
ming that connected points of high gradient.

The new loss function satisfies a multi-instance learning crite-
rion. Yet, this loss function is not differentiable. We therefore use
a surrogate function by first sorting the patches according to their
scores (i.e., positive probability), then choosing the patch with the
maximum score as input to a standard cross entropy function. This
instance, presenting the most discriminative patch represents the
whole image and is used for back propagation and update of the
coefficients 6. Note that the suggested MIL paradigm is insensi-
tive to the image size, since bags can contain a different number of
instances.

3. Network Architecture

We start with breast segmentation, separating it from the back-
ground. The breast interior is then decomposed into fixed size
patches with overlap. We use deep CNN as our framework for mul-
tiple instance learning. As mammograms are captured in high res-
olution to allow detection of small size findings, we extract our
patches from the original image without downsampling. Due to the
relatively small training data set, we employ a two-stage deep neu-
ral network architecture as depicted in Fig. 3. As the first stage we
opted for a transfer learning approach by using the pretrained VGG-
M network [CSVZ14a], trained on the ImageNet data set. In our
model, we extract CNN codes from the last hidden layer as 4096D
feature vector. This CNN network is followed by a refining fully
connected neural net modified to comply with the MIL paradigm.
The refining neural net includes three fully connected layers and is
trained from scratch according to the suggested MIL loss function
(2). Note that with a sufficiently large data set the network can be
trained end-to-end for optimal image representation.

We use 224 x 224 local patches on the original scan (approx. 15
x 15 [mm]) as input to our pre-trained CNN, with 50% overlap. The

VGG-M pretrained convolutional network is provided by the visual
geometry group (VGG) of the University of Oxford, trained on the
ImageNet data set [CSVZ14b]. This network consists of five convo-
lution layers, three fully connected layers and a softmax layer with
1000 output nodes. In order to fit the image patches into the net-
work, they were first transformed to 8 bit and, replicated to 3 RGB
channels. In our model we use the output of the last fully connected
layer (full7 layer-20) as a 4096D feature vector. Note that the VGG
stage is fixed, namely the CNN weighs are frozen and not updated
during the training. This strategy allows the patch feature vectors to
be computed only once, prior to training, significantly reducing the
computation cost as the refining network includes only three fully
connected layers. We used Rectified Linear Units (ReL.Us) as non-
linear layers in the refined NN. The optimization step is obtained
using momentum stochastic gradient descent.

To enlarge and balance the training set, we used augmentations
by adding, rotations 7 x 45°, flips and 6 shifts. The process is
initialized with random labels over patches. The networks is then
trained using stochastic gradient descent solver with a mini-batch
size of 70-256 varied according to the data set (without batch nor-
malization). We used a dynamic learning rate of [0.5,3.5] x 1073,
momentum of 0.9 and weight decay of 1072 and 10™* for two
different data sets. The stopping criterion was set to 20-30 epochs
according to a validation set. We further post-process the results
using 15 augmentations on the test patches as detailed above, then
averaging over the top K = 4 instance scores to reach the image
level probability. This post-processing improved outlier rejection
and reduced the false positives.

The average training time was around 3 hours on NVIDIA-GTX
Titan GPU (12GB), for 2,000 images of approximately 3K x 1.5K
size, in MatConvNet framework. The representation process (basi-
cally feed-forward through the VGG-CNN)), took around 1.5 hours.

4. Experiments

We conducted our first experiment on a large multi-center hospi-
tal data set referred as IMG. The data set consists of 2,500 full-
filed digital mammograms (FFDM) from a BI-RADS distribution
of 1317, 662, 333 and 47, 141 corresponding to findings in the
images associated with maximum BI-RADS 1,2,3 and 4,5 respec-
tively. The mammograms contain various findings such as masses,
macro and micro-calcifications. In our first test scenario we split
the mammograms into the following two labels, BI-RADS 4,5,6 as
positive (98 cases) and BI-RADS 1,2,3 as negative (780 cases). We
included all types of suspiciously malignant abnormalities into the
positive class to distinguish between any severe abnormality from
BI-RADS 4,5 and normal images (BI-RADS:1) as well as the most
likely) benign findings (BI-RADS:2 & 3). This data split raises a
particular challenge as the model has to discriminate between im-
ages with a very similar types of lesions, such as malignant versus
benign masses or different types of micro-calcifications, often am-
biguous even for expert radiologists. Our second test bed includes
the INbreast (INB) publicly available FFDM data set [MAD*12].
This relatively small data set includes 410 mammograms from 116
cases. We conducted the same split on the INbreast images, and
obtained 100 positive and 310 negative mammograms. We refer to
this test scenario as TS-1, and further test our model on a different
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Figure 3: The proposed deep multiple instance learning network architecture. After the preprocessing stage of breast segmentation, the image
is decomposed into patches (instances). Each image patch is then run through a pretrained network to yield a 4096D representation vector.
The refined NN then associates a class score to each feature vector (patch) according to its learned discrimination power. The probabilities
are then processed to aggregate a final probability for the whole image (bag). Classification is determined according to the patch with the
highest positive probability, whereas detection is obtained by selecting the patches with the highest positive predictive probabilities.

scenario with a data split of BI-RADS 1 versus Rest illustrating a
use case where the system alerts for any abnormality (even benign).
We refer to this test scenario as TS-2.

We carried out our performance assessment with 5 fold patient-
wise cross-validation. At each train and test iteration, all the images
from the patient under testing were strictly excluded from the train-
ing set, to avoid data contamination and over-fitting.

4.1. Classification Results

Table 1 summarizes the experimental results for the classification
task. We use the area under the ROC curve (AUC) measure for
performance assessment due to the high imbalance distribution be-
tween classes in the data sets. Only 7.5% of mammograms in the
IMG set are positive in TS-1. Our deep MIL model produces an
average AUC of 0.831 £ 0.044 on the IMG data set in test sce-
nario TS-1. Further analysis shows that on average, 48% of the
false positives are from BI-RADS 2 & 3 categories. This shows
that many network errors may be associated with wrong classifi-
cation of masses and calcifications, which often pose a challenge
even for expert radiologists. Testing on the small data set of INB
resulted in a lower AUC of 0.722 £ 0.089. The lower AUC asso-
ciated with high STD in INB reflects the influence of the small
data size, on learning capability and validation. Note that for the
commonly used 5-fold cross validation, there are approximately 16
positive images in each fold (only about 8 patients).

We further compare our method to two recent works and one
baseline that reflects the impact of downsizing the images. The first
reference [HK16] called Self-TL, uses a weakly labeled data set
and a recently published method of ResNet MG [DCB17], employ-
ing a fully annotated image set (i.e., including finding annotations).
The latter ResNet MG presents results on INB in the same test sce-
nario, TS-1. While Self-TL tests are similar to our TS-2, the data
set is different, using digitally scanned MG. The third compari-
son from [SBAK17], conducted on the INB, comprises of a naive
transfer learning strategy (referred as Naive-TL), in which the im-
age (after cropping the area of the breast) is resized to 224 x224
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pixels. The breast image is then run through an off-the-shelf deep
CNN model, trained on the Imagenet dataset (employing the same
VGG-M model as used in this paper), obtaining from it a 4096 long
representation vector for the entire image. These features are then
used to train an SVM 1in order to classify them as positive or neg-
atives. Note that this reference demonstrates the impact of image
significant downsizing on the AUC.

The Self-TL method [HK16] yields an AUC measure of 0.675,
a significantly lower performance on a similar size data set as
INB, yet on a scanned MG set. With respect to the fully super-
vised learning method of ResNet MG tested on INB, our model
achieves comparable result on the same data set when considering
a single MG, but without requiring local annotations. The Naive-
TL demonstrates the significant impact of strongly downsizing the
image resulting AUC of 0.602 on INB (see Table 1). Note that our
model is further capable of distinguishing between different types
of abnormalities such as micro-calcifications which can appear in
both classes in TS-1.

In Fig. 4 we present the resulting ROC curves for our two test
scenarios. For TS-1 with highly probable malignant MG classifica-
tion, we obtain specificity of 60% @ 87% sensitivity or specificity
of 40% @ 96% sensitivity. Similar work points for BI-RADS 1 vs.
Rest shows specificity 60% @ 79% sensitivity or specificity 20%
@ 96% sensitivity.

4.2. Localization Results

While the training starts with unlabeled instances, the final model
classifies each instance/patch according to its discrimination power
in separating positive and negative bags. We can use the instance
score to visualize the discriminating regions that can be referred as
abnormalities. Fig. 5 shows several true positive results from our
deep MIL model on both IMG and INB data sets for TS-1. These
results show the successful localization of the malignant findings
in the image, whether it is a tumor or micro-calcification clusters.

Fig. 6 shows the visualization for TS-2. Results are shown with
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Methodology Labeling | TS | Data set Type # Images Average AUC
Proposed Deep MIL Weakly (1 MG FFDM 2,500 0.831 £ 0.044
Proposed Deep MIL Weakly 1) INB FFDM 410 0.722 + 0.089
Proposed Deep MIL Weakly 2) MG FFDM 2,500 0.817 £ 0.031
Proposed Deep MIL Weakly 2) INB FFDM 410 0.790 +£ 0.093

Self-TL [HK16] Weak 2) MIAS Scanned 322 0.675
Naive-TL from [SBAK17] Weak (D INB FFDM 410 0.602
ResNet MG [DCB17] Fully (N INB FFDM 410 0.740 + 0.020 '

Table 1: Binary classification performance measured by average ROC-AUC for our approach in two different test scenarios (TS-1,2). Methods
are differentiated by the type of labeling (Weakly vs. Fully), source and the size (# images) of the data set. The results shown depict two
different test scenarios - TS-1: BIRADS 1,2,3 vs. 4,5,6 and TS-2: BIRADS 1 vs. Rest. For comparison, we show three relevant methods in
the literature. Note that our weakly labeled model obtains comparable performance to the fully supervised method in [DCB17] on the same

data set and same test scenario.
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Figure 4: ROC curves for our two test scenarios, over 5-fold cross
validation. The thin plots describe the ROC for each fold while the
wide red curve stands for the average ROC.

the corresponding raw images to allow observation of the subtle
findings captured by our method.

Lesions in our data set present a large scale variability of over
10 scale factor. Yet our patches are at fixed size and aim to alert
for a suspicious finding, rather than exact segmentation of the le-
sion. Therefore, we use a less strict measure for localization than
standard intersection over union. Considering a symmetric overlap
ratio allows a small patch within a large mass be determined as true.
Consequently, we would like to allow an extremely large finding to
be covered by a single or several patches. Considering all top K =5
patches, those having over 50% overlap with a true finding (or sym-
metrically if 50% of the lesion is covered by a patch) are considered
as true positive patches, for localization. Accordingly, two false-
positive measures are defined for localization derived from patches
with an intersection ratio below 50%. The first measure Fp is the
average false positive (detection) per-image (FPPI) in TP class and
Fr, commonly used in the literature presenting the average false
positive detection per image with respect to all the images in the
cohort. At a work point of Fp = 1 FPPI our model for IMG data
set in TS-1 yields an average recall rate of R = 0.76 @ Fr = 0.48.
This means that on 76% of TP images we localize at least one le-
sion accurately, while keeping the total FPPI below 0.5.

The proposed framework allows scoring the patches according
to the positive probability. The highly scored patches present the
discriminative regions in the image and indicate the location of the
abnormalities. The localization is an important feature allowing the
analysis of the results or helping the user in understanding the sys-
tem outcome. Note that we obtain this localization without having
any local labels in the training set.

5. Summary

In this study, we propose a novel framework for classification of
mammograms and detection of abnormalities with no local anno-
tations available in the data set. Different use cases can be defined
according to the data split in the training stage. One common clas-
sification scenario is according to the severity of the findings as
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@

Figure 5: Several true positive results from IMG (top-row) and INB (bottom-row) for test scenario-1, BI-RADS 1,2,3 vs. 4,5,6. Ground truth
annotation is depicted in dashed red contour while our top instance predictions are overlaid. Jet color coding denotes positive probability
from blue p = 0.5 to red p = 1. Note the overlap of our predicted patches with the ground truth. The overlaid numeric value at top left
indicates the positive predictive value for the whole image. Note the ground-truth and instance predictions overlap as well as the benign
macro-calcification in (c) correctly ignored. Image (j) contains a false-positive instance.

performed by radiologists. Successful results in this challenging
task may lead to strong implications in the field, since common
supervised methods rely on finely annotated data that require the
location and often delineation of findings in the image. Our pro-
posed method classifies mammograms by detecting discriminative
local information contained in patches, through a deep neural net-
work with the multiple instance learning paradigm. Our framework
jointly learns both the classifier and localization, which can be used
as an analysis tool or for user explanation justifying the system
classification decision. We tested our method on two FFDM data
sets for mammogram classification and in two different test scenar-
ios. The results are promising and come close to the existing fully
labeled methods while requiring only a global tag over the image
class. Consequently, it has a clear advantage for training on large
data sets. The suggested CNN-based method eliminates the need
for handcrafted features, and allows transferring the method to new
modalities and organs with minimal overhead.

(© 2017 The Author(s)
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