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Abstract
Assessing surfaces of segmentations extracted from 3D image data for medical purposes requires dedicated ex-
traction and visualization methods. In particular, when assessing follow-up cases, the exact volume and confidence
level of the segmentation surface is crucial for medical decision-making.
This paper introduces a new processing chain comprising a series of carefully selected and well-matched steps
to determine and visualize a segmentation boundary. In a first step, the surface, segmentation confidence and
statistical partial volume are extracted. Then, a mesh-based method is applied to determine a refined boundary of
the segmented object based on these properties, whilst smoothness, confidence of the surface and partial volume
are considered locally. In contrast to existing methods, the proposed approach is able to guarantee the estimated
volume for the whole segmentation, which is an important prerequisite for clinical application.
Furthermore, a novel visualization method is presented which was specifically designed to simultaneously pro-
vide information about 3D morphology, confidence and possible errors. As opposed to classical visualization
approaches that take advantage of color and transparency but need some geometric mapping and interpretation
from the observer, the proposed scattered visualization utilizes density and scattering, which are much closer and
more intuitively related to the original geometric meaning.
The presented method is particularly suitable to assess pleural thickenings from follow-up CT images, which
further illustrates the potential of the proposed method.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling—Boundary representations, I.4.6 [Image Processing and Computer Vision]: Edge and
feature detection—

1. Introduction

Pleural mesothelioma is a form of cancer, which can be
caused by inhalation of asbestos fibers. The typical latency
period is 20-50 years and the life expectation, after onset
of the disease, is about 18 months. Therefore, patients from
high-risk groups undergo a regular medical check-up, as
pleural thickenings, which can act as an indicator, are ob-
servable in CT-images of the lung.

The relatively low resolution of the thickenings compared
to their size makes a visual evaluation difficult, especially in
the case of follow-up assessment. Due to the small and com-
plex morphology of pleural thickenings, shown in Fig. 1(a),
extracting a meaningful surface is a demanding task. The
binary segmentation of thickenings can be extracted or man-

ually modified, as described in previous work [CBK∗08,
FNC∗14]. Classical and commonly used algorithms to con-
vert binary segmentations into surface meshes are March-
ing Cubes [LC87], SurfaceNets [Gib98] or more modern
approaches such as convex hull based [BWC04] or quad
mesh based [Nie04] approaches. They produce meshes with
varying smoothness for visualization, but additional infor-
mation such as target volume and segmentation confidence
cannot be easily integrated. Nevertheless, this information
can be included in a subsequent smoothing step. A well-
known method proposed by Desbrun et al. [DMSB99] in-
cludes volume preservation as a global constraint, which
does not always lead to a locally optimal smoothing, though.
Bade et al. [BKP07] proposed a method, which is suit-
able for complex morphologies extracted from binary seg-
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(a) Different transversal CT slices. (b) Binary segmentation.

(c) Smoothed surface mesh. (d) Scattered visualization.

Figure 1: Thickening with calcification located close to the spine.

mentations. While context-aware smoothing [MGJ∗11] is a
method which also accounts for the alignment in the voxel
raster. Essential knowledge from binary segmentations is in-
cluded in both methods, but volume preservation is not guar-
anteed.

Laplacian-based smoothing, considering shape and vol-
ume constraints locally, to generate a smooth surface has
been proposed in [FCKM14]. A method to distribute the sta-
tistically estimated partial volume is newly suggested in this
work.

Classical surface mesh visualization, as shown in
Fig. 1(c), provides a good impression about the presumable
morphology and size of the thickening. However, the prob-
able errors introduced in the smoothing and associated un-
certainties are not visualized. This information could be in-
cluded in classical mesh-based rending using transparency
and color information, but the rendering would still show
a sharp surface, which gives the observer an impression of
accuracy. Due to the low resolution image data and noise,
this accuracy might be misleading for diagnostic purposes.
The approach proposed by Kniss et al. [KVUS∗05] is capa-
ble of visualizing uncertain borders between different seg-
mentations using color and transparency but has drawbacks
in visualizing uncertain surfaces not attached to other seg-
mented objects. Therefore, we suggest a scatter plot as ren-

dering method. With a high point density it is possible to
give the user an idea of the segmentation surface and still
convey the uncertainty of this surface. Color can be used as
an additional parameter to e.g. compare two simultaneously
rendered segmentation surfaces, as shown in Fig. 8(b). Most
research that addresses the visualization of point clouds cov-
ers the topic of visualizing noisy clouds as surfaces and elim-
inating the uncertainty in the visual context [DG04]. It is
also quite common to reduce the number of points [PGK02]
while preserving the visual quality. Also down- and up-
sampling strategies [ABCO∗01] are mainly used to obtain
noise-free representations with uniform density. In contrast,
we explicitly utilize noise and irregular density to represent
uncertainty. An approach addressing uncertainty by point
clouds was suggested by Grigoryan and Rheingans [GR04].
In contrast to our approach, this method does not address the
problem of estimating a surface with correct volume and is
not capable to adjust the density of the point surface.

In this work, we introduce a complete processing chain to
visualize medical segmentations, including their local con-
fidence and possible local errors. First, the partial volume
(PV) of the whole thickening is statistically estimated. In
the second step, this information is combined with the initial
segmentation and its confidence to refine its surface. Finally,
we propose a scattered visualization to display the results
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and possible uncertainty of the surface. For the case of pleu-
ral thickenings, we illustrate the potential of this method by
applying it to the surface part facing the pulmonary tissue.

In summary, the new contributions of this work are:

• a method to extract PV,
• a method to distribute the PV in an optimized manner,
• the possibility to adapt density and to introduce orthogo-

nal scattering in a point-based surface visualization simul-
taneously

• and finally a combination of these techniques to provide a
new way of assessing segmentations with uncertainty.

2. Methods

This section describes our process chain, which is divided
into partial volume estimation, surface extraction and visu-
alization.

2.1. Partial Volume Estimation

The image is defined on a discrete grid R = {r = (x,y,z)T :
1≤ x≤ Nx,1≤ y≤ Ny,1≤ z≤ Nz}. For each grid position
r the attenuation value in Hounsfield-units a(r) is available.
The set of segmented grid positions, belonging to a thicken-
ing, is denoted by RS ⊂ R. Especially, when manually cor-
recting small but complex binary segmentations, the medical
expert might decide for each single voxel whether it belongs
to the segmented object or not. Based on an idea proposed
by Kuhnigk et al. [KDB∗06] the partial volume is calculated
in a region RS,PV ⊆R, defined on the image grid, which sur-
rounds the discrete segmentation surface. This region RS,PV
is the difference of a dilated version RS,dilated and eroded
version RS,eroded of the original thickening mask RS. We
chose a sphere of radius two voxels as structuring element
for the morphological operations. In contrast to the calcu-
lation of the volume, based on the average attenuation of
the tissue types [KDB∗06], we calculate the statistically ex-
pected volume. Our method considers the attenuation distri-
bution for the different tissue classes. We assume that the
PV included in each voxel r is statistically independent from
its neighbors’ PV and calculate the expected volume for a
single voxel using

E[V (S)|A = a(r)] = ∑
s∈{0,1}

V (s) ·P(S = s|A = a(r)), (1)

with

V (s) =

{
0 s = 0
1 s = 1

. (2)

The total expected volume of a thickening is therefore

VPV = ∑
r∈RS,PV

E[V (S)|A = a(r)]+V (1)
∣∣RS,eroded

∣∣ , (3)

where
∣∣RS,eroded

∣∣ is the number of voxels in the eroded
mask. The conditional probability distribution is P(S|A) =

P(S∩A)
P(A) , where P(A∩ S) and P(A) are extracted from man-

ual reference segmentations of pleural thickenings and lung
tissue.

2.2. Surface Extraction

This section covers the complete mesh-based surface extrac-
tion. Input data are the binary segmentation, the estimated
volume from Sec. 2.1 and the image data. The generated out-
put is a smoothed surface mesh, the surface distance to the
binary segmentation and a local segmentation confidence.

2.2.1. Non-Smooth Conversion from Voxel Data to
Mesh Surface

The exact voxel segmentation is chosen as a starting mesh,
by applying the cuberille method [HL79]. In contrast to
more sophisticated methods, this one results in a volume
identical to the binary segmentation. The extracted triangu-
lar mesh is described by a set of vertex positions P= {p : p∈
R3}, a set of faces, F = {f = (i, j,k)T : 1≤ i, j,k≤ |P|} and
a set of edges G = {g = (i, j)T : 1≤ i, j ≤ |P|}, connecting
the vertices. A resulting surface mesh is shown in Fig. 1(b).

Additionally, we extract information from the volume
data, comparable to the approach proposed by Bade et
al. [BKP07]. We use the differences of the attenuation a(r)
between the voxels separated by a face. For each vertex the
average of all differences from connected faces is calculated.
This term is some kind of face individual contrast between
the inside and outside of the segmentation. Its absolute value
q′(i) is clipped to the range of

[
q′min,q

′
max
]

and then linearly
mapped to λ(i) ∈ [0,λmax],

λ(i) =


0,

∣∣q′(i)∣∣< tlow

q′·
∣∣q′(i)∣∣ , tlow <

∣∣q′(i)∣∣< thigh

tslope·thigh, thigh<
∣∣q′(i)∣∣ (4)

as a measurement of segmentation confidence.

2.2.2. Smoothing

Liu et al. [LBSP02] presented a method where smoothing
is carried out for each edge g = (i, j)T separately. Each
time only the vertex neighbors N(i), N( j) are considered
which divides the mesh into small patches B(g = (i, j)T ) =
N(i)∩N( j). An exemplary patch is shown in Fig. 2. The two
vertex positions p(i), p( j) of an edge g are first individually
adapted to smooth the associated patch and in a second step
modified simultaneously to preserve the initial volume. The
known equations and derivations from Liu et al. [LBSP02]
are kept short for brevity. Please refer to their publication for
more details.

For the first step, the energy of the local patches is de-
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jgi

Figure 2: Patch B(g), defined by all neighboring vertices of
the edge g = (i, j)T .

scribed using the umbrella operator [Tau95]

L(i) =
1
|N(i)| ∑

j∈N(i)
(p( j)−p(i))

= ω(i, i)p(i)+ ∑
j∈N(i)

ω(i, j)p( j), (5)

where N(i) ⊆ B(g) are the neighbors of the vertex i inside
the patch B(g). All weights ω(i, j) not defined by this equa-
tion are equal to 0. The local energy function for the initial
unconstrained smoothing is

E1(g = (i, j)T ) =
1
2

(
L2(i)+L2( j)+ ∑

b∈B(g)
L2(b)

)
, (6)

which can be expressed in matrix notation

E1(g = (i, j)T ) =
1
2

∥∥∥k(i)p1T (i)+k( j)p1T ( j)−Q(g)
∥∥∥2

F

=
1
2

∥∥∥K(g)P1T (g)−Q(g)
∥∥∥2

F
, (7)

where F is the Frobenius norm. By minimizing this energy
E1(g), the new positions of the edge vertices are given by[

p1(i) p1( j)
]

= (8)

P1(g) = ((KT (g)∗K(g))−1(KT (g)∗Q(g)))T ,

where K(g = (i, j)T ) = [k(i) k( j)]. The point positions of
the different steps are denoted by p0(i) for the initial po-
sition and p1(i) for the position after smoothing. The col-
umn vectors k(i) and k( j) are filled with the entries kb(ν) =
ω(ν,b) ∀ν ∈ {i, j},b ∈ B(g) and the rows of Q(g) are de-
fined as q,b(g) = ω(b, i)p0T (i)+ω(b, j)p0T ( j)−L(b) ∀b ∈
B(g).

The local volume preservation is carried out in a second
step. Both vertices of the edge g are moved by an identi-
cal correction vector w(g) and the resulting positions are
P2(g) = P1(g) + [w(g)w(g)]. In this step, we also include

the PV and the penalty for point distance
∥∥∥p0(g)−p2(g)

∥∥∥,

adjusted by the parameter λ(i), as shown in [FCKM14]. In-
cluding all criteria the optimization problem, constrained by

the volumes Ω(P) and Ω(g), is

min
w(g)

{
E2(g = (i, j)T )

}
=

min
w(g)

{
1
2

∥∥∥K̃(g)w(g)T − Q̃(g)
∥∥∥2

F
+

1
2

λ(i)
∥∥∥p1(i)+w(g)−p0(i)

∥∥∥2
+

1
2

λ( j)
∥∥∥p1( j)+w(g)−p0( j)

∥∥∥2
}

,

subject to nT (g) ·w(g) = Ω(p0(g))−Ω(p1(g))+Ω(g), (9)

where K̃(g) = k(i)+k( j), Q̃(g) = Q(g)−K(g)P1T (g) and
λ(i) is the segmentation confidence from Sec. 2.2.1. The
constraint is defined by the volume function Ω(P), which
calculates the volume of the open patch and the additional lo-
cal patch volume Ω(g), calculated from the PV as explained
in Sec. 2.2.3. The vector n(g) separates the induced vol-
ume change in the current patch multiplicative from w(g).
The exact definitions can be found in the paper of Liu et
al. [LBSP02]. While the original algorithm is fixed to a
single working point (λ(i) = 0), introducing λ(i) as a new
parameter allows choosing between shape preservation and
smoothness.

The resulting correction vector for our extended mini-
mization problem is

w(g) =
1

α(g)

(
Q̃T (g)K̃(g)−λ(g)−β(g)n(g)

)
,

α(g) = K̃T (g)K̃(g)+λ(i)+λ( j),

β(g) =
1

‖n(g)‖2

(
nT (g)

(
Q̃T (g)K̃(g)−λ(g)

)
−

α(g)
(

Ω(P0(g))−Ω(P1(g))+6 ·Ω(g)
))

,

where λ(g) = λ(i)(p1(i)−p0(i))+λ( j)(p1( j)−p0( j)).

Side note: Beside the conceptual changes in E2(g) and the
following results, the set B(g) is defined slightly different in
the publication of Liu et al. [LBSP02].

2.2.3. Initial Partial Volume Distribution

For a simple distribution of the PV VPV, as derived in
Sec. 2.1, it can be divided by the number of patches |G|
to obtain additional local patch volume Ω(g) = ΩPV

|G| , where
ΩPV = 6 ·VPV−Vvoxel · |RS| and |RS| is the number of seg-
mented voxels. The factor of 6 is caused by the definition of
the volume function Ω(P) [LBSP02].

What we alternatively suggest is distributing the PV, while
optimizing the sum of the energy E2(g) for all patches

min
Ωg∀g∈G

{
∑g∈G E2(g)

}
,

subject to ∑g∈G Ω(g) = ΩPV . (10)
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This constrained optimization problem can be analytically
solved using the Lagrange multiplier method. The resulting
distributed volume per patch B(g) is given by

Ω(g) = b̃(g)(η− c(g)) , (11)

with

η(g) =

(
∑

g∈G
b̃(g)

)−1(
ΩPV + ∑

g∈G
b̃(g)c(g)

)
,

c(g) =
3

∑
n=1

∑
κ

an,κ(g)bn,κ(g),

b̃(g) =

(
3

∑
n=1

∑
κ

b2
n,κ(g)

)−1

,

a1(g) = w̄(g)K̃T (g)− Q̃T (g) , b1(g) = 6
n(g)K̃T (g)
‖n(g)‖2 ,

a2(g) = λ(i)
(

pd(i)+ w̄(g)
)

, b2(g) = 6
λ(i)

‖n(g)‖2 n(g),

a3(g) = λ( j)
(

pd( j)+ w̄(g)
)

, b3(g) = 6
λ( j)

‖n(g)‖2 n(g),

where pd(i) = p1(i)−p0(i) and κ represents the element in-
dex inside a vector. The term w̄(g) is given by w(g) without
the term 6 ·Ω(g). The volume distribution Ω(g) considers
volume constraint, smoothness and shape. Theoretically this
procedure has to be repeated after modifying a single patch.
Practically, an initial volume distribution, before modifying
the mesh, is sufficient.

Figure 3: A surface of a sphere rendered as scattered visual-
ization. The adjustable parameters are demonstrated by in-
creasing confidence λ from left to right and increasing point
distance d from bottom to top.

2.3. Scattered Visualization

The scattered visualization method takes the smoothed sur-
face with the vertices P2(g) as an input. The scattered sur-

face is generated in three steps. First, the input mesh is sub-
divided into a high number of triangles to gives sufficient
possible candidates to render points of the surface. Second, a
point selection, based on a dart throwing method [CJW∗09],
is used to select a given number m of points in a stochastic
process. This step also includes the confidence λ(i) to ad-
just the density of the point-based surface. In the third step,
the point distance d(i) =

∥∥∥p0(i)−p2(i)
∥∥∥ between original

and smoothed segmentation is included in the visualization
as scatter orthogonal to the surface. A resulting scattered vi-
sualization of a sphere with varying parameters is shown in
Fig. 3.

2.3.1. Mesh Subdivision

The subdivision process is not meant to refine the detail level
of the segmentation surface, as the extractable details are
strongly limited by the input image resolution. Instead, it is
used to generate a dense set of candidates for the scattered
visualization. Therefore, a smooth refinement which modi-
fies the subdivided mesh is not desired. Therefore, bisecting
the triangle edges and creating four new triangles from each
input triangle, as suggested by Cline et al. [CJW∗09], is suf-
ficient. The process is repeated, until a predefined maximum
permitted triangle area amax is reached. The new triangles
f′ = (i′, j′,k′)T ∈ F′ have the centroids c′(f′) and the area
a′(f′). The point distances d(i), arising from the smooth-
ing in Sec. 2.2 and the confidences λ(i) from Sec. 2.2.1 are
mapped to the new faces f′ and given by d′(f′) and λ

′(f′).
For smooth transitions at the triangle edges, we use an in-
verse distance weighting [She68] for interpolation. E.g. the
confidence for each new face f′ is given by

λ
′(f′) = w(f′, i)λ(i)+w(f′, j)λ( j)+w(f′,k)λ(k)

w(f′, i)+w(f′, j)+w(f′,k)
, (12)

with w(f′, i) = 1
(p(i)−c(f′))2 and i, j,k are the vertices of the

original triangle before subdivision.

2.3.2. Point-based Surface

A scattered visualization requires an adjustable density
of points, which shall not depend on the underlying tri-
angle size and shape. We utilize a dart throwing algo-
rithm [CJW∗09] and extend it by including the certainty
λ
′(f′). Instead of using the area a′(f′), we use the product

b′(f′) = a′(f′) · λ′(f′) as the selection probability. Thereby,
the number of points at the boundary region is scaled in-
versely with its segmentation confidence. Then we follow
the original algorithm [CJW∗09]: Each candidate f′ is sort
into a bin B(f′), where B(f′) =

⌊
log2

(
max(b′(f′))

b(f′)

)⌋
. A trian-

gle is chosen by selecting a bin with probability, proportional
to the total sum of b′(f′). Then, a triangle is chosen within

the bin and accepted with probability b′(f′)
max(b′(f′)) . Otherwise

the triangle is rejected and a new one is chosen from the
same bin. This is repeated until a triangle is accepted. Due
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(a) Disturbed by white noise. (b) Smoothed with simple volume
distribution.

(c) Smoothed with optimized vol-
ume distribution.

Figure 4: Roughness of sphere surface shows effect of different volume distribution methods.

to the logarithmic binning the acceptance rate is at least fifty
percent and the triangle selection will run in constant time
on average [CJW∗09]. The point selection is repeated until
the desired number m of points has been reached.

The certainty λ
′(f′) just describes the relative density and

does not influence the total density. The latter can only be
adjusted by the number of points m. It is necessary to pro-
duce identical densities for different visualized objects of the
same scenario; a scenario is given by the relevant tissue con-
trast in the image and the resolution of the object. Therefore,
we choose the number of points m as the sum of all selection
probabilities

m =

⌈
ν ∑

f′∈F′
b′(f′)

⌉
, (13)

where ν is a parameter, which should be chosen depending
on the scenario. In our scenario of pleural thickenings, we
chose ν = 2000.

2.3.3. Orthogonal Scattering

In the final step, each resulting point from Sec. 2.3.2 is
equally distributed orthogonal to the surface. The interval is
[−d′(f′), d′(f′)], with the interpolated point distance d′(f′)
from Sec. 2.2.1. The orthogonal direction is given by the sur-
face normal. For a visually smooth transition the inverse dis-
tance weighting [She68] is applied to interpolate the normals
and the point distances d′(f′), analogous to the confidence
interpolation in step 2.3.1.

3. Results

The result section is split into three parts. First, the surface
extraction is evaluated regarding the adjustability between
smoothness and shape preservation. The second part ana-
lyzes the visualization step for a single object. Beside qual-
itative discussions of the strengths and weaknesses, a quan-
titative analysis of the uniformity of point density is given.

Finally, a short and qualitative analysis illustrates the sce-
nario of comparing follow-up segmentations.

3.1. Surface Extraction

The influence of the segmentation confidence was assessed
using a sphere with radius of 2 cm consisting of 4098 ver-
tices. Its vertex positions p(i) are disturbed by white additive
noise in the interval of [−0.1,0.1] cm, resulting in a mesh as
shown in Fig. 4(a). The smoothing was carried out with pa-
rameter λ(i)∈ [0,16] (constant for all vertices) and for 1 and
5 iterations. Additionally, the simple method of distributing
the volume equally to all patches is compared to the opti-
mized volume distribution described by Eq. 10. In Fig. 5, the
resulting average vertex distance to the noisy (5(a)) and orig-
inal (5(b)) sphere is plotted versus the mesh roughness, given
by the average length of the Geometric Laplacian [Lav07].
The dashed lines are benchmark values, representing the av-
erage distance between the vertices of the noisy and the ini-
tial sphere (horizontal line) and the average length of the
Geometric Laplacian [Lav07] for the initial (left line) and
the noisy (right line) sphere. Since there is no confidence pa-
rameter in the original algorithm [LBSP02] its only possible
working points are given with λ(i) = 0 and marked by circles
in Fig. 5. Using the optimized volume distribution one iter-
ation is sufficient for results close to the convergence area,
which is otherwise only reached with approximately five it-
erations.

The effect of the proposed volume distribution method in
Sec. 2.2.3 can also be visually observed. The noisy sphere of
Fig. 4(a) is smoothed with λ(i) = 0 for all patches. The sim-
ple method, with an identical distribution for every patch,
results in an irregular shape, shown in Fig. 4(b). Whereas
the optimized method recovers the sphere with a more regu-
lar shape, recognizable in Fig. 4(c). An exemplary smooth-
ing result for a thickening surface with 5 iterations, using
the optimized volume distribution method, q′min = −1024,
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(b) Measurements with distance to the original sphere.

Figure 5: Roughness is plotted versus shape error. The working point is adjustable by the parameter λ(i).

q′max = 200 and λmax = 1 is shown in Fig. 1(c). In all exper-
iments the exact given volume is preserved.

3.2. Scattered Visualization

An exemplary pleural thickening was rendered in Fig. 1(d).
The different light and dark spots are not caused by coloring
or shading, but by varying density of the points, which repre-
sents the confidence λ

′(f′). Uncertainty and shape are visu-
alized in a comprehensible way. However, in static 2D views,
the shape of the object cannot be easily observed without ad-
ditional help (e.g. a classical mesh-based rendering). There-
fore, it can be interpreted as a more error-oriented, instead
of shape-oriented, visualization method.

The point density is an important indicator for the confi-
dence. Therefore an evaluation of the uniformity was carried
out. A random mesh with size of 10× 10 pixels, as shown in
Fig. 6, was created and visualized with error d = 0, constant
confidence λ

′(f′) = 1,∀f′ ∈ F′, varying maximal area amax
and varying number of points m. Then, the resulting numbers
of points per pixel were analyzed.

The average number of points per pixel ν̄pixel with error
bars indicating the standard deviation is shown in Fig. 7(a).
The variation coefficient of the point density σ(νpixel)

ν̄pixel
rep-

resents the relative variation and is shown in Fig. 7(b). As
the algorithm always terminates when the desired number of
point ν has been reached, the average number in all visual-
ized pixels is always exactly achieved. The density deviation
between the simulated 10× 10 pixels is given by the error
bars, which shows that the absolute variance is slightly in-
creasing for larger numbers of points. Fig. 7(b) shows that
the observable density variation is decreasing for an increas-
ing number of points and approaching a minimal value of
about 0.05. The minimal area amax has no observable in-
fluence on the point density. However, the minimal area is
limited, because it must be small enough to generate a suffi-
cient number of point candidates. Otherwise, the algorithm
cannot terminate in step 2.3.2. Due to the stronger variation

Figure 6: Plane with irregular shaped triangles to evaluate
the point density.

for a small number of points, a visual inference of the actual
confidence from the point density is not exactly possible in
these cases. However, a minimal number of points are re-
quired anyway, to visually convey the shape of the object.

3.3. Visual Comparison and Growth Estimation

An important aspect of follow-up assessment of pleural
thickenings is the growth estimation. An overlay of mesh
based representation, as shown in Fig. 8(a), might lead to
growth estimation in regions with very uncertain segmenta-
tion boundaries. The scattered visualization of this overlay,
in Fig. 8(b), allows a more informed decision about growth
in different regions.
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(a) Average number and standard deviation of points in a pixel, de-
pending on total number of points.
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(b) Standard deviation normalized to the number of average points,
depending on total number of points for different maximum area of
the initial triangulation.

Figure 7: Reproducibility of point density.

(a) Overlay of mesh based visualization. (b) Overlay of scattered visualization.

Figure 8: Follow-up assessment of pleural thickenings from two different points in time. The first point in time is shown in
orange and the second point in time in blue.

3.4. Applications

The method was mainly designed for the growth assessment
of pleural thickenings. However, it is applicable in a variety
of contexts, where uncertain boundaries have to be visual-
ized. One of the main advantages is the exact volume repre-
sentation. Therefore, it is especially useful to visually assess
thin objects or objects with complex morphologies.

One useful application might be the assessment of gray
matter, which is an important indicator in the field of neuro-
science. The available image data has typically a relatively
low resolution, compared to the complex morphology of the
gyri and sulci. Another interesting field of application could
be the visualization of cartilage, as images typically suffer
from low image contrast. Especially in the case of articular
cartilage of the knee, the thickness is an important criterion
to detect or quantify damage.

4. Conclusions and Outlook

We presented a comprehensive tool to extract, process and
visualize shape and uncertainty of 3D objects. The presented
smoothing method is vertex-wise adjustable between shape
preservation and smoothness, which is used to discriminate
voxels segmented with varying confidence. Furthermore, the
optimized distribution of the volume among the surface re-
sults in a fast converging smoothing process and in a regular
mesh shape. The visualization part can successfully convey
the knowledge about shape, confidence and modifications
caused by the smoothing. Limitations of the uniformity of
point density only occur for a very small number of points,
which is not useful to visualize a closed surface anyways.
Especially when comparing follow-up images, the additional
information is of great benefit to judge changes between the
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two images. Nevertheless, it should be noted that this repre-
sentation is less suitable for a 2D static visualization.

For the future a better interpretation of the 3D shape in the
scatter plot is desirable, by e.g. superimposing additional ge-
ometric information. Another aspect is the exact visualized
volume, which is hard to evaluate quantitatively, but might
be influenced by the inverse distance weighting.

References

[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN
S., LEVIN D., SILVA C.: Point set surfaces. In Visualization,
2001. VIS ’01. Proceedings (Oct 2001), pp. 21–29, 537. 2

[BKP07] BADE R., KONRAD O., PREIM B.: Reducing artifacts
in surface meshes extracted from binary volumes. Journal of
WSCG 15, 1-3 (2007), 67–74. 1, 3

[BWC04] BHANIRAMKA P., WENGER R., CRAWFIS R.: Isosur-
face construction in any dimension using convex hulls. IEEE
TVCG 10, 2 (2004), 130–141. 1

[CBK∗08] CHAISAOWONG K., BROSS B., KNEPPER A.,
KRAUS T., AACH T.: Detection and follow-up assessment of
pleural thickenings from 3D CT data. In Proc. ECTI (2008),
vol. I, pp. 489 – 492. 1

[CJW∗09] CLINE D., JESCHKE S., WHITE K., RAZDAN A.,
WONKA P.: Dart throwing on surfaces. In Computer Graphics
Forum (2009), vol. 28(4), Wiley Online Library, pp. 1217–1226.
5, 6

[DG04] DEY T. K., GOSWAMI S.: Provable surface reconstruc-
tion from noisy samples. In Proceedings of the twentieth annual
symposium on Computational geometry (2004), ACM, pp. 330–
339. 2

[DMSB99] DESBRUN M., MEYER M., SCHRÖDER P., BARR
A. H.: Implicit fairing of irregular meshes using diffusion and
curvature flow. In Proc. SIGGRAPH (1999), ACM, pp. 317–324.
1

[FCKM14] FALTIN P., CHAISAOWONG K., KRAUS T., MERHOF
D.: Consistent follow-up segmentation of pleural thickenings.
In Proc. IEEE International Symposium on Biomedical Imaging
(IEEE ISBI) (2014), pp. 1368–1372. 2, 4

[FNC∗14] FALTIN P., NGUYEN P.-A., CHAISAOWONG K.,
KRAUS T., MERHOF D.: Interactive 3D segmentation of pleural
thickenings simultaniously at different points of time using graph
cut. In Bildverarbeitung für die Medizin 2014 (2014), Springer,
pp. 378–383. 1

[Gib98] GIBSON S.: Constrained elastic surface nets: Generating
smooth surfaces from binary segmented data. MICCAI (1998),
888–898. 1

[GR04] GRIGORYAN G., RHEINGANS P.: Point-based proba-
bilistic surfaces to show surface uncertainty. Visualization and
Computer Graphics, IEEE Transactions on 10, 5 (Sept 2004),
564–573. doi:10.1109/TVCG.2004.30. 2

[HL79] HERMAN G. T., LIU H. K.: Three-dimensional display
of human organs from computed tomograms. Computer graphics
and image processing 9, 1 (1979), 1–21. 3

[KDB∗06] KUHNIGK J., DICKEN V., BORNEMANN L., BAKAI
A., WORMANNS D., KRASS S., PEITGEN H.: Morphological
segmentation and partial volume analysis for volumetry of solid
pulmonary lesions in thoracic CT scans. IEEE TMI 25, 4 (2006),
417–434. 3

[KVUS∗05] KNISS J., VAN UITERT R., STEPHENS A., LI G.-
S., TASDIZEN T., HANSEN C.: Statistically quantitative volume
visualization. In Visualization, 2005. VIS 05. IEEE (Oct 2005),
pp. 287–294. doi:10.1109/VISUAL.2005.1532807. 2

[Lav07] LAVOUÉ G.: A roughness measure for 3D mesh visual
masking. In Proc. APGV (2007), ACM, pp. 57–60. 6

[LBSP02] LIU X., BAO H., SHUM H.-Y., PENG Q.: A novel
volume constrained smoothing method for meshes. Graphical
Models 64, 3 (2002), 169–182. 3, 4, 6

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A high
resolution 3D surface construction algorithm. In ACM Siggraph
Computer Graphics (1987), vol. 21(4), ACM, pp. 163–169. 1

[MGJ∗11] MOENCH T., GASTEIGER R., JANIGA G., THEISEL
H., PREIM B.: Context-aware mesh smoothing for biomedical
applications. Computers & Graphics 35, 4 (2011), 755–767. 2

[Nie04] NIELSON G. M.: Dual marching cubes. In Proc. IEEE
VIS (2004), pp. 489–496. 1

[PGK02] PAULY M., GROSS M., KOBBELT L. P.: Efficient
simplification of point-sampled surfaces. In Proceedings of the
conference on Visualization’02 (2002), IEEE Computer Society,
pp. 163–170. 2

[She68] SHEPARD D.: A two-dimensional interpolation function
for irregularly-spaced data. In Proceedings of the 1968 23rd ACM
national conference (1968), ACM, pp. 517–524. 5, 6

[Tau95] TAUBIN G.: A signal processing approach to fair surface
design. In Proc. SIGGRAPH (1995), ACM, pp. 351–358. 4

c© The Eurographics Association 2014.

39

http://dx.doi.org/10.1109/TVCG.2004.30
http://dx.doi.org/10.1109/VISUAL.2005.1532807

