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1. Adaptive Image Space Sampler: Details

While ray tracing is capable of generating realistic and detailed im-
ages, this comes with a great computational cost, especially for
high-resolution images. For progressive visualization, there is a
budget for how many pixels can be sampled each iteration. After
this, a full image for presentation is reconstructed from the obtained
samples via interpolation, and where to sample next is determined
in a stochastic manner based on the color variation of the pixels.
Initially, the image is very rough with just few samples, but with
every new sample the image becomes more accurate, until all pix-
els are sampled and the final image is obtained. Note that in our
experiments, we use a simple simulation of ray tracing: instead of
actually obtaining pixel values by sending a ray through the pixels,
it just draws values from a provided image. This simulates an itera-
tive refinement process on which we can perform experiments and
apply visualizations. In this use case, the pixels are the individual
elements e and the (reconstructed) images the spatial objects O.

We outline the process of the adaptive image space sampler and
discuss the sampling and reconstruction scheme in detail as well as
some optimizations thereof.

1.1. Outline

The adaptive image space sampler takes in an image I, which is also
the final result of the process. We define S as the set that contains
all sampled pixels, and its complementary set U of non-sampled
pixels. Let P be the set of all pixels in I. We then have that

S∪U = P, S∩U = /0, (1.1)

i.e. S and U are disjoint. We denote with Xn the state of X at time
step n≥ 0. From (1.1) it follows that Sn = P\Un and Un = P\Sn,
so we can derive them from each other at any step.

Initially, S0 = /0 and U0 = P as no pixels are sampled yet. Then,
for n ≥ 1 we sample pixels by taking them from Un−1 and adding
them to Sn−1:

Sn = Sn−1∪S(Un−1), (1.2)

where S is the sampling function. Equivalently, we have that Un =
Un−1 \S(Un−1). In the iterative process, as more pixels are sam-
pled, Sn will grow while Un will shrink, and ultimately, Snmax = P
and Unmax = /0.

Algorithm 1: Iterative refinement process of the adaptive
image space sampler with sampling scheme S and recon-
struction schemeR.

input : Image I
output: Image I

1 S0 := /0
2 U0 := P // P is the set of all pixels in I
3 for n← 1 to nmax do
4 S∗ = S(Un−1)
5 Sn = Sn−1∪S∗

6 Un =Un−1 \S∗

7 I =R(Sn)

The sample set Sn is then used to reconstruct an approximation
Rn of I:

Rn =R(Sn), (1.3)

where R is the reconstruction function. The values of the pixels in
Sn are known, and are used to estimate the values of the pixels in Un
by means of multivariate interpolation. This creates an intermediate
result of the rendering process. The sampling and reconstruction
is then repeated until the process reaches nmax and we have that
Rnmax =R(P) = I.

The iterative refinement process of the adaptive image space
sampler is summarized in Algorithm 1. Two crucial parameters are
the number of nearest neighbors and the power parameter. The for-
mer is used in the sampling scheme (Section 1.2) and indicates how
many nearest neighbors (in Sn−1) are to be considered for determin-
ing the color variation and deciding which pixels to sample next
(from Un−1). The latter is used in the reconstruction scheme (Sec-
tion 1.3) in the inverse distance weighting method for multivariate
interpolation, where it controls how much the distance (inversely)
affects the weight.

1.2. Sampling

In each iteration, pixels are sampled from U and added to S. As U
can only be sampled a finite number of times, nmax is known. In
the adaptive image space sampler, we sample a constant number of
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pixels s at each iteration. Alternatively, we can specify a percentage
s% of the total number |P| of pixels, i.e. s=

⌈ s%
100 |P|

⌉
. In either case,

nmax =
⌈
|P|
s

⌉
. Note that if |P| is not a multiple of s, the sample size

of the final iteration is min(s, |Unmax−1|).

The selection of the initial sample is random as nothing is known
about the image yet. While the next samples could be random as
well, we can do better by an informed way of sampling by using
the already sampled pixels in Sn−1. The general idea is that if a
pixel is reconstructed from very different sample values, this indi-
cates that there is a lot of variation and it makes sense to sample
there next. Conversely, pixels reconstructed from similar sample
values are less interesting. Hence, we compute a metric M(p) for
p ∈Un−1 using the pixels in Sn−1. For practical purposes, one does
not consider all sample values, but just the closest ones; that is, its
N nearest neighbors. We define N(p) as the N nearest neighbors
(that is, nearest pixels in Sn−1) of p based on Euclidean distance.
As we are working with colors, the variation can be computed as
the (Euclidean) color distance between all the pairs in N(p) and
summing them:

M(p) = ∑
q∈N(p)

∑
r∈N(p)

d(V (q),V (r)), (1.4)

where d(c1,c2) =
√

(A2−A1)2 +(B2−B1)2 +(C2−C1)2 and
V (p) is the (A,B,C) color value of p, where ABC is any color space
with three channels, e.g. RGB or LCH. The metric M can then be
used in two ways to determine which pixels to sample: determinis-
tic or stochastic.

Deterministic In the deterministic approach we use the distance
metrics directly. That is, the s pixels with the highest color variation
are selected. That way, pixels in regions with high color variation
are always sampled before those in low color variation regions.

Stochastic Instead of using differences directly for selecting new
samples, in the stochastic approach they are used as weights for
random selection. That way, each pixel has a chance of being
sampled, albeit not the same one. Pixels with a higher color
variation are more likely to be sampled. We convert the distance
metrics to probabilities by M

∑q∈Un−1
M(q) and use these for S .

We then obtain the values of the newly sampled pixels. In a real-
world application, such as volume rendering, we shoot rays through
the volume for the sampled pixels, followed by interpolation and
classification: V (p) = F(t,T ), t : [0,T ] → R, where F is the
so-called ray function. As input, F has a scalar-valued function
t : R+→ R defined on [0,T ], where T is the length of the ray seg-
ment. As output,F produces a color. In other words,F synthesizes
the RGB color of the pixel p from the scalar values along the ray
corresponding to p [Tel15]. In ray tracer applications, the color is
obtained from the intersected objects and their reflection/refraction.
However, as mentioned before, in the adaptive image space sampler
we assume I is known such that we can simply take the colors di-
rectly: V (p) = I(p).

1.3. Reconstruction

The purpose of reconstruction is to produce an estimation of the fi-
nal result using current knowledge. Given sample set Sn,R creates
an approximation of I by means of multivariate interpolation. One
such method is the Inverse Distance Weighting (IDW), which is a
deterministic method for multivariate interpolation with a known
scattered set of points. The assigned values to unknown points are
calculated with a weighted average of the values available at the
known points:

R(p) =

{
∑q∈Sn wq(p)V (q)

∑q∈Sn wq(p)
, if p /∈ Sn,

V (p) if p ∈ Sn,
(1.5)

where wq(p) = 1
d(p,q)p is a simple IDW weighting function,

d(p,q) =
√

(qx− px)2 +(qy− py)2, i.e. the Euclidean distance
from the known pixel p to the unknown pixel q, and p a positive
real number called the power parameter. Here, the weight decreases
as the distance increases from the interpolated points. Greater val-
ues of p assign greater influence to values closest to the interpolated
point, with the result turning into a mosaic of tiles with nearly con-
stant interpolated values for large values of p. For two dimensions,
power parameters p ≤ 2 cause the interpolated values to be domi-
nated by points far away.

When working with RGB images, interpolating the R, G and B
components independently offers no guarantee on the hue of the
intermediate colors. A new hue appears because the RGB space
does not capture how humans perceive colors very well. So in-
stead, we use the LCH color space for color interpolation, because
equidistant colors in the LCH space are also perceived as equidis-
tant [Zuc16].

1.4. Optimization

Looking at the mathematical functions in Section 1.2 and Sec-
tion 1.3 just above, we note that some can be optimized. For the
sampling, computing the nearest neighbors requires computing the
distance to all currently sampled pixels and sorting them. However,
once we computed the nearest neighbors N(p)∈ Sn, we do not have
to consider the pixels in Sn \N(p) anymore, as we know they are
always further away. Hence, we only have to check if the newly
sampled pixels Sn are closer than the previous nearest neighbors
Nn−1(p), i.e. we check in Nn−1(p)∪ Sn. So, for every pixel we
store its N nearest neighbors.

Moreover, computing M(p) as in (1.4) essentially sums over a
distance matrix, which is symmetric and its main diagonal contains
only zeros. Hence, we can instead sum the values in the upper tri-
angle, which would yield half the value. This does not change the
order of M or the probabilities computed from it. We use SciPy’s
distance.pdist function to create a condensed matrix which
is summed.

For the reconstruction, we also have to compute the distance to
all currently sampled pixels. In the naive approach (1.5), the IDW
weighting functions for p ∈Un are recomputed for p ∈Um,m > n.
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Figure 1: Input images (left to right, top to bottom): volume render-
ing of a human head CT scan using a colored maximum intensity
projection, a photo-realistic scene with translucent and reflective
objects created by a ray-tracing application, a colorful photo of
some fruit, a still from the animated movie Rango [Ver11].

However, we have that:

Rn(p) =
∑q∈Sn

wq(p)V (p)
∑q∈Sn

wq(p)

=
∑q∈Sn−1∪Sn

wq(p)V (p)
∑q∈Sn−1∪Sn

wq(p)

=
∑q∈Sn−1 wq(p)V (p)+∑q∈Sn

wq(p)V (p)
∑q∈Sn−1 wq(p)+∑q∈Sn

wq(p)

=
an−1(p)Rn−1(p)+∑q∈Sn

wq(p)V (p)
an−1(p)+∑q∈Sn

wq(p)
,

(1.6)

where an is the accumulated norm at step n defined as an = an−1 +

∑q∈Sn
wq(p) with a0 = 0. Then, we use a together with the value in

the previous reconstructed image and only compute the distances
to the newly sampled pixels.

Note that these optimizations are memory versus speed trade-
offs; they do not change the results.

1.5. Popping Threshold

For a perceptually meaningful threshold the reconstructed images
are transformed to the CIELAB color space [Sch16], where we

compute d = ∆E∗ =
√

(L∗q−L∗p)2 +(a∗q−a∗p)2 +(b∗q−b∗p)2. On a
typical scale, the ∆E∗ value ranges from 0 to 100. A general guide
for ∆E∗ values and their perception is shown in Table 1.
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Figure 2: Structural similarity of reconstructed images against
their predecessor (consecutive) and the final image. The plots cor-
respond to the input images in Figure 1.

2. Adaptive Image Space Sampling: Additional Results

The first input image in Figure 1 was already discussed in the main
paper, but is shown here for comparison. The second is a photo-
realistic scene with translucent and reflective objects created by a
ray-tracing application. The third image is a photo of some fruit,
which is not actually created by a ray-tracing application, but is
merely a colorful image to test the visualizations on. The fourth
image is a frame of the 2011 American computer-animated West-
ern comedy film Rango [Ver11]. This particular scene has a simple
background and contains edges mainly around and on the character.

The images have a resolution of 256×256, which is comparably
small by today’s standards but suffices to assess the properties of
the method for a certain type of image. Unless described otherwise,
these parameter settings were used, yielding good results in our
experiments: the sample size is set to 1% (i.e., d0.01 ·256 ·256e=
655 pixels for nmax = d 256·256

655 e = 100 iterations), the number of
nearest neighbors is set to 4, and the power parameter to 3.

Refinement Characteristics. The similarity plots in Figure 2
show the same behaviour for the first three cases. The fourth, how-
ever, shows a nearly linear increase until the final iteration for the
similarity with respect to the final image, meaning that no struc-
tures are unexpectedly revealed throughout.

For the reconstructed pixel difference (Figure 4), all plots show
different characteristics. The first is quite standard: linear decrease
with few surprises (sudden increases). The second is similar, but
does have several sudden increases, as well as popping near the
final iteration after a period of no popping. The third has high dis-

Table 1: General guide for ∆E∗ values and their percep-
tion [Sch16].

∆E∗ Perception
≤ 1.0 Not perceptible by human eyes.
1 – 2 Perceptible through close observation.
2 – 10 Perceptible at glance.
11 – 49 Colors are more similar than opposite.
100 Colors are exact opposite.
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Figure 3: Multi-run comparison of the adaptive image space sampler. It is applied to 8 different runs of 100 iterations with interval size
b = 6 using the cosine distance for reordering.

Figure 4: Plot of the color distance between two consecutive re-
constructed images for every pixel; cf. Figure 2.

tances until the end and, consequently, many popping artifacts. The
fourth decreases relatively quickly below the threshold bar.

Popping Detection. These results are run with the same popping
detection and parameter values as in the main paper, but the pop-
ping threshold is lowered to 25 (see also Section 1.5).

Multi-Run Overview Visualization of Popping Artifacts. The
multi-run overview visualization (Figure 3) shows that many pop-
pings occurred until the final iterations. The second pops until

halfway, stops and suddenly pops again (in the same location for
the different runs). The third shows similar behaviour to the first.
In the fourth many poppings occur in the first few iterations, but it
quickly decreases in frequency and stops after about 30 iterations.
For all four cases the structures in the images are clearly visible.

Positional Analysis: Popping Distribution and Sampling Time.
As the threshold is lower, many more popping artifacts occurred
(compared to the case with Tpop = 38.00 in the main paper) in the
first image. Little popping happened in the background regions.
However, if we set the power parameter ≤ 2 the background re-
constructed colors would be dominated by colors far away, and
so they could in fact pop once sampled. The second experiences
less popping throughout, but pops late due to the flat color regions.
The third popped all over, because the image is very colorful. The
fourth shows early popping which occurred only along the charac-
ter’s edges (Figure 5).

The time step is mapped to a color and overlaid on a gray-scale
version of the reconstructed image:

Wn(p) =

{
cmap(when(p))+rgb2gray(Rn(p)) if p ∈ Sn,

rgb2gray(Rn(p)) if p /∈ Sn,

where when(p) = n stores when pixel p was sampled, W is the
image created from it, cmap is the color map, and rgb2gray
converts an image with RGB channels into an image with a sin-
gle grayscale channel. Note that when(p) is only defined for pixels
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Figure 5: Temporal distribution of popping artifacts on a 16× 16
grid (Tpop = 25, Gpop = 3).
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Figure 6: Final visualization showing when pixels are sampled
with a color bar (without gray-scale).

that are sampled, i.e., when p ∈ Sn. Figure 6 shows that pixels are
sampled first at the edges of objects, and that flat regions are sam-
pled last for all four cases.

3. Tile Grid Generation: Details

The aim of tile grid generation is to convey an overview on a large
collection of objects [SG14, FDH∗15, QSST10]. The general con-
cept is to place images that are similar close to each other in order
to get an overview and compare what similar types there are.

The generation of tile grids is a complex problem due to the in-

Algorithm 2: Outline of progressive tile grid generation.
Input : Collection of objects
Output: Grid layout G

1 G0 := random grid placement
2 for n← 1 to nmax do
3 Gn := exchange images of Gn−1 in groups of size k
4 if exchange is not beneficial then
5 Gn := Gn−1
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Figure 7: Cost progression for different values of k.

terdependencies between individual elements. The algorithm con-
sidered here is a current research prototype that addresses this task
with an iterative, stochastic process. In each iteration, it partitions
all images into random groups of size k, and then within each
group solves a combinatorial optimization problem: it reorganizes
the tiles such that the images are as similar to their neighbors as
possible in total (Algorithm 2). The cost function is comprised of
distances to neighbors and the optimization goal is to minimize this
cost during the iterations.

This kind of process practically never really converges to a point
with no further changes, but merely the rate of improvement slows
down; and it is not inherently clear when it is slowing down. The
analysis goal is to identify when and how often larger changes oc-
cur, how stable this is across runs, and what the impact of group
size k is on this behavior. This can further indicate when a run can
be deemed to be sufficiently stable.

In our experiments, we placed 1024 images from the Caltech 101
database [LAR03] (based on generated feature vectors from a neu-
ral classifier). We considered 16 different runs for 1024 iterations
in our experiments. Note that in this use case, absolute positions are
not meaningful, only relative positioning between tiles is. We thus
omit a location-based analysis here.

Parameter Study. Besides popping, parameter k influences, of
course, the cost value and the computation time. We observe that
higher values of k yield lower cost values (Figure 7), but require
more computation time (Figure 8).

References
[FDH∗15] FRIED O., DIVERDI S., HALBER M., SIZIKOVA E.,

FINKELSTEIN A.: Isomatch: Creating informative grid layouts. Com-

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.



E. Waterink, J. Kosinka & S. Frey / Visual Analysis of Popping in Progressive Visualization: Supplementary Material

0 200 400 600 800 1000
step

0

1000

2000

3000

4000

5000

6000

tim
e

Computation time (parameter space)
k = 2
k = 5
k = 10
k = 20
k = 40

Figure 8: Computation time for different values of k.

puter Graphics Forum 34, 2 (2015), 155–166. doi:10.1111/cgf.
12549. 5

[LAR03] LI F.-F., ANDREETTO M., , RANZATO M. A.: Caltech
101, 2003. URL: http://www.vision.caltech.edu/Image_
Datasets/Caltech101/. 5

[QSST10] QUADRIANTO N., SMOLA A. J., SONG L., TUYTELAARS
T.: Kernelized sorting. IEEE Transactions on Pattern Analysis and
Machine Intelligence 32, 10 (Oct 2010), 1809–1821. doi:10.1109/
TPAMI.2009.184. 5

[Sch16] SCHUESSLER Z.: Delta e 101, 2016. URL: http://
zschuessler.github.io/DeltaE/learn/. 3

[SG14] STRONG G., GONG M.: Self-sorting map: An efficient algorithm
for presenting multimedia data in structured layouts. IEEE Transactions
on Multimedia 16, 4 (June 2014), 1045–1058. doi:10.1109/TMM.
2014.2306183. 5

[Tel15] TELEA A. C.: Data Visualization: Principles and Practice, 2 ed.
CRC Press, 2015. 2

[Ver11] VERBINSKI G.: Rango, 2011. Feature film. 3

[Zuc16] ZUCCONI A.: The secrets of colour interpolation, 2016.
URL: https://www.alanzucconi.com/2016/01/06/
colour-interpolation/. 2

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

https://doi.org/10.1111/cgf.12549
https://doi.org/10.1111/cgf.12549
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
https://doi.org/10.1109/TPAMI.2009.184
https://doi.org/10.1109/TPAMI.2009.184
http://zschuessler.github.io/DeltaE/learn/
http://zschuessler.github.io/DeltaE/learn/
https://doi.org/10.1109/TMM.2014.2306183
https://doi.org/10.1109/TMM.2014.2306183
https://www.alanzucconi.com/2016/01/06/colour-interpolation/
https://www.alanzucconi.com/2016/01/06/colour-interpolation/

