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Figure 1: We propose a deep learning-based approach to enhance the user’s sense of presence in virtual environments (VEs) allowing users
to see their upper limbs instead of virtual hands (bottom panel). Hand and arms are captured using a common RGB camera positioned on
the Head Mounted Display (HMD) or user’s head. Then, images are processed by our upper limb segmentation network, which proved to be
robust to different skin tones, lighting conditions, clothes, and occlusions (top panel). Finally, the segmented human limbs are visualized into
the VE, while the interaction is allowed via a Leap Motion controller.

Abstract
Sense of presence, immersion, and body ownership are among the main challenges concerning Virtual Reality (VR) and
freehand-based interaction methods. Through specific hand tracking devices, freehand-based methods can allow users to use
their hands for VE interaction. To visualize and make easy the freehand methods, recent approaches take advantage of 3D
meshes to represent the user’s hands in VE. However, this can reduce user immersion due to their unnatural correspondence
with the real hands. We propose an augmented virtuality (AV) pipeline allows users to visualize their limbs in VE to overcome
this limit. In particular, they were captured by a single monocular RGB camera placed in an egocentric perspective, segmented
using a deep convolutional neural network (CNN), and streamed in the VE. In addition, hands were tracked through a Leap
Motion controller to allow user interaction. We introduced two case studies as a preliminary investigation for this approach.
Finally, both quantitative and qualitative evaluations of the CNN results were provided and highlighted the effectiveness of the
proposed CNN achieving remarkable results in several real-life unconstrained scenarios.

CCS Concepts
• Computing methodologies → Virtual reality; Mixed / augmented reality; Image segmentation; Neural networks; Percep-
tion; Image processing;
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1. Introduction

With the evolution of computer graphics and VR, 3D scenes have
been developed with an ever-increasing level of realism in recent
years. Although HMDs have allowed the user to view the virtual
scene, they do not guarantee that the user will feel involved in
the virtual experience. One way to increase the user immersion
is to provide multi-sensory feedback and a virtual body (avatar),
which is mapped to the user’s movements [MBS*11]. In partic-
ular, 3D mesh and virtual representations of hands or limbs are
employed when the user is personally involved and observes the
scene and his body from a first-person point of view (egocen-
tric vision) [BLAL19]. In this context, one of the main research
questions concerns the sense of embodiment, which includes the
sense of self-location (related to the spatial experience of being
inside a body and the relation between one user and his own
body), body ownership (associated with the visual body appear-
ance) and agency (related to the body control) [KGS12; AHTL16].
Moreover, the user experience in VEs is strongly influenced by
the sense of presence. Different from self-location, presence con-
cerns the sense of being inside the VE (tele-presence or personal
presence) that is responsive to the human presence (environmen-
tal presence) and allows interacting with others in the same virtual
place (social presence) [Hee92]. There are several levels of im-
mersion and presence obtained by combining different technolo-
gies and devices that connect the real world to the virtual world,
producing a reality-virtuality continuum [MTUK95]. The transi-
tion between the real and the purely virtual is characterized by
real environments that include virtual components (Augmented Re-
ality, AR) or, as an opposite concept, virtual environments that
integrate real elements (Augmented Virtuality, AV), resulting in
mixed reality (MR) [BOJ*09]. For example, 3D scanning and pho-
togrammetry are often used to populate virtual scenes with real-
world information [GS, 18; PPC21]. These techniques have a cost
in terms of computational resources and can not be easily imple-
mented in real-time [MTRW17]. On the other hand, existing low-
cost AV approaches provided stereoscopic video-see-through sys-
tems merging real egocentric views and virtual scenes. They usu-
ally employed traditional techniques to segment the user’s body and
subtract the original background, such as chroma-key [BSRH09;
GFG15] and depth-based methods [LCBL16; RAS19], which are
limited to constrained situations. Recently, deep learning prelimi-
nary solutions were proposed to overcome traditional segmentation
methods, showing promising results [GPK*18; PD19; GPT*20].

In this paper, we propose an AV pipeline to increase the user
immersion, presence and embodiment in VEs through the segmen-
tation of the user’s upper limbs. To achieve our goal, we used a
CNN to segment users’ upper limbs captured by an RGB common
camera from an egocentric point of view and in real-life uncon-
strained scenarios. We collected a large-scale dataset consisting of
real-life well-labeled images and used those data to train our seg-
mentation neural network. The trained CNN achieved interesting
and accurate results, as shown in the top panel of Figure 1. The first
row shows some input images, while the second one depicts the
predicted masks overlapped on each input. In particular, the first
two images are from the Meccano dataset [RFLF21], the third and
fourth were captured in challenging indoor scenes, and the last be-
longs to the Epic-Kitchen dataset [DDF*18]. Inspired by the results

obtained, we defined a well-structured pipeline (see Section 4) con-
sidering the Leap Motion controller for hand tracking and our CNN
to segment images captured by a simple RGB monocular camera
placed on the user’s head or HMD. Then, the CNN output masks
extracted human limbs, which were streamed in the VE using a 2D
sprite. To implement and test our pipeline, we prepared two case
studies by exploiting existing applications with two different hard-
ware configurations, as reported in the bottom panel of Figure 1
(Archaeo Puzzle [CEGA20] and Freehand-Steering [CCE*20] ap-
plications, respectively). To interact with Archaeo Puzzle, we used
the Leap Motion placed on the desk in front of the user, as indi-
cated by the authors. In addition, an egocentric RGB camera was
placed on the user’s head with a band, and the 3D scene was visu-
alized with a monitor. Instead, in the case of the Freehand-Steering
application, we mounted the Leap Motion controller and the RGB
camera on the HMD. Using the Leap Motion controller, we faced
another AV challenge, which involves tracking real-world objects
and matching their positions in the VE to provide users with realis-
tic interaction feedback [NAA18]. Furthermore, we provided both
quantitative analysis and qualitative assessment to prove the effec-
tiveness of the proposed segmentation approach and validate our
deep learning method (see Section 6).

The remainder of this paper is structured as follow: in Section 2
an overview of the related work was provided; Section 3 shows the
proposed CNN an datasets details; Section 4 describes in details our
AV pipeline; Section 5 describes the chosen case studies, in which
we included our AV pipeline; Section 6 discusses our segmentation
CNN results and, finally, the Section 7 summarizes the conclusion,
limitations, and future research directions.

2. Related Work

In this Section, we provide an overview of the most important
AV approaches (Section 2.1), highlighting both traditional and
deep learning-based methods for hand and arm segmentation (Sec-
tion 2.2). Only methods based on RGB camera input were consid-
ered since they are strongly related to the proposed pipeline.

2.1. Augmented Virtuality

The growing development of technologies based on AV has allowed
increasing the level of realism of VEs and better engage users in
the VR experience [PPC21], using HMDs from an egocentric vi-
sion or visualizing through a monitor from a third-person perspec-
tive [BLAL19]. One of the first AV application was developed by
Regenbrecht et al. [ROW*03; RLK*04]. They designed a proto-
type AV system for remote collaboration in an industrial context,
called “cAR/PE!”, which allowed participants to see real-world in
a video-mediated way, share presentations, visualize 3D model and
manipulate them. Moreover, AV can be used to add real historical
artifacts into cultural heritage projects enhancing the educational
impact. In that context, Gheorghiu et al. [GS, 18] built a VR appli-
cation using Unity3D and added human characters with historical
clothes and real video hotspots placed as AV content in the virtual
scene. AV is also widely used in other fields, such as stress simu-
lations and hazard recognition. Neges et al. [NAA18] proposed an
AV approach based on a complex hydraulic system [AWAN17] to
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simulate a stress scenario and address it in a controlled and safe VE
instead of reality. Similarly, Bhandari et al. [BHB*20] presented an
AV scenario based on construction sites for workers’ safety training
that can help them to identify risks and improve their safety deci-
sion process. The AV component consisted of real static images or
videos added to the VE.

Contrary to the previous works, we augmented the VEs integrat-
ing real human limbs as a dynamic and interactive component of
the 3D scene.

2.2. Hand and Arm Segmentation

The main challenge is to enhance the users’ sense of presence and
embodiment in VE, allowing them to see their hands and arms in-
stead of a virtual representation during the VR interaction. One of
the first works was proposed by Bruder et al. [BSRH09]. They de-
veloped a skin detection algorithm to segment user’s limbs and dis-
played them in the rendered virtual view. This approach is obvi-
ously bound to a certain complexion, and many errors can occur
due to color similarities with parts of the background. Addition-
ally, they did not consider clothed arms. To solve some of these
problems, a green-screen setup can be used. Indeed, McGill et
al. [MBMB15] captured users’ when typing on computer key-
boards in a green box and extracted the foreground information
using a traditional chroma-key technique, i.e., the HSV thresh-
olding. Traditional methods based on green-screen and, in general,
color discrimination have some intrinsic limitations due to the need
for specific scenarios and lighting/color conditions. To overcome
those limitations, deep learning-based approaches were designed.
Preliminary solutions based on a convolutional neural network for
image segmentation were proposed in [GPK*18; PD19]. In particu-
lar, Gonzalez et al. [GPK*18] trained a fully convolutional network
(FCN) [LSD15] with a semi-synthetic dataset obtained through a
chroma-key technique. They only reported few qualitative results.
Pigny et al. [PD19] proposed a U-Net model [RFB15], which was
trained using images captured from both an egocentric and a third-
person viewpoint. Also, in this case, egocentric training images
were obtained using chroma-key techniques. Their model reported
some segmentation errors but showed promising results for AV ap-
plications. Recently, Gonzalez et al. [GPT*20] faced the hand and
arm segmentation problem designing a deep neural network model
extending their previous work. They trained a CNN using their own
semi-synthetic egocentric arm segmentation dataset. Although their
model achieved very interesting results, several false positive and
segmentation errors in color similarities between background and
foreground were obtained.

To the best of our knowledge, the proposed work is the first to
design a deep learning approach for upper limb segmentation from
an egocentric vision, achieve remarkable segmentation mask accu-
racy in unconstrained and challenging scenarios, and integrate this
CNN in a well-designed AV pipeline.

3. CNN for Augmented Virtuality

We designed a deep learning-based approach to automatically seg-
ment human hands and arms from an egocentric point of view.
It consists of a CNN for egocentric upper limb segmentation in

unconstrained real-life environments. It achieved impressive re-
sults and was robust to a great variety of scenarios, e.g., differ-
ent skin tones, clothes, lighting conditions, dynamic user/camera
movements, and occlusions. Our CNN is based on the state-of-
the-art DeepLabv3+ model [CZP*18] and is characterized by the
encoder-decoder architecture. The encoder extracts low-level fea-
tures and semantic information from the input image, while the de-
coder provides segmentation masks recovering spatial and detailed
object boundary information. The encoder includes three modules.
The first one is a backbone network based on the Xception-65
model [Cho17] adapted by Chen et al. [CZP*18] to the task of se-
mantic segmentation to improve the performance with faster com-
putation compared to other models. In detail, depthwise separa-
ble convolution replaced max pooling operations of the original
Xception network and further batch-normalization and ReLU were
added. Then, it is followed by the atrous spatial pyramid pooling
(ASPP) [CPK*17] and a 1×1 convolutional layer. The ASPP mod-
ule allows to obtain a better segmentation capturing multi-scale
context information and consists of three atrous convolutions, a
1× 1 convolution, and an image pooling layer in parallel. Atrous
convolutions [PKS15] can provide a larger field of view and take
more context into account, but without increasing the computa-
tional cost and number of parameters. Moreover, depthwise sep-
arable convolutions were used in the ASPP module and the combi-
nation with atrous convolutions is particularly suitable for real-time
semantic segmentation [LK19b]. The features extracted through the
backbone network and the encoder output are then passed to the
decoder, built using convolutional and bilinear upsampling opera-
tions.

One of the main challenges in the hand and arm segmentation
task is the lack of large datasets with accurate annotations. Syn-
thetic or semi-synthetic images are usually collected since obtain-
ing labels is easy and low-cost. They are often taken in VEs or
through a constrained green screen setup. For this reason, the im-
ages often look unrealistic or artificial and could lead to poor re-
sults in real-life use cases. Although some datasets containing real-
world RGB photos are available, only hands up to the wrist and
bare arms are labeled or contain few data, low-quality images, or
coarse ground truth masks. Therefore, we collected a large-scale
well-annotated upper limb segmentation dataset for CNN training
that overcomes the limitation of existing datasets. It includes about
46 thousand images in egocentric vision from two subsets. The first
contains the best data from the EDSH [LK13] and TEgO [LK19a]
datasets, which show indoor and outdoor scenarios with different
lights, male users’ skin tone, and occlusions caused by objects. In
particular, we manually inspected all images and labels and dis-
carded incorrect or partially annotated data. The second subset is
our EgoCam dataset, whose images show inter-hand occlusions,
male and female subjects with various clothes captured in real-
life indoor/outdoor and simple/cluttered scenes. Those images were
manually annotated. Since all collected data had a different resolu-
tion, aspect ratio and orientation, we performed square crop and
spatial resize to 360× 360 as a pre-processing phase to align data
dimensions and accelerate training. The upper limb segmentation
dataset was then divided into 43.837 images for the training set and
2.184 for the test. It is available for research purposes [21].

The CNN training was performed using network weights
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pre-trained on ImageNet [RDS*15] and MS-COCO [LMB*14]
datasets, which are publicly available on the DeepLab project
page [19]. We performed several experiments by modifying the
training hyperparameters and model configuration. The best per-
formances were obtained following the training protocol suggested
by Chen et al. [CPSA17], and setting the base learning rate to
0.0001 and batch size to 8. In detail, we used cross-entropy as the
loss function and the stochastic gradient descent optimization algo-
rithm with momentum (SGDM) and polynomial learning rate pol-
icy. Moreover, GPU acceleration through one Nvidia Titan Xp GPU
with 12GB memory was used. Finally, data augmentation with ran-
dom left/right flip was applied during the training phase to avoid
network overfitting. Our CNN was trained for 90K iterations until
convergence (about 16 epochs) and achieved remarkable results in
several real-life scenarios.

4. Pipeline

We designed a robust AV pipeline that considers the hardware
device configurations, the upper limb segmentation using a well-
designed CNN approach, and the implementation of our AV
method applied to two virtual scenes: the first is a VR scene devel-
oped from Caggianese et al. [CCE*20], and the second is a desktop
VE scene developed from Capece et al. [CEGA20]. As reported in
Figure 2, our hardware configuration is based on HTC Vive HMD,
the Leap Motion controller as hand tracking device, and a single
RGB camera to take the upper limb pictures mounted in egocentric
mode.

During the VR experience, the user’s hands were tracked from
the Leap Motion, and their movements were projected in the VE.
In this way, the user can interact with the virtual objects via a sim-
ple freehand approach. To allow the user’s hands interaction with
virtual objects, we used the hand 3D meshes without the renderer
component keeping enabled their mesh colliders. We placed a 2D
sprite in front of the main camera component and the segmented
real upper limb was displayed on it. To keep the 2D sprite always
in the same camera field-of-view (FOV), we added such component
as a child in the camera component hierarchy.

Our CNN continuously processes the frames captured by the
RGB camera device placed on the HMD or on the user’s forehead
through a band in an egocentric mode. The CNN output is the upper
limb binary segmentation mask with 0 for background and 1 in the
case of foreground pixels. The binary mask is then used in a further
image processing step, which subtracts the background from the
input RGB frame by removing the image portion without the upper
limb. In this way, the processed frame consists only of the upper
limb in foreground that is streamed in the VE through the 2D sprite
component. Whether no human limbs are captured by the camera,
then the output mask contains only 0 values and the 2D sprite is
transparent.

Our pipeline was implemented in the applications used as case
studies (see Section 5). Such applications were developed using
Unity 3D as game engine exploiting the C# programming language
together with Steam VR SDK (version 2.0). The pipeline was tested
on a workstation with an Intel Core i7-3rd generation CPU, 16GB
RAM, and one Nvidia Titan Xp GPU with 12GB memory. This

hardware features are enough to execute the applications and the
CNN inferences in real-time. We used the HTC Vive (version 1)
for the VR scene developed from Caggianese et al. [CCE*20].

5. Case Studies

Our AV approach was tested using two existing applications as
case studies. The first application, called Archaeo Puzzle, repre-
sents a non-immersive VE in terms of visualization but immer-
sive in terms of interaction. The second one is an immersive VE
freehand-steering locomotion application in terms of both visual-
ization and interaction. A video demo is available on the project
web page [21].

5.1. Archaeo Puzzle

Archeo Puzzle is a desktop application that considers the Leap Mo-
tion controller placed on a desk in front of the user position. The
proposed system allows the 3D reconstruction of historical arti-
facts, split into multiple pieces scattered around the scenes. The
original application provided a 3D meshes representation as visual
feedback of the hands. We introduced our pipeline in this case study
by shows the real users’ limbs in the VE, as reported in the Figure 3.

Although the user immersion feeling and sense of presence are
limited due to the non-use of the HMD device, we incremented
them by displaying the real user’s upper limbs. The main advan-
tages are the enhancement of user engagement during the virtual
experience and, more importantly, the reduction of negative im-
mersion feeling feedback. Those distracting feedback are usually
caused by tracking artifacts, which are due to hand joints tracking
errors, as shown in Figure 4. Indeed, Leap Motion hand tracking
suffers from interference issues caused by lights directed towards
its infrared sensors, producing tracking loss. In those cases, the cor-
responding 3D virtual hands acquire an unnatural hand pose, caus-
ing user disorientation and loss of immersion.

Figure 3 shows a typical Archaeo Puzzle scenario, in which the
user has to take each piece and position it on the 3D mesh ghost
of the historical artifact, which is obtained disabling its renderer
component which steer the user to reconstruct the 3D puzzle eas-
ily. Although 3D virtual hands can help users to better interact with
the 3D pieces, they are artificial and different in terms of dimension
and naturalness of movements [SLD*18]. For this reason, the sense
of presence and ownership is strongly increased thanks to our AV
technique. This is highlighted especially for the pinch gesture that
we used to grab the objects, in which the index fingertip touches the
thumb fingertip. Indeed, the user can observe the exactly performed
movement of his hands even in the VE, through the segmented im-
age of his upper limbs.

5.2. Freehand-Steering Application

Freehand-Steering is a VR immersive system developed to compare
four spatial steering locomotion methods, Palm, Index, Gaze and
HMD Controller. It was inspired by Mine’s seminal work [Min95].
We considered only the Palm and Index steering methods to imple-
ment our AV pipeline. We do not consider the Gaze-steering way
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Figure 2: Our proposed pipeline: the top red block shows the input devices used to track the upper limb and capture the correspondent
RGB images in real-time; the bottom red block shows our two hardware configurations and each of them is connected with its own case
study application; the green block represents the input processing core, showing our encoder-decoder CNN, the image processing step used
for background subtraction and upper limb extraction, and the synchronized hand tracking phase; the last blue block contains the two case
studies with the real user’s hand and, at the top, the Unity 3D scene showing the upper limb streamed to a dynamic 2D sprite at runtime.

Figure 3: Archaeo Puzzle with AV. Real human upper limbs seg-
mented with our CNN are placed in the camera FOV simulating
the 3D virtual hand position defined in the original project. The
software behaviors are keeping unchanged.

because only the direction selection is defined using the gaze di-
rection based on the HMD position and orientation, but the start
and stop movements were provided using the open and closed hand
gestures like Palm-steering method. The considered methods use
gesture recognition through a single hand, tracked using the Leap
Motion controller placed in an egocentric position on the HMD.
Figure 5 shows an example of the use of Palm-steering technique
with our AV.

Our application foresees continuously controlled movements by
keeping the user hand visible in the Leap Motion FOV and the con-

Figure 4: External directed light interference error on the Leap
Motion causes tracking artifact and consequently 3D mesh screw-
ing. This scenario provides a bad user immersion feeling feedback.

stant locomotion speed a priori defined. If the hand comes out of
the Leap Motion FOV, then the traveling stops.

Palm-steering method allows users to define their travelling di-
rection using their palm orientation and, in particular, the tracked
palm outgoing vector. A yellow placeholder is visualized on the
ground indicating the position to reach. To start the locomotion,
the grab gesture is used from the only tracked hand used to define
the travelling direction. Instead, the open hand gesture was used
to stop the locomotion. Although Palm-steering method allows the
user to move in all directions without rotating its heads, the immer-
sion feeling is decreased due to the use of a 3D virtual hand rep-
resentation. Also, in this case, we replaced the virtual counterpart
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Figure 5: Freehand-Steering application with AV. The image shows
an example of Palm-steering technique discussed from Caggianese
et al. [CCE*20] but using the real user’s hand and arm in VR.

with our CNN segmented upper limb, which can provide positive
visual feedback to the user. Moreover, since the Leap Motion con-
troller follows the HMD on which it is mounted, the probability
of light interferences are increased as the risk of getting the same
screwing on the 3D virtual hand, as discussed in Section 5.1.

Index-steering method allows users to define their control travel-
ling with only the index finger raised, as shown in Figure 6. Using
their index fingertip, the users have to point out the position they
want to reach, indicated with a yellow placeholder.

Figure 6: An example of Index-steering method with our proposed
AV. As can be seen, the real segmented user’s upper limb replaces
the virtual hand, increasing the user immersion feeling and owner-
ship.

The pinch gesture is adopted to start and stop locomotion. In par-
ticular, users have to close their middle fingertip toward their thumb
fingertip to start the locomotion. On the other hand, to stop the lo-
comotion, the users have to reopen these fingers. Also, in this case,
we noticed that the use of AV allows the user to feel fully engaged
in the VE, increasing the sense of presence and embodiment. Fur-
thermore, the AV solution reduced the bad visualization feedback
due to the Leap Motion hand tracking errors.

6. Analysis of the CNN Results

In this Section, we reported a well-structured analysis of the re-
sults obtained with our segmentation CNN for the proposed AV
pipeline. We evaluated the effectiveness of the proposed segmenta-
tion approach testing the CNN with our upper limb segmentation

test set. In particular, we computed standard metrics for the seg-
mentation task [MBP*21; GCE21], i.e., Accuracy (Acc), Intersec-
tion over Union (IoU), and mean F1 score. Other metrics often used
are precision and recall, but we did not consider them separately
since the F1 score is the harmonic mean of the two. As reported in
Table 1, our CNN obtained values greater than 97% for the metrics
calculated on the overall test set. In this case, the average values
of the first two metrics (mAcc and mIoU) computed over the total
number of classes are usually considered since Acc and IoU may
not be reliable, for example, due to unbalanced classes [LR19]. The
second and the third metric group shows the per-class metrics. The
worst values were obtained for the IoU and mF1 score, which are
more sensitive to errors on the boundary of objects to be segmented.
Instead, the Acc value takes into account only the pixel classifica-
tion accuracy.

Moreover, we visually inspected the segmentation masks pre-
dicted by the CNN. Some examples are shown in Fig. 7. A good
level of accuracy was obtained in different situations, as can be
noted by comparing our predictions (second row) with the ground-
truth (GT) labels (last row). In particular, the first four images show
male hands illuminated by ambient light with a simple background,
the fifth and sixth were captured in cluttered scenes with a flash-
light, while the seventh image illustrates male hand and arm with
artificial indoor light and positioned on a cluttered desk. Instead,
the last three panels are video frames captured during user/camera
movement and show a female upper limb against the light. We no-
ticed that our approach was also robust to a little amount of motion
blur.

Furthermore, the network achieved good performance also con-
sidering the computation time, reaching an average inference time
of 0.02 seconds per image (see Section 4 for details on the worksta-
tion used). In this way, real-time performance of our AV pipeline is
ensured, avoiding the lack of upper limb frames in the VE. Hence,
the obtained results highlighted the effectiveness of the proposed
method and the robustness of our CNN under several real-life un-
constrained conditions.

7. Conclusion

This work shows an AV pipeline based on upper limb segmentation
via a well-designed CNN-based approach and well-structured free-
hand methods to interact and/or locomote in the VEs. We integrated
our AV pipeline in two existing applications, which we considered
as case studies. The first application, called Archaeo Puzzle, allow
users to interact with a VE through their tracked hands and recon-
struct historical artifacts that are split into several pieces like a 3D
puzzle. As explained in Section 5.1, the user can interact and grab
the 3D pieces through the pinch gesture. The second application,
the freehand-steering application, allows users’ locomotion in the
VE through one tracked hand and well-designed gestures that de-
fine specific locomotion methods. As explained in Section 5.2, we
consider the Palm and Index methods. Our AV pipeline’s main chal-
lenge is to increase the user immersion feeling, embodiment, and
sense of presence during the VR experiences. We address this chal-
lenge by displaying the segmented user upper limbs in the VE with
a dynamic 2D sprite. Furthermore, we explained in detail our CNN,
which is structured as an encoder-decoder architecture based on
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Overall Limb Background

mAcc mIoU mF1 Acc IoU mF1 Acc IoU mF1
98.84 97.69 97.35 97.96 95.93 96.31 99.72 99.46 98.39

Table 1: The metric values in percentage related to the overall test set and for each class are reported. In particular, Intersection over Union
(IoU), Accuracy (Acc), and mean F1 score (mF1) are considered. In the case of the whole test set, the mean values of IoU and Acc are
computed.
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Figure 7: Some qualitative results on test images (first row) from the upper limb segmentation dataset. Different scenarios, lighting condi-
tions, skin tone, and hand-object occlusions are shown. The obtained predictions and the GT segmentation masks are displayed in the last
two rows.

DeepLabv3+ model. In particular, as reported in Section 3, the en-
coder component extracts low-level features and semantic informa-
tion from the input RGB upper limb image, and the decoder com-
putes the segmentation mask retrieving spatial and object boundary
information. We evaluated the effectiveness of our deep learning
method through both a quantitative and qualitative analysis, as ex-
plained in Section 6.

7.1. Limitations and Future Works

Using a simple 2D sprite in a 3D VE can cause the perception of
the lack of depth of the limbs in the scene for the user. However,
such a flatting effect can be mitigated by placing such a sprite in a
corrected position in the user camera FOV. Another limit concerns
the chromatic differences due to the different lighting conditions of
real segmented upper limbs and the virtual scene. A possible so-
lution may involve the use of image-to-image translation [IZZE16;
CBC*19] and light style transfer [LCY*20; HMG20] techniques
to adapt the real limb to the virtual scene. Moreover, segmentation
mask errors can impact the visualization of users’ upper limb in the
VE. They could be mitigated by keeping the history of past frames.
However, we assumed that these errors had little impact on the user
experience. To this concern, we are preparing a controlled experi-
ment to evaluate in the future the Usability, the User Experience,
and the Sentiment of the participants through the well-known Sys-
tem Usability Scale (SUS) [Bro*96] and Self-Assessment Manikin
(SAM) questionnaires [BL94]. In addition, we would like to repeat
the comparative evaluation of freehand-steering locomotion tech-
niques proposed by Caggianese et al. [CCE*20] by including our
AV pipeline to assess the effectiveness of the growth of the user
immersion feeling.

In the future, it would be also interesting to analyze the system
by evaluating the sense of agency and body ownership and com-
paring it with other techniques. A possible issue may be due to the
inconsistent display of the segmented hand in case the hand track-
ing from the Leap Motion fails as they are two independent phases.
In this case, it could alter the sense of agency. Therefore, further in-
vestigation is needed or a different method for hand tracking should
be provided. In particular, deep learning could also be used for hand
tracking by retrieving hands joints positions using directly the im-
ages captured from simple RGB camera [MBS*18; GCEA20] and
removing external infrared-based tracking devices such as Leap
Motion. However, recent approaches [ZBV*20; CHS*19] raised
several problems for the correct recognition of the depth compo-
nent of the tracked hands. Indeed, they approximated the third di-
mension estimating the depth mask or evaluating the depth of the
finger joints using the position of the wrist joint, defining the 2.5D.
In future work, we would like to use our upper limb segmentation
network to increase the RGB-only hand tracking approaches based
on deep learning. We are confident that joint depth estimation can
be improved by removing background from upper limb images. In
this way, we can remove the Leap Motion controller from our pro-
posed pipeline and then add a further deep learning step following
our current segmentation step. Finally, our CNN method can also be
used as a pre-processing step for hand gesture recognition [COS18]
and left/right limb identification useful, for example, to associate
specific actions to each hand.
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