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Figure 1: Snapshots showing the online display viewed by the subject wearing a Hololens 2 running the online recognizer demo.

Abstract

In this paper, we present STRONGER, a client-server solution for the online gesture recognition from captured hands’ joints
sequences. The system leverages a CNN-based recognizer improving current state-of-the-art solutions for segmented gestures
classification, trained and tested for the online gesture recognition task on a recent benchmark including heterogeneous ges-
tures. The recognizer provides good classification accuracy and a limited number of false positives on most of the gesture
classes of the benchmark used and has been used to create a demo application in a Mixed Reality scenario using an Hololens
2 optical see through Head-Mounted Display with hand tracking capability.

CCS Concepts
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1. Introduction

User interfaces based on 3D mid-air gestures are expected to be-
come popular in the next years, as they are a viable solution for
natural interaction in mixed reality not requiring specific devices
and being suitable for being used in crowded or noisy environ-
ments [GLY21]. Currently, a relevant number of interactive sys-
tems in many domains already feature this kind of interface: virtual
environments, smart surveillance systems, teleconferencing, home
or car entertainment controls, virtual Personal Aerobics Trainers
(PAT), and so on. Creating advanced touchless user interfaces is
also fundamental to maintain a high level of hygiene for work en-
vironments or in public terminals, and this can solve several issues
related to the pandemic emergence. These systems are promising
but are typically limited to the recognition of a few simple gestures.
A relevant amount of recent research work is therefore dedicated to
the development of more advanced and flexible gesture recogniz-
ers able to deal with more complex dictionaries and gesture types
still performing real-time recognition. Many of these methods are
based on the processing of hand pose (skeleton) streams, enabled
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by popular low-cost devices like the Leap Motion or the availabil-
ity of effective network-based solutions for hand pose tracking like
Mediapipe [ZBV*20].

Skeleton-based gesture recognizers need to capture the fine dif-
ferences among gestures and distinguish one gesture from another,
ideally with a high degree of confidence but also being able to
avoid false positives, e.g. detection of gestures corresponding to
non-significant actions. This is a challenge of fundamental impor-
tance to create interfaces with a reasonable usability degree.

Several solutions for the skeleton-based recognition of heteroge-
neous gestures have been proposed and work well on offline clas-
sification benchmarks like SHREC’17 [DSWV*17].

However, the offline classification task does not test the abil-
ity to avoid false positives with hard time constraints in an online
recognition scenario (i.e. sequential processing of the datastream
and on-the-fly classification) and the methods are not demonstrated
in practical applications or interactive mockups.
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In this work, we propose STRONGER, an online skeleton-based
gesture recognizer that can be used to develop mid-air deviceless
interfaces. We test it on a recent online classification benchmark
[CGS*21], and demonstrate it within a prototype mixed reality in-
terface.

The recognizer is based on a revised version of DDNet
[YSWN19], modified adding novel features to handle a larger set
of gestures and to perform online classification. The prototype ap-
plication is based on Hololens 2 and a client-server architecture to
process hand pose streams.

The results obtained in the online benchmark and our prelimi-
nary tests on the prototype show the feasibility of a gesture-based
user interface for mixed reality able to recognize a large dictionary
of heterogeneous gestures.

2. Related Work

Several works in the literature show the need to implement spe-
cific solutions for hand gesture and action recognition considering
the complex nature of the hand movements, different from those
applied in full-body skeleton-based action recognition or similar
tasks.

While a number of relevant works rely on methods such
as SVMs, Random Forests, dissimilarity-based classifiers, etc.
[MDZ16] [CGG*20], the use of neural networks has become a
dominant trend in this context and provides promising results.
However, there are still open issues that are still considered a chal-
lenge.

A popular solution considered suitable for time-series like hand
pose streams is the use of recurrent networks. In [ABC* 18] a stack
of LSTM units is trained by using as features the angles formed
by the finger bones of human hands. The Deep Gesture Recog-
nition Utility [MLJ18] is based on a set of stacked gated recurrent
units (GRU) [CvMG™* 14] and a global attention model. The authors
demonstrate that GRUs are fast to train and produce good results.
A lightweight version of this system, combined with a smart data
augmentation method provided the best results in an online gesture
recognition contest [CBP*19]. Nguyen et al. [NBLB21] exploited
high-order statistics of hand poses coupled with the Statistical Re-
current Units architecture.

Graph-based solutions have been proposed to exploit the rela-
tionships between hand joints. Li et al [LHY *19] construct graphs
with three types of edges to finely describe the linkage action of
joints. An end-to-end deep neural network is then used for the clas-
sification, where the convolution is conducted only on linked skele-
ton joints.

Guo et al. [GHZ*21] propose a novel edge-varying graph to-
gether with a normalized edge convolution operation, and a zig-zag
sampling strategy. Based on these innovations, they create spatial-
based Graph Convolution Networks called normalized edge convo-
lutional networks for hand gesture recognition.

In [CZP*19] the authors build a fully connected graph from the
hand skeleton and learn node features and edges via a self-attention
mechanism that performs in both spatial and temporal domains.

Hou et al. [HWC™* 18] propose an end-to-end Spatial-Temporal
Attention Residual Temporal Convolutional Network (STA-Res-
TCN) which learns different levels of attention and assigns them
to each spatial-temporal feature extracted by the convolution filters
at each time step.

A relevant issue making the recognition of heterogeneous hand
gestures (for example, compared with action recognition) is that the
gesture classes may be differentiated by different features, which
may be in some cases subtle. Heterogeneous gesture recognition
benchmarks like Shrec’17 [DSWV*17] or SFINGE3D [CGG*20]
features "coarse" gestures characterized by long whole-hand trajec-
tories (lasting 1 second and more) and "fine" gestures characterized
by fast changes of finger articulations (lasting 100 milliseconds or
less).

To solve this issue, Li et al. [LLG*21] propose a two-stream
neural network with one stream being an adaptive self-attention
based graph convolutional network (SAGCN) extracting the short-
term temporal information and hierarchical spatial information, and
the other being a residual-connection enhanced bidirectional In-
dependently Recurrent Neural Network (RBi-IndRNN) to extract
long-term temporal information. The method has been tested with
promising results on the DHG gesture dataset [DSWV16] and the
FPHA hand action dataset [GHYBK18].

Yang et al. [YSWN19] noted that a very simple network ar-
chitecture based on 1D convolutions, fed with simple features de-
rived from the hand joints sequence and using a motion summariza-
tion module to reduce noise from non-relevant frames, can provide
state-of-the-art results with reduced computational complexity.

The biggest problem with these gesture classifiers is that they
cannot be directly used to create a gesture-based interface. An in-
terface of this kind needs to detect gestures in a continuous stream
of hand poses and correctly classifying them, avoiding missing rel-
evant gestures and false detections.

Benchmarks only testing the accuracy in the classification don’t
test the performances of online detection, requiring continuous in-
put/output and the addition of a "non-gesture" label for the charac-
terization of non-meaningful sequences. A recurrent network, but
also a generic classifier with a coupled detection module or a slid-
ing window approach can provide the continuous input/output, but
the training of the methods using labeled sequences is not trivial. It
is hard to collect a large amount of labeled data and the non-gesture
class is typically quite different from the others due to the variabil-
ity of the elements and the larger number of examples available.

A benchmark specifically designed for online classification of
heterogeneous hand gestures, including coarse, fine, and also static
gestures has been proposed in [CGS*21]. This dataset includes
training and test sequences including gestures and non-gesture
frames and can be used to validate online classification approaches
that can directly be used to build gestural interfaces. We exploited
this dataset to train our system and used it also to assess the online
performances.
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Figure 2: The client-server application: the Hololens2 app sends
the joints’ stream to the PC and receives the classification results
to be displayed.

3. Proposed approach
3.1. System architecture

In our work, we not only design and implemented a network so-
lution for gesture recognition, but we also developed a prototype
gesture-based interface for mixed reality running on a Hololens 2
head-mounted display.

Hololens 2 is provided with a hand tracking module able to
capture hand skeletons (20 joints) is similar to the one captured
with the Leap Motion and this allows us to use an online classifier
trained on existing gesture datasets captured with the latter device
for online gesture recognition on the Hololens 2. We plan, however,
to capture further training data with the Hololens 2 finger tracking
system in the near future.

The interactive application works with a client-server architec-
ture, sending raw skeletons streams over TCP to a remote server
where a Python application performs the recognition and sends
back the results to the app running on the Hololens.

Figure 2 shows the operation scheme of the client-server archi-
tecture.

3.2. Gesture classification network

As it is based on a simpler 1D convolutional neural network and
it provides the state-of-the-art performances on the SHREC 2017
benchmark [DSWV*17], we chose DDNet [YSWN19] as the base
method to build our online recognition system. However, we noted
that this method does not perform well on the offline classification
of the gestures of the SHREC 2021 benchmark. This is not due to
limitations of the network architecture, but it depends on the data
used to feed it, that it is not the complete stream, but a set of hand-
crafted features derived from it and does not include information
that is important to disambiguate gesture classes. In detail, the two
network branches of the original network process joints’ veloci-
ties and between-joints distances, meaning that the evolution of the
hand’s orientation is lost. This makes it not possible, for example,
to distinguish the classical menu gesture with the hand open with
the palm in front of the user view from another static gesture keep-
ing the hand open parallel to the floor.

For this reason, we added two branches to the 1D convolutional
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Figure 3: Our classifier adds to the DDNet architecture two
branches with 1D convolutions processing palm orientation data
and joint pairs’ directions.

network, one processing the sequence of palm orientations and the
second processing a set of unit vectors representing the directions
defined by couples of joints.

The complete architecture of the proposed network is repre-
sented in Figure 3.

Five 1D-CNN branches are used to process different 1D fea-
tures derived from the input hand pose sequence, that is resam-
pled to a fixed number of time steps. The first feature is the Joint
Collection of Distances (JCD) that is the matrix of the Euclidean
distances between hand joints across time flattened to become a
one-dimensional vector. In particular, the matrix JCDF (shown in
equation 1 as reported in [YSWNI19]) is an N-1-by-N-1 with N
representing the index of the joint.
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that is then flattened to be a one dimensional vector to be used as
network input.
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indicates the Euclidean distance between vectors J{‘ = (x,y, z)k con-
taining the coordinates of the joint at the frame k. The other features
used also in the original DDNet are Mslow and MFast, that are
joints speeds (differences between positions at consecutive times)
computed at two different scales (reported again in [YSWNI19]).

The two 1D inputs added are the palm orientation (PO) rep-
resented by the normal vector of the hand’s palm across time
POt = (xp,,,ypo,zp,,)k), and a subset of the directions of joint pairs
(Joint Pairs’ Directions, JPD), obtained as the difference of selected
joints’ vectors
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as shown in Figure 4. The vector components of the matrix are
flattened as well to be used in the 1D convolutional network.

Figure 4: The novel feature are the time evolution of the palm ori-
entation (left) and of the directions defined by selected pairs of
Jjoints (JPD, right)

All the inputs are processed by similar CNN branches to derive
intermediate representations that are then concatenated and passed
through 3 more convolutional layers, a Global Average Pooling
(GAP) and a Fully Connected layer (FC) providing the class prob-
abilities.

The training code takes hand pose time sequences corresponding
to labelled gestures, re-samples the trajectories with a fixed num-
ber of elements, pre-processes them creating the gesture descriptors
feeding the network branches and train the classifier by minimizing
the cross-entropy loss.

To handle gesture classes together with non-gestures, we trained
the network with the gesture windows corresponding to the anno-
tations with the corresponding classes and a set of non-gestures
example cropped randomly outside the gesture time frames and as-
signed to a 19th class.

3.3. Online recognition and the SHREC’21 dataset

In the offline benchmark, it is sufficient to train the network with
segmented gestures using the procedure described above and test
the automatic labelling provided by the trained classifier on the seg-
mented gestures to assess the recognition accuracy.

The online recognition task is intrinsically different, as the ges-
tures should be detected and segmented, or they must be recognized
in a continuous stream. As the proposed network is quite efficient,
this can be avoided by using a sliding window approach, testing
windows of multiple lengths. However, this means that we need
to consider the non-gesture class assignment, and there is a strong
class imbalance in the data, as most of the windows cropped from
the sequences are labelled as non-gesture.

A specific method to train the recognizer needs therefore to be
designed for the task and different evaluation methods should be
applied to assess the quality of the results.

The only benchmark available to test online detection of com-
plex gestures from hand skeletons’ sequences has been proposed in
the SHREC’21 contest on Skeleton-based Hand Gesture Recogni-
tion in the Wild [CGS™*21]. We decided to use the dataset of this
contest both to train the classifier and to implement the mixed re-
ality recognizer application, as it features a sufficiently large and
heterogeneous gesture dictionary and an online evaluation proto-
col.

This dataset features 20-nodes hand skeletons’ sequences includ-
ing several examples of gestures interleaved with non-meaningful
gesticulation and it is divided into a training set with 108 sequences
including 24 examples for each gesture class and a test set of 72 se-
quences including 16 examples for each gesture class. Hand pose
sequences in this benchmark have been acquired with a Leap Mo-
tion device mounted as in a Head-Mounted display configuration
and with a frequency of 50 skeletons per second. This makes the
data quite similar to those produced by the Hololens 2 capturing
gesture streams at 45 fps from a similar point of view [UBG*20],
and this makes possible to train the method on the contest data
and to test recognition both on Leap Motion and Hololens 2 data
streams.

The gesture dictionary includes 18 classes divided in 3 types:

Static 7 classes characterized by a hand pose kept fixed for at least
one second (One, Two, Three, Four, OK, Menu, Pointing)

Dynamic coarse 5 classes characterized by a single global trajec-
tory of the hand (Left, Right, Circle, V, Cross)
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Dynamic fine 6 classes characterized by variations in the fingers’
articulation (Grab, Pinch, Tap, Deny, Knob, Expand)
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Figure 5: Gesture dictionary of SHREC 21 (from [CGS*21])

These gestures, shown in Figure 5 are interleaved in the se-
quences with non-significant hand motions of various types. In
our experiments on SHREC 2021, we trained the modified DDNet
using cropped sequences representing both segmented gestures of
the different classes defined in the dictionary and non-gesture se-
quences obtained by extracting sequences of random length from
0.2s. to 1.2s.

The trained network can be fed with windows of skeleton’s
streams and outputs an array with the probabilities that it belongs
to each class.

For the online classification, we don’t simply assign to the cor-
responding frames the label corresponding to the maximal proba-
bility, but we introduce a threshold for each gesture class, corre-
sponding to the minimum probability making the recognition ac-
ceptable. All the gestures detected in the sliding window procedure
with a probability lower than the corresponding threshold are then
discarded and treated as non-gesture. This should reduce the false
positive detections due to the limited representativity of the non-
gesture examples.

Thresholds are learned from training data as follows: during the
offline training, the average probability estimated by the classifiers
for the gestures belonging to that class is set as initial thresholds
estimates.

These thresholds are then refined with a specific procedure opti-
mizing them on the training sequences (including the labeled ges-
tures interleaved with non-gesture movements). For each class, if
the number of false positives is larger than a target value (FP-ratio >
0.5), the probability threshold is increased until the target is reached
or the accuracy falls below 60%

The thresholds learned with this procedure are stored in a spe-
cific array called Probability Threshold Array (PTA) and used in
online detection.

Another class-specific parameter is learned from training data
and used to improve the quality of online detection. We call it
Window Thresholds Array (WTA) and defines the minimum and
maximum acceptable duration for each class. Each gesture to be
executed needs a different number of frames, so if a short ges-
ture is recognized in a very large window (or vice versa), and
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should be discarded. The time length of the gestures featured in
the SHREC’21 benchmark is quite variable ranging from 0.18s on
average for gestures like EXPAND or TAP to several seconds for
the static ones (see Table 1).

Gesture type avg #frames | avg. time (s)
ONE static 149 2,98
TWO static 169 3,38
THREE static 166 3,32
FOUR static 163 3,26
OK static 148 2,96
MENU static 151 3,02
POINTING | static 97 1,94
LEFT dynamic coarse | 23 0,46
RIGHT dynamic coarse | 17 0,34
CIRCLE dynamic coarse | 54 1,08
A% dynamic coarse | 27 0,54
CROSS dynamic coarse | 43 0,86
GRAB dynamic fine 14 0,28
EXPAND dynamic fine 9 0,18
PINCH dynamic fine 22 0,44
TAP dynamic fine 12 0,24
DENY dynamic fine 78 1,56
KNOB dynamic fine 45 0,9

Table 1: Duration of the 18 gestures of the SHREC’21 dataset.
There is a huge variability among the gesture classes.

We set as acceptable duration limits for each class in the WTA
the minimal length in the training set diminished by 0.2 s and the
maximal length in the training set increased by 0.2 s. All the ges-
tures recognized in the sliding window procedure are discarded if
the window size of the corresponding class is outside the limits de-
fined in the WTA.

We set also a global limit to the maximal length of the gesture
tested which is also useful to reduce the delay in the online proce-
dure. This limitis setto 1 s.

In the sliding window procedure, time samples of different sizes
(from 5 frames to 50 frames with a step of 5 frames) are slid along
the signal with a fixed shift of 5 frames (0.15s).

If there is a gesture prediction corresponding to a window, a vote
for the corresponding class is assigned to the superimposed frames,
and the frame label is assigned as the one with maximal votes. A
gesture is finally detected as a set of consecutive frames with the
same assigned label.

3.4. Mixed reality interactive mockup

The client application running on the Hololens 2 device has been
created using the Unity game engine and the Mixed Reality Toolkit
(MRTK) that has been used in this project. This toolkit simplifies
the development of XR headsets, providing a cross-platform input
system, a basic set of components and features and common build-
ing blocks for spatial interactions in Unity.
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The application developed is a very simple mock-up superimpos-
ing to the user view 3D primitives representing the captured hand
joints and a text string with the currently recognized gesture.

The application is developed with Unity and features C # scripts
parsing and sending to the server the joint positions stream pro-
vided by the MRTK API and getting back the current classification
labels, that are displayed on the semitransparent screen (See Figure

1.

4. Results
4.1. Implementation details

The network code has been developed using PyTorch and CUDA
and it has been trained and tested on a Lenovo Legion 5 PC with
a RAM of 16 Gb a Nvidia RTX 2060 (6Gb) graphics card. The
network architecture features a set of parameters that have been
tuned on the SHREC’21 training set, namely filters’ size, number
of training epochs, batch size, and, most important, the number of
sample for input gesture resize. This value was set to 34. Different
Python scripts have been developed for offline classification testing
of segmented gestures, for the hand pose sequences processing fol-
lowing the SHREC’21 protocol using the sliding window approach,
and for the online recognition receiving the Hololens 2 stream and
providing it with the online classification results.

4.2. Offline evaluation of the gesture classifier

Before evaluating the online performances of our method, we per-
formed a couple of tests to evaluate the offline classification per-
formances of our implementation. Table 2 shows that the addition
of the novel features results in a 10% increase in the accuracy of
the classification of segmented test set gestures of SHREC’21. The
reason for the difference is the large amount of information lost in
the original encoding (not including, for example, any hint on the
spatial orientation of the hand).

Figure 6, comparing the confusion matrices of the two clas-
sifiers, clearly shows that the modified version solve relevant is-
sues of the original methods in recognizing gestures 3,5,7 (FOUR,
MENU, LEFT) where the hand orientation information can disam-
biguate the gesture from some non-gesture movements. The classi-
fication of KNOB gestures (17) is also relevantly improved.

As the network is trained with segmented gestures, we could also
evaluate the offline classification performances of our modified net-
work on the popular SHREC *17 [DSWV*17] benchmark. Here the
improvement with respect to the original DDNet is not similarly
high, but, in any case, our modified network performs slightly bet-
ter than the original and better than the other method proposed in
the literature (see Table 3).

Method Accuracy
DD-Net [YSWN19] 87.8%
Our model 97.5%

Table 2: The additional features added to DDNet strongly improve
the classification accuracy on SHREC 2021 gestures
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Figure 6: Top: confusion matrix of DD-net on SHREC 2021
classes. Bottom: confusion matrix of the modified network with the
additional features PO and JPD.

Methods Accuracy
3 Cent [ZLX17] 77.9%
Key-frame CNN [DSWV*17] 82.9%
Dynamic hand [MZW *20] 88.2%
CNN+LSTM [NCP*18] 89.8%
MFA-Net [XWG™ 19] 91.3%
Parallel CNN [DXMY 18] 91.3%
STA-Res-TCN [HWC*19] 93.6%
DD-Net [YSWNI19] 94.6%
Our model 95.0%

Table 3: Results on SHREC 2017 (Using 3D skeletons only)

4.3. Online evaluation

For the online evaluation we followed the protocol of SHREC ’21:
using the procedure described in Section 3.3, we obtained a per
frame labeling of the sequences and the timestamps of gesture be-
ginning and end. We could therefore estimate the "detection rate"
in the test data, e.g. the percentage of predicted gestures (of each
class) corresponding to ground truth ones correctly detected (where
corresponding means at least 50% of overlap), the false-positive ra-
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Method Det. Rate | FP Rate JI Time(s)
Group 1-Run 3 [CGS™21] 0.729 0.257 0.603 1.36
Group 2-Run 1 [CGS™21] 0.486 0.927 0.277 0.41
Group 3-Run 2 [CGS*21] 0.757 0.340 0.619 0.3e-5
Group 4-Run 3 [CGS™21] 0.899 0.066 0.853 0.16
Our method 0.906 0.347 0.740 0.10

Table 4: Average scores for the SHREC’21 benchmark compared
with contest participants. It should be noted that the method of
Group 4 includes a gesture segmentation module to reduce false
positives.

Method Det. Rate | FP Rate JI
Orig.DDNet 0.858 2.052 0.353
DDNet+PO+JPD 0.944 1.896 0.431
DDNet+PO+JPD+WTA 0.906 0.347 0.740

Table 5: Ablation study showing that the novel 1D features strongly
increase the detection rate while the learning of the Wondow
Threshold Array is effective in reducing the false positives rate.

tio, i.e. the ratio between the number of predictions not correspond-
ing to ground truth ones divided by the total number of gestures
of the corresponding class in the sequences, and the Jaccard Index
(JI) [WZZ*16,ZCCL18] measuring the average relative overlap be-
tween the ground truth and the predicted label sequences:
GT; ;NP
JIS’[ B GTY,i @ Px,i ©)
Table 4 shows the scores obtained by our algorithm on the
SHREC’21 benchmark, compared with the best runs of the par-
ticipants. Our method performs well, but the false positives are still
a bit high compared to the results of the contest winners. However,
it must be noted that this group used a pre-segmentation module
based on gesture energy to reduce false positives and this should be
the reason for this difference. We plan to add a similar module in
the future versions of STRONGER.

It is interesting to see how the addition of the JPD and palm
orientation features as well as the training of the Window Threshold
Array improves the results with respect to a simple application of a
sliding-window DDNet.

Table 5 shows the results of an ablation study demonstrating the
effectiveness of the added orientation-related features to improve
the detection rate of the gestures and the effectiveness of the thresh-
old training to reduce the False Positives rate.

Table 6 shows the SHREC’21 scores obtained with STRONGER
for each gesture class together with the classifier thresholds learned
from the training set, i.e. the values in the WTA. It is possible to
see that results are very good for many classes, while just a few
gesture classes (Circle, Cross, Tap) are responsible for the decrease
of the detection rate and the increase of the False Positive ratio.
This means that just excluding these few classes, our system would
be quite effective.

Bar charts in Figure 7 demonstrate that the addition of the two

novel features to the network input results in an increase of the
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Gesture | Det.rate | FP ratio JI | Thr.
ONE 1.000 0.000 | 1.00 9

TWO 1.000 0.062 | 0.94 8
THREE 1.000 0.062 | 0.94 8.2
FOUR 1.000 0312 | 0.76 8.7

OK 1.000 0.062 | 0.94 9.2

MENU 1.000 0.062 | 0.94 7.6
POINTING 0.937 0.062 | 0.88 7.5
LEFT 0.937 0.000 | 0.93 7
RIGHT 0.937 0.250 | 0.75 7.2
CIRCLE 0.750 1.500 | 0.30 7
\'% 0.937 0.187 | 0.78 6

CROSS 0.687 1.187 | 0.31 6.5
GRAB 1.000 0375 | 0.72 8
PINCH 1.000 0.125 | 0.88 8
TAP 0.375 0.875 | 0.20 5
6

8

2

DENY 0.812 0.187 | 0.68

KNOB 0.937 0.250 | 0.75
EXPAND 1.000 0.687 | 0.59 | 7.

Total 0.906 0.347 | 0.74 -

Table 6: Per-class evaluation of the scores of the SHREC2021 con-
test obtained with the current STRONGER recognizer architecture.

detection rate and of the Jaccard Index and a reduction of false
positives, with the only exception of the tap gesture, that is not well
handled by our system.

4.4. System prototype

Our recognizer can directly process gesture stream and has been
used as the server-side application connected to the Hololens app
described in Section 3.4.

In the demo setting the multiple windows, classification is per-
formed every 5 frames of the continuous stream (45 fps).

The prediction results are sent back to the Hololens app and are
then printed on the screen on the user’s display. The classification
time is 0.1 seconds.

An example of the online recognition system can be seen in the
video at the link https://streamable.com/5q6pl1.

Considering that no post-processing is applied the results are
sufficiently good, eve for some classes where the SHREC’21 test-
ing was not optimal, such as "TAP", "PINCH", "EXPAND" and
"DENY". Some gestures of the SHREC 2021 dictionary are not,
however, well handles, especially dynamic coarse.

We believe that the system is almost ready for practical applica-
tions, as it is possible to restrict the useful dictionary only to well-
recognized gestures. Furthermore, we now plan to acquire specific
training sets with the Hololens not relying on external benchmarks
acquired with different devices, and greatly increasing the number
of training examples.
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Figure 7: Both the features added to the original DDNet contribute
to improve the SHREC 21 benchmark scores. Top: Jaccard In-
dex per class for the original DDNet, DDNet+PO, DDNet+JPD
and both PO+JPD. Middle row: Bottom: Per class false positive
ratio for the original DDNet, DDNet+PO, DDNet+JPD and both
PO+JPD.

5. Discussion

We presented STRONGER, an online gesture recognition system
for mixed reality interaction, implemented with a client-server ar-
chitecture on an Hololens 2 device and based on a modified DDNet
architecture used with a sliding window approach and specialized
training to reduce false positives based on the selection of optimal
classifiers’ thresholds. Results demonstrate that the proposed mod-
ification to the 1-D convolutional network approach is able to im-
prove the classification performances and that the development of

mid-air interfaces based on dictionaries of heterogeneous gestures
more complex than those currently used in mixed reality apps are
feasible.

We plan to improve STRONGER by adding heuristics for pre-
segmentation of gestures as proposed by the group obtaining the
best results in the SHREC’21 contest [CGS*21], to capture novel
training sets directly with the Hololens 2 setup and optimize the
code to improve the usability of the system.

The idea of adding specific classifiers for selected gesture classes
could be also extended by actually training separate networks for
single classes or subsets of gestures. Different networks could be
trained for different windows sizes or to recognize different ges-
ture types (e.g. static, dynamic coarse, and fine). The output of the
different classifiers should then be combined in the final algorithm.
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