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Figure 1: Remote volume rendering where 2.5D depth images from outdated frames are reprojected to hide latency. Left: reference image.
Middle: 2.5D reprojection with OpenGL point primitives. Right: object space reprojection using ray tracing. The ray tracing-based technique
is less susceptible to reprojection artifacts as the footprint of the reprojected points depends on the distance to the viewer.

Abstract

We propose an image warping-based remote rendering technique for volumes that decouples the rendering and display phases.
For that we build on prior work where we sample the volume on the client using ray casting and reconstruct z-values based on
heuristics. Color and depth buffers are then sent to the client, which reuses this depth image as a stand-in for subsequent frames
by warping it to reflect the current camera position and orientation until new data was received from the server. The extension
we propose in this work represents the depth pixels as spheres and ray traces them on the client side. In contrast to the reference
method, this representation adapts the footprint of the depth pixels to the distance to the camera origin, which is more effective
at hiding warping artifacts, particularly when applied to volumetric data sets.
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1. Introduction

Remote rendering is an important technique to overcome the typ-
ical bandwidth limitations in in-situ scenarios, or when accessing
graphics workstations over LAN or WAN using thin clients. Re-
mote rendering algorithms can be classified by the type of data—
image pixels, proxy geometry, etc.—that is sent over the network,
and by the amount of post-processing that needs to be done on
the client, with the spectrum ranging from send-image over send-
geometry to send-data approaches [BCHI12]. According to this
classification, send-image implementations execute the full render-
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ing pipeline on the remote server or workstation, while the client is
responsible only for display.

We present a remote rendering technique based on prior work by
Zellmann et al. [ZAL12] that decouples the rendering and display
phases. By that, latency introduced by the network or the render-
ing algorithm itself can be hidden and the user interface remains
responsive. This is an important property for certain use cases, e.g.
for virtual reality applications with head tracking, and can help to
improve the overall user experience.

With real-time ray tracing nowadays being widely available even
on consumer hardware, we present and evaluate a simple improve-
ment to the algorithm by Zellmann et al. that does not render im-
ages directly, but interprets depth pixels (color + depth) as object
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Figure 2: Overview of the client/server remote rendering archi-
tecture. After receiving camera information, the server uses ray
marching to generate primary ray parameter values t; for each
pixel and transforms those into object space samples. The client
receives those object space samples, reinterprets them as col-
ored, semi-transparent spheres, builds a bounding volume hierar-
chy (BVH) and ray traces them using a simple first-hit ray tracing
query and with no shading other than the constant sample color.

v

space splats and renders them as spheres in a ray tracer. This en-
hancement can help to conceal reprojection artifacts and is specifi-
cally helpful for remote volume rendering, which the algorithm was
originally designed for. On top of that, as a byproduct, we have
an acceleration data structure available over the depth images that
is rebuilt per frame and that can for example be used to perform
neighbor queries.

2. Background

We present a remote volume rendering technique that broadly falls
into the category of send-image approaches [BCH12], where fully
rendered images are sent over the network. Our technique builds
on prior work by Zellmann et al. [ZAL12]. In that work, the au-
thors decoupled the rendering and display phases by presenting fi-
nal images at a different rate than delivered by the server. On the
server, the authors render 2.5D images (color + depth). They pro-
posed a set of heuristics to generate a depth buffer during volume
rendering, which is generally challenging in the presence of alpha
transparency.

On the client, a vertex buffer object and a color texture are used
to render the depth buffer as point primitives. When the camera po-
sition or orientation changes, the current buffer is warped accord-
ing to the new transformation; the pixel buffer is updated as soon
as the server sends an updated image. When the rendering phase
on the server and the display phase on the client operate at exactly
the same rate, this will result in the client always displaying the
correct image. At different rates, the client will display pixels from
outdated frames that hence appear warped. This effect is more ex-
aggerated as the delay between the two phases increases. On the
other hand, assuming that an image can be displayed faster than it
can be rendered, the user interaction appears smooth because user
input can be processed at high rates.

3. Related Work

Send-image remote rendering is a popular approach that has for
example been proposed by Stegmaier et al. [SMEO02]. Visualiza-
tion tools like ParaView [AGLO5] support client / server rendering

modes that exchange images. Dedicated remote rendering tools like
VirtualGL [vir] allow the user to use accelerated graphics over a
broadband network via send-image remote rendering. We refer the
reader to the text book by Bethel et al. [BCH12] and the survey
article by Shi and Hsu [SH15] for an introduction to and a good
general overview of the various remote rendering techniques.

The idea to use image warping in low bandwidth scenarios is rel-
atively old and was e.g. proposed by Bao et al. [BG03]. Research
has focused on augmenting send-image approaches with additional
data like depth buffers [ZAL12], image layers [LRBR16], or light
fields [MBGM20]. The work by Shi et al. [SNC12] has focused
on image warping techniques using depth images targeting mobile
devices. The paper by Pajak et al. [PHE* 11] has explored compres-
sion techniques based on spatio-temporal upsampling on the client
that also includes the use of depth buffers sent over the network.

The work by Schied et al. [SKW* 17, SPD18] on spatio-temporal
variance-guided filtering is also related to our approach, as it is
based on rendering with outdated image samples. Their technique
is however based on sample accumulation and on extrapolating
samples into the future using motion vectors, whereas our ap-
proach, in comparison, predicts the present image samples based
on past image data. While the motion vectors with Schied’s algo-
rithm are explicit, it can be argued that the technique by Zellmann
etal. [ZAL12] implicitly stores a per-pixel motion vector, and while
Schied’s technique interpolates the motion values, Zellmann et al.’s
algorithm exhibits holes between samples.

There are several approaches that are orthogonal to our tech-
nique, such as the approach by Marton et al. [MAG19] who perform
remote volume rendering of time-varying data sets and combine
that with dedicated, compressed representations extracted on the
server depending on the capabilities of the client. Alternative ap-
proaches that are well suited for rendering of sparse volume repre-
sentations are for example multi-fragment and depth peeling meth-
ods [VVP20].

We propose to augment the remote rendering algorithm by Zell-
mann et al. [ZAL12] by switching from image reprojection to real-
time ray tracing on the client computer. Instead of generating 2.5D
data on the remote server, we generate object space samples stor-
ing the final composited color from volume ray marching. On the
client, we transform those samples to a point cloud that we ren-
der using first-hit ray tracing. Qualitatively, this approach is similar
to splatting [Wes90], which could be used as an alternative object
order strategy.

4. Method

A challenge of the rasterization-based warping technique used by
Zellmann et al. [ZAL12] is that the point primitives’ size is fixed
to a certain number of pixels. This can cause artifacts that can be
avoided when the 2.5D data set is represented with solid objects. In
the latter case, solids that are closer to the viewer will cover more
pixels. Effectively, this can be regarded as splatting, where the foot-
print of the splats decreases with increasing distance to the viewer.
While rendering of geometrically complex objects like tessellated
spheres with OpenGL is prohibitive w.r.t. memory consumption,
with real-time ray tracing and arbitrary user geometry it is a viable
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option to render the 2.5D geometry as spheres that are represented
with real quadrics. With this extension, we hope to reduce the im-
pact of the artifacts encountered with rasterization-based 2.5D im-
age warping—especially in the presence of volumetric data and
semi-transparent pixels.

4.1. Object Space Samples

On the server side, we render the volume using a ray marcher that
employs one of the heuristics presented by Zellmann et al. to esti-
mate which depth value represents the volume best. We march rays
r = o+dt with origin o, direction vector d and ray parameter f.
When a representative depth according to one of the heuristics was
found, that depth is associated with a certain value for r = #;. Zell-
mann et al. first transform that value to a position in object space
p=o +dt; and then reproject the resulting point to obtain a position
in OpenGL window coordinates by applying the viewing, camera,
and viewport transforms.

In contrast to that, we directly send object space samples to the
client that are comprised of the position vectors p and a footprint ra-
dius. We quantize the object space coordinate and pack it, together
with the radius, into 64 bits. The ray marcher fills a screen-sized
buffer with object space samples and associated volume-rendered
colors. We currently just set the footprint radius to half the size of a
voxel’s diagonal when the ray hit the volume and integrated a color
with non-zero opacity. If the integrated color has zero opacity or
the ray did not hit the volume, we set the radius to zero. We use
compaction to send only those object space samples to the client
that have non-zero radius.

On the client, when we receive a buffer with object space sam-
ples and colors, we reinterpret the object space samples as semi-
transparent spheres, build a bounding volume hierarchy from those
using the LBVH algorithm [LGS*09, ZHL19], and render them as
a point cloud using ray tracing. We chose LBVH for its fast re-
build times as compared to for example kd-trees [ZSL18, ZSL19].
We could also have used an OptiX BVH to make use of RT cores,
which has recently been shown to be effective for volumetric ray
casting [WZM21], but by using a software implementation we ac-
knowledge that the client-side algorithm does not necessarily re-
quire a high-end GPU with latest ray tracing extensions—in fact, a
typical scenario where we often productively employ our algorithm
is with thin clients such as laptop PCs. We illustrate the overall pro-
cess including the client and server-side communication in Fig. 2.

We also experimented with multi-hit ray tracing [ZHL17], but
as the results regarding image quality were mixed, we ultimately
decided to use this simple splatting approach that simply colorizes
each sphere according to its designated color. We still decided to
use semi-transparent spheres, which in the case of multi-hit ray
tracing would have been over-composited. Instead, we use the alpha
value to blend with the background color, which we found visually
more appealing than rendering opaque spheres.

4.2. Implementation

We implemented the framework described above using NVIDIA
CUDA and network communication using the C++ Boost Asio li-
brary. We use a standard ray marching volume renderer that writes

(© 2021 The Author(s)
Eurographics Proceedings (©) 2021 The Eurographics Association.

| Compaction (view-independent) 23 ms |
| LBVH Construction (view-independent) 11 ms |
View 1 | View2 | View3 | View4 | View 5
FPS 292 276 283 229 408

Table 1: Performance results for rendering the five views from
Fig. 3 with our ray tracing technique. We render with a viewport of
1024 x 1024 pixels. The point cloud after compaction is comprised
of 623K object space samples.

out colors and ¢ values to off-screen buffers. When the client sends
an updated camera, the server performs volume rendering, fills the
off-screen buffers and sends them to the client. Rendering, cam-
era motion processing and communication are handled by separate
threads to make the display/presentation phase asynchronous. Af-
ter rendering, the server transforms and quantizes the ¢ values and
sends both position and color buffers to the client. While 16-bit
quantization provided good results, we note that this parameter can
be left as a user option to favor either bandwidth or rendering qual-
ity. The camera that the buffers were produced for are also sent
along as meta data so the client does not need to keep track of it.
The client, after receiving the buffers, builds an LBVH over the
point cloud that is subsequently used to accelerate rendering. An
open source version of the implementation can be found online:
https://github.com/szellmann/warpvr.

5. Results and Discussion

For a qualitative comparison, we implemented the reference
method by Zellmann et al. using OpenGL point rendering. Fig. 3
shows this qualitative comparison. In the example a sequence of
warped frames is obtained using the gradient heuristic. For a per-
formance evaluation we report compaction rates on the server (cur-
rently using a serial implementation), LBVH construction time,
as well as average rendering performance for the five views from
Fig. 3 in Table 1. For the benchmarks, we used an NVIDIA
RTX 2080 GPU. We find this simple extension to the original al-
gorithm by Zellmann et al. to be effective. As can be seen from
Fig. 3, the visual quality when rendering the 2.5D point cloud as
object space splats instead of OpenGL points with a fixed size in
pixels improves dramatically. We also experimented with setting a
variable point size in OpenGL mode but found this setting to be
hard to control as it biases the rendered results in that the opacity
of the composited point sprites increases with an increase in fill-
rate. Besides, depth compositing for point primitives with OpenGL
is not performed per fragment but per vertex.

The overall pipeline is currently bound by compaction perfor-
mance on the server, which would however be easy to fix, e.g., by
using the remove_ i f standard algorithm from the C++/ GPGPU
library thrust. We deliberately do not report network-related per-
formance as that would relate to the available bandwidth and la-
tency of a specific network connection. We currently send 32 bits
per color and 64 bits per object space sample (position and radius).
The 1024 x 1024 pixel images in Fig. 3, after compaction, consist
of 623K individual object space samples.
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Figure 3: Comparison between OpenGL reprojection with rasterized points, and our ray tracing technique rendering object space samples
as spheres. Top row: a sequence of successive frames obtained using volume rendering, with the camera position gradually changing to
positions that show the volume from different viewing angles. Middle row: the same sequence of frames. The left image is subsequently
warped as a 2.5D point cloud to the viewing positions from the top row using our ray tracing technique. Bottom row: the sequence of frames
is warped in the same manner, but with the OpenGL point rasterization technique by Zellmann et al. [ZALI2]. Rendering artifacts especially
in regions that appear volumetric and transparent are much more exaggerated even when the camera is only slightly moved.

Figure 4: Client-side normal reconstruction. Left: heptane gas
data set without shading. Middle: reconstructed surface normals.
Right: normals are used for shading. One advantage of using ray
tracing with a BVH instead of splatting with rasterization and frus-
tum culling is the availability of the BVH, which in this case is also
used to perform k-nearest neighbor queries and plane fitting.

5.1. Advantages over Object Order Techniques

Alternatives to client-side ray tracing that potentially address the
rendering artifacts in a similar way would be splatting using im-
posters, or geometry shaders to expand the points into more com-
plex shapes. One compelling advantage of using ray tracing in-
stead of those object order techniques is the fact that we have a per
frame BVH that was built over the client-side point cloud available

that can be used to perform neighbor queries. A typical scenario
for this is surface normal reconstruction from the point cloud on
the client. We demonstrate this in Fig. 4 where we use the BVH
to perform (truncated) k-nearest neighbor (kKNN) queries in a lo-
cal neighborhood around the primary intersection position to find
nearby points. We then fit planes to these using a simple heuris-
tic based on computing the covariance matrix and its determinant.
This ultimately provides us with normal vectors that, for illustrative
purposes, are used for shading. In a more complex scenario, if the
volume/transfer function combination favors near isosurfaces, kNN
queries could for example be used for surface reconstruction from
the sparse point cloud using similar methods [BTS* 14]. As neigh-
bor queries can also be mapped to ray tracing hardware [ZWW20],
the approach also lends itself to an implementation with RT Cores.

6. Conclusion and Future Work

We presented a simple yet effective extension to the algorithm by
Zellmann et al. [ZAL12] that improves the rendering artifacts that
this remote volume rendering technique otherwise suffers from
by replacing 2.5D point warping with real-time ray tracing. This
potentially comes at moderate additional costs regarding memory
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bandwidth as we have to store object space coordinates, although
we in turn can benefit from compaction on the server side.

Switching to a ray tracing pipeline presents us with a wealth of
possibilities that we intend to explore in the future and that this
work lays the groundwork for. Possible extensions would be sample
accumulation across a couple of frames, or varying the radius of
the object space samples depending on the uncertainty associated
with the depth value: pixels for which we are uncertain where to
place them along the viewing ray could be smeared out across some
interval whose length is proportional to the uncertainty.

Certain angles have not been explored due to the short paper
format. We deliberately have not concentrated on network com-
munication and compression of object space samples in this paper,
which is important for high throughput. Future work could also be
concerned with a thorough evaluation of the client side technique.
While we customarily use the algorithm in productive settings on
thin clients and note that it is well suited for that, a more rigorous
evaluation on various, possibly mobile, architectures would cer-
tainly be of interest and is left as future work.
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