
STAG: Smart Tools and Applications in Graphics (2021)
P. Frosini, D. Giorgi, S. Melzi, and E. Rodolà (Editors)

IMGD: Image-based Multiscale Global Descriptors of Airborne
LiDAR Point Clouds Used for Comparative Analysis

J. Sreevalsan-Nair†1 and P. Mohapatra1 and S. Singh1

1Graphics-Visualization-Computing Lab, International Institute of Information Technology Bangalore, India

Abstract
Both geometric and semantic information are required for a complete understanding of regions acquired as three-dimensional
(3D) point clouds using the Light Detection and Ranging (LiDAR) technology. However, the global descriptors of such datasets
that integrate both the information types are rare. With a focus on airborne LiDAR point clouds, we propose a novel global
descriptor that transforms the point cloud from Cartesian to barycentric coordinate spaces. We use both the probabilistic
geometric classification, aggregated from multiple scales, and the semantic classification to construct our descriptor using point
rendering. Thus, we get an image-based multiscale global descriptor, IMGD. To demonstrate its usability, we propose the use of
distribution distance measures between the descriptors for comparing the point clouds. Our experimental results demonstrate the
effectiveness of our descriptor, when constructed of publicly available datasets, and on applying our selected distance measures.

Keywords: Airborne LiDAR point clouds, Local geometric descriptors, Global descriptor, Classification, Barycentric coordinates,
Visualization, Shannon entropy, Distribution distance measure, Uncertainty analysis, Covariance tensor, Tensor voting

CCS Concepts
• Computing methodologies → Image representations; • Human-centered computing → Visualization techniques; •
Information systems → Nearest-neighbor search;

1. Introduction

Topographic Light Detection and Ranging (LiDAR) technology
provides three-dimensional (3D) point clouds, which are used for
extracting geometry for the 3D reconstruction of regions. The point
clouds provide rich geometric information, that when integrated with
imagery, provides scene understanding from observed data [Rot09].
The objects in a region are effectively extracted from a point cloud
through segmentation and semantic classification, efficiently imple-
mented using supervised and deep learning [WJHM15]. The geomet-
ric information of the point clouds is already extracted in the form
of local geometric descriptors and their eigenvalue-based features.
These features are used for semantic classification. Also, we can
now ascertain how the uncertainty in the geometry manifests itself
in the semantic classification, using entropy measures [SNM20].

However, a pertinent gap exists in comparing point clouds based
on both semantic and geometric information. How can we compare
two regions with similar semantic compositions but with differences
in spatial layout? For instance, a planned residential area inclusive of
substantial tree cover, and a forest reserve area in the proximity of a
set of high-rise buildings, will have low class-distribution distances,
but high geometric distances. Yet another example is the case of
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different compositions in regions, of trees and high-rise buildings,
which tend to confuse semantic classifiers owing to their geometric
similarities [RSJ∗12]. We get high class-distribution distances in
this case, but low geometric distances. Thus, we motivate that an
integrated distance measure is required to bring out multifaceted
differences between regions in a holistic manner. This brings forth
the need for constructing a global descriptor for point clouds, that
integrates both the geometric and semantic information. In this work,
we address these gaps using a novel image-based multiscale global
descriptor, IMGD, SGm (Figure 1).

Here, we focus on airborne LiDAR or Aerial Laser Scanning
(ALS) point clouds. Our contributions are:

• A novel global descriptor, IMGD for ALS point clouds, that
encode both semantic and geometric classification information,

• Identification of appropriate distribution distance measures for
SGm for point cloud comparison, thus combining both the seman-
tic and geometric class differences,

• A qualitative analysis of the integrated nature of SGm using
matrix visualization of appropriate reference distance measures.

Related Work: Given that 3D LiDAR point clouds implicitly en-
code a surface, they are 2.5D data characterized by surface feature
descriptors. Such 3D descriptors can be categorized into global and
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Figure 1: Overview of our method of integrating probabilistic geo-
metric and semantic classifications in IMGD SGm of an airborne
LiDAR point cloud, using point rendering. For the 3D point cloud of
Area-3 of the Vaihingen data (323,896 points) [RSJ∗12], (Top) the
top-view in Cartesian, and (Bottom) SGm in barycentric coordinate
systems, generated using AvgSM T3DCM. (Top-left) Mapping the
saliency map {Cl ,Cs,Cp} to red, green, blue channels, and (Right)
mapping the semantic classes to the selected color palette.

local feature descriptors. The local feature descriptors use localized
information, suitable for recognizing partially visible or incomplete
objects in a cluttered scene with occlusions. In contrast, the global
descriptors ignore shape details and require a priori segmentation
of the object from the scene. Thus, they have difficulty recognizing
partially visible or incomplete objects from cluttered scenes. Overall,
the global features that are constructed by aggregating local features,
tend to include geometric information.

Fisher vectors (FV) [PSM10] and Vector of Locally Aggregated
Descriptors (VLAD) [JDSP10] are information-based aggregates
used as global feature descriptors. FVs have been computed as global
descriptors of images using the local descriptors and the Fisher ker-
nel [JH99]. The FV is the normalized gradient vector of the local
descriptors. The Fisher kernel of two images is a similarity measure
computed as the dot product of FVs of the two images. The kernel
could also be computed with a selected generative model [SPMV13].
The VLAD is a global descriptor of images, usually. It is computed
using a codebook of clusters of SIFT (scale-invariant feature trans-
form) descriptors [Low04], and accumulation of residuals between
descriptors and corresponding cluster center. The VLAD has been
further extended to point clouds using a deep learning network for
place recognition [AUHL18]. Similar to FV used for point cloud
analysis [BSLF18] and VLAD, our SGm is aggregated from local
descriptors explicitly but uses coordinate space transformation.

Similar to our method, a barycentric coordinate representation
of point-wise local geometric descriptor (LGD) has been used for
the class-based analysis of point clouds in geomorphology [BL12].
The visualization referred to as the dimensionality density diagram
(DDD), is constructed without the class information. The diagrams
are then collated across multiple scales in a feature vector for se-
mantic classification. Here, the multiscale integration occurs during
the computation of eigenvalue-based saliency map [SNK17]. The
visualization, equivalent to DDD, generates our descriptor SGm,
but after integrating the class information. SGm is further used for
comparing point clouds, while DDD is used for classification.

Geometric distances between points or meshes are commonly
used for point clouds. Point-to-mesh and mesh-to-mesh distances
have been very well studied and demonstrated by Metro [CRS98],
Mesh [ASCE02], and other tools. 3D shape reconstruction of a point
cloud is computationally intensive and hence, is neither efficient nor
scalable. An out-of-core method has been used for change detection
in massive point clouds, without reducing the raw data [RKD13].

Direct comparison of point clouds is done by one-to-one point
mapping using robust distance measures, such as the Gromov-
Hausdorff (GH) distance [MS04]. GH distance generalizes the Haus-
dorff distance between two compact metric spaces, including prob-
ability measures and all isometric embeddings. It can be used for
comparing LiDAR point clouds, which may have rotational transfor-
mations but after isometric transformations. However, computing a
discrete approximation of GH distances using pair-wise geodesic
distances is inefficient in large-scale point clouds.

The information from multiple scales is gathered usually by de-
termining and using an entropy-based optimal scale [DMDV11], or
by averaging features [KKV∗11]. Other recent multiscale methods
include a scale-invariant method for generating hierarchical point
clusters by aggregating scales in a multiscale and hierarchical point
classification method [WZF∗14]. Latent Dirichlet Allocation (LDA)
and AdaBoost classifiers are then used for feature extraction from
the clusters and classification, respectively. A variant of this method
uses natural exponential function thresholds for point-cluster ex-
traction, and joint LDA and sparse coding (SCLDA) for feature
extraction [ZZT∗16] for ALS point clouds of complex scenes. To
add contextual information, e.g., topology, in classification results,
an RF classifier has been integrated into a Conditional Random
Field (CRF) framework for urban object classification [NRS14].

2. Background: Multiscale Computations for Local
Geometric Descriptor (LGD)

The LGD of a point in the point cloud stores the information in its
local neighborhood. The shape of the local neighborhood is essential
for determining semantic classification. The shape is captured in the
form of a saliency map {Cl ,Cs,Cp}, which gives the probability of a
point belonging to the line- (linear), surface- (surface), and junction-
(volumetric) type features. Hence, the saliency map is equivalent to
the probabilistic geometric classification of the point [SNK17].

Computation of Local Geometric Descriptor: We use the
positive semidefinite second-order tensor representation of the
LGD [SNK17]. Here, we specifically use covariance tensor, T3DCM,
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and tensor voting based descriptor, T3DVT-GET, as computed by
Sreevalsan-Nair et al., [SNJK18]. For computing LGD, the first step
is to identify points which will qualify as neighbors N(x) of a given
point x in the point cloud P . This is done using specific neighbor
search volumes, as described later in this Section. The size of this
neighbor search volume is the value for scale, s.

The covariance matrix is computed at a point x, as:
T3DCM(x) = ∑

y∈N(x)
wyt(y)t(y)T , with w(y) = 1−z(y)

∑y∈N(x)(1−z(y)) ,

where t(y) = (y− x), normalized as: z(y) = ‖t(y)‖2
s .

The tensor voting field is initialized as an unoriented ball tensor
at point x, using t(y) as in the case of T3DCM(x).

V (x) = ∑
y∈N(x)

µy.

(
Id −

t(y)t(y)T

t(y)T t(y)

)
, with µy = exp

(
− ‖t(y)‖

2
2

σ 2

)
,

where Id is identity matrix of size d based on spatial dimensionality,
and d = 3, here. The scale value of the neighbor search volume is
used as σ = s, in the Gaussian (attenuation) function µy. The tensor
voting descriptor is computed upon applying anisotropic diffusion
to the eigenvalues of tensors in the voting field V (x), ordered as
λ0 ≥ λ1 ≥ λ2. For diffusion parameter δ = 0.16 [SNK17,WHL∗13],

T3DVT(x) =
2
∑

i=0
exp(− λi(x)

δ
)∗ ei(x)ei(x)T .

T3DVT-GET is the tensor voting descriptor obtained when T3DVT
is further improved using 2D gradient energy tensor (GET) [SNJ17,
SNJK18]. GET is computed as a Hessian to the height field in the
point cloud and is used to identify points of interest (PoI) in P ,
which are critical points in the GET field. T3DVT-GET is a modifica-
tion of T3DVT, where the GET is added to T3DVT for the PoI only.
We direct readers to the paper by Sreevalsan-Nair et al., [SNJK18]
for the multi-step procedure involved in computing T3DVT-GET.

Computation of Saliency Map: The saliency map at each point
is computed using the eigenvalue decomposition of its LGD. The
saliency map for each scale s at each point x, with the eigenvalues of
the LGD are sorted as λ0 ≥ λ1 ≥ λ2 [SNK17], and S = (λ0(x,s)+
λ1(x,s)+λ2(x,s))−1:

Cl(x,s) = S · (λ0(x,s)−λ1(x,s)),
Cs(x,s) = S · (2(λ1(x,s)−λ2(x,s))),

Cp(x,s) = S · (3(λ2(x,s))) = (1−Cl(x,s)−Cs(x,s)),
This computation is applicable to all positive semidefinite second-
order tensors [Kin04].

The saliency maps computed using single or multiple scales of
LGDs serve as the probabilistic geometric classification of a point.
This probabilistic classification can further be used for computing
Shannon entropy, thus giving a measure of the geometric uncertainty
in the data [SNM20]. This measure, referred to as the saliency map-
based Shannon entropy, Egeom, is computed for a point P ∈P as
Egeom =−Cl · ln(Cl)−Cp · ln(Cp)−Cs · ln(Cs).

Multiscale Saliency Map: There are two strategies for aggregating
the saliency maps across multiple scales. In the first one, the saliency
maps are averaged across scales, as they are likelihoods of points
belonging to a geometric class, and the different scales are mutually
exclusive events [SNK17]. Thus, for Ns scales in [smin,smax].

AvgSM= {Cl ,Cs,Cp}(x) = 1
Ns

smax

∑
s=smin

{Cl(x,s),Cs(x,s),Cp(x,s)}.

The second strategy is to identify an optimal scale, which is de-
termined based on the global minimum value of chosen Shannon
entropy. Here, we use Egeom, and thus, we get optimal scale as
sopt = argmin(Egeom). The multiscale saliency map is:

OptSSM= {Cl ,Cs,Cp}(x) = {Cl(x,sopt),Cs(x,sopt),Cp(x,sopt)}.

Neighbor Search Volume: The local neighborhood of a point is de-
termined using the neighbor search volume. The conventionally
used neighbor search volumes are spherical, cylindrical, and k-
neighborhood. The cubical neighborhood is a coarse approximation
of spherical neighborhood [SSN20]. The neighbor search volume is
significant as its size is considered as the scale for computing LGD.

In our work, we use spherical neighborhood for LGDs for
AvgSM saliency map, in the case of Vaihingen data [RSJ∗12]. How-
ever, for OptSSM LGDs, we use finer-grained k-neighborhood,
which is needed for finding the local minimum in Shannon en-
tropy computed from anisotropy. Here, we have saliency map-based
Shannon entropy Egeom for determining optimal scale, unlike the
conventionally used eigen-entropy [DMDV11]. The entropies are
related, nonetheless, except for the normalization factors used for
computing the probabilities used in the entropy computation. In
the case of large-scale datasets, such as in DALES [VAG20], we
use cubical neighborhood for LGDs for reducing the computations
needed in radial search [SSN20]. The reduction in computations is
due to approximating Euclidean distance (L2 norm) computation,
which is required for checking for neighborhood relationship, using
the Chebyshev distance (L∞ or maximum norm).

3. Our Proposed Method

Our goal is to generate a global descriptor for a LiDAR point cloud
that integrates information of both geometric and semantic classi-
fication, using our proposed workflow (Figure 2). Here, we first
determine the representation form or mapping of the information,
and then, the final format of the descriptor. We propose the use
of visualization as an approach for representing the local descrip-
tors of all points to construct the global one. Consequently, the

Figure 2: Our proposed workflow for computing the global descrip-
tor, IMGD, for an airborne LiDAR point cloud, that is to be used for
computing distances between point clouds.
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global descriptor, IMGD, is an image generated using our proposed
workflow. We further introduce the appropriate distribution distance
measures to be applied on the IMGDs of different ALS point clouds
for comparative analysis.

3.1. Image-based Multiscale Global Descriptor (IMGD)

The geometric information of the point cloud P in its raw form is
given by the positional information of the points. The multiscale
map {Cl ,Cs,Cp} serves as the probabilistic geometric classification
of each point in P . The semantic class information of the point
cloud is obtained by performing object classification. Here, we use
labeled point clouds, and thus, do not perform an explicit semantic
classification. The local geometric descriptor, e.g. the covariance
tensor, and its eigenvalue-based features are used widely for ob-
ject classification. We direct the readers to an exposition of the
experiments used to identify appropriate feature vectors and classi-
fiers [WJHM15] for a review of the state-of-the-art in supervised
learning methods for semantic classification of ALS point clouds.

We observe that the probability density distributions of the
saliency map, {Cl ,Cs,Cp}, exhibit class-wise trends (Figure 3). As
an example, this is demonstrated in building, tree, low-vegetation,
and impervious surfaces/roads, for different regions of the Vaihingen
site, namely, Area-2 and Area-3 [RSJ∗12]. We see distinct trends in
the tree and building classes, and the similarities in trends between
low vegetation and road classes. This observation illustrates that the
different facets of information of the point cloud, i.e.,geometric and
semantic, are interdependent and hence, must be evaluated together.
It strengthens the need for integrating the two types of information
in the global descriptor of the point cloud.

Thus, we choose the probabilistic geometric and semantic object
classifications as the information to be integrated into our proposed
IMGD. We choose the multiscale saliency map over the raw po-
sitional data for geometric information, as the processed data en-
capsulates additional information of spatial locality. To integrate
both saliency map and class labels, we perform two steps: (i) project
the points in Cartesian coordinate space R3 to barycentric coordi-
nate space B2 using the multiscale saliency map as its barycentric
coordinates, and (ii) color the points based on its class labels.

Figure 3: Semantic class-wise probability density functions (PDFs)
of saliency maps (Cl , Cs, Cp) computed using AvgSM T3DCM for
(i) Area-2 and (ii) Area-3 of Vaihingen site [RSJ∗12]. We observe
distinct trends in tree and building classes, and similar trends in
low-vegetation and road.

Barycentric Coordinate System (BCS): The two-dimensional
(2D) BCS, B2, has two independent coordinates, and one dependent
coordinate for each point. The characteristic of BCS is that, for any
point P ∈ B2, with barycentric coordinates [α(P),β (P),γ(P)], the
constraint of partition to unity, α(P)+β (P)+ γ(P) = 1.0, applies.
This constraint is satisfied by the saliency maps, in which case the
{Cl ,Cs,Cp} at P can be considered as its barycentric coordinates.

To incorporate this constraint on the coordinates, the coordinate
axes of the BCS are defined by a baseline triangle (Figure 1). The
vertices of the triangle have barycentric coordinate values, [α,β ,γ],
as [1.,0.,0.], [0.,1.,0.], and [0.,0.,1.]. The edges of the triangle
opposite to these vertices are the axes, defined by functions α = 0.,
β = 0., and γ = 0., respectively. Any property q(P) at a point P will
be a convex combination of the property at the vertices of the triangle,
e.g. the 3D position vector p, the color, etc. at A. This implies that,
given the vertices of the baseline triangle, Vi, for i = 0,1,2, we get
q(P) = α(P) ∗ q(V0)+ β (P) ∗ q(V1)+ γ(P) ∗ q(V2). Thus, the 2D
position vector of each point in the ALS point cloud when projected
onto the BCS, we use the weighted sum of the 2D position vectors of
the vertices of the baseline triangle. The weights are the barycentric
coordinates of the point, which is none other than the saliency map.

In all, the visualization of the point cloud in the BCS (Figure 2)
with the position given by the saliency map, and the colors based on
the semantic class labels integrate both the geometric and semantic
class information of the points, respectively. The pixelated or raster
image of this visualization is, thus, our proposed IMGD, SGm, of
the point cloud, P .

Characteristics of the Global Descriptor: The probabilistic ge-
ometric classification is a many-to-one mapping, which implies
that several points in the point cloud have the same saliency map.
Consequently, several points can have the same barycentric co-
ordinate representation. At the same time, all points in the point
cloud with neighbors are guaranteed to have a saliency map, and
hence a barycentric coordinate representation. The guarantee is due
to the positive semi-definiteness property of the tensor, i.e., the
LGD [SNK17], which ensures non-negative eigenvalues and conse-
quently, a saliency map at all non-outlier points. Thus, the mapping
for generating SGm is a non-injective surjective function. The non-
injective function implies that several points in the point cloud
overlap in SGm, which affects its graphical rendering.

Thus, the global descriptor is lossy, as its encoding of spatial
locality does not preserve the information explicitly due to the non-
linear transformation from R3 to B2. Hence, it can be used only for
applications where analysis of the composition of a region is done
using the geometric properties of the semantic classes in the region,
and where spatial context is not required.

Graphical Rendering for Constructing IMGD: The construction
of the global descriptor SGm involves graphically rendering it, usu-
ally using point objects. The visualization is improved by using
appropriate point size and position vectors of the vertices of the
baseline triangle. However, this rendering causes overlap of points
based on the order of the points used in the rendering due to the non-
injective mapping. Hence, point-based rendering has a limitation
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of hiding or obscuring previously rendered points. Improving the
rendering of SGm is in the scope of future work.

The sampling density of the point cloud influences the overlap of
points in SGm. Thus, sparser point clouds tend to give sparser SGm.
However, before using downsampling as a solution, we first need to
determine the resilience of our SGm to sampling density, i.e., find
approximately the sampling density at which the change in the point
cloud size manifests as perceptual differences in the descriptor. We
evaluate the influence of sampling density in our experiments.

We find that the point-based rendering of the descriptor is useful
for visualizing the scatter of the point cloud in the BCS, either as a
characteristic of a semantic class or for the entire cloud. For visual-
izing the scatter, since the color is not required, SGm is generated
as a binarized representation, with all points rendered in black.

3.2. Distribution Distance Measures for Cloud Comparison

While visualization itself provides a qualitative comparison of the
global descriptor of point clouds, we propose the use of distribution
distance measures to quantify the distances. Given the image for-
mat of the descriptors, we use existing distance measures between
images. We hypothesize that the difference between SGm of two
point clouds gives the combined difference of geometric uncertainty
and semantic composition between the clouds. Here, we propose
using the widely used histogram-based measures, namely, bin-to-bin
and cross-bin. The bin-to-bin computes the difference in the content
of corresponding bins, while the latter additionally considers the
neighborhood values of the concerned bins. Conventionally used
Bhattacharyya distance [Bha46] is a bin-to-bin method that gives
values in the range [0,1], where 0 and 1 mean a perfect match and
maximum difference between the images, respectively. We use the
symmetrized Bhattacharyya distance:

dBD-Img(SGm,S
′
Gm) =

√
1−

m
∑

i=1
p(i).p′(i),

for m histogram bins in probability distributions p, p′ corresponding
to SGm,S

′
Gm, respectively.

We also use the Earth Mover’s Distance (EMD) dEMD-Img be-
tween the images, which is a cross-bin distance measure used for
color images [RTG98]. EMD determines the minimum cost of trans-
forming a histogram into another, and is proportional to the trans-
formation cost. EMD is computed by solving the transportation
problem using linear programming, in such a way that the overall
distance is minimized. We use a faster implementation with succes-
sive short paths [PW09]:

dEMD-Img(SGm,S
′
Gm) =

∑
m
i=1 ∑

n
j=1 di j fi j

∑
m
i=1 ∑

n
j=1 fi j

, with constraints:

(I) fi j ≥ 0, for 1≤ i≤ m and 1≤ j ≤ n; (II)
m
∑

i=1
fi j ≤ Pi;

(III)
n
∑

j=1
fi j ≤ Q j; (IV)

m
∑

i=1

n
∑

j=1
fi j = min(

m
∑

i=1
Pi,

n
∑

j=1
Q j).

where fi j is the flow between Pi and Q j, for input histograms
P and Q corresponding to SGm and S ′

Gm, respectively, and di j

is the ground distance between ith and jth bins. We use the L1
distance between indices as the inter-bin ground distance, i.e.,,
di j = ‖i− j‖ [PW09].

Increasing the image resolution of the IMGD improves the accu-

racy of the point cloud comparison. Owing to the use of histogram-
based measures here, the images need not be of the same resolution,
as ratios are used in the probability distribution. Nonetheless, using
IMGDs with the same resolution improves the accuracy.

Preparing IMGDs for Point Cloud Comparison: To ensure effec-
tive comparison of point clouds using our proposed IMGD, we do
the following:

Fixing Baseline Triangle: For comparing the descriptors, only the
interior of the baseline triangles need to be compared. The computed
distances are accurate only if the regions to be compared are fixed in
position across images. We achieve this by generating all descriptors
using fixed position coordinates of the triangle vertices. Fixing the
image regions can be alternatively done after generating SGm by
using image processing operations, but this is prone to introducing
additional computational errors.

Masking/Spatial Filtering: After fixing the baseline triangle, it is
sufficient to find differences of the triangle interiors. We achieve this
by using the standard image processing technique of masking/spatial
filtering. We extract the contour of the baseline triangle from the
raster images, fill the area inside the contour to create a mask and
find the intersection of the mask with the images. Then the distances
between SGm are computed exclusively between the masked re-
gions in the images.

Common Color Palette: In the absence of a standard color scheme
for semantic classes generally encountered in the airborne LiDAR
point clouds, we narrow down specific color palettes for this work.
We use the following two color palettes:

• Dataset-specific palette: We use the palettes as published by
the data providers for the sake of familiarity of published visu-
alizations of the datasets. Thus, when comparing datasets from
different providers, this results in comparing descriptors with
unmatched color palettes.

• ColorBrewer palettes: ColorBrewer [HB03, Bre20] is an online
tool widely used for color palettes for thematic maps. We use a
12-class color palette in our experiments. This set of 12 classes
can be further compacted to a minimal one based on the presence
of the classes in the specific datasets being compared. Within
this palette, we use specific choices of colors which have been
inspired from either class-specific characteristics, e.g. green for
vegetation, or from the available dataset-specific palette from
providers, e.g. red for buildings.

Distance Matrices: In the absence of ground truth of distances be-
tween datasets, we first compare pair-wise distances amongst the
datasets using a distance matrix, and then, compare distance matri-
ces against those obtained from the conventionally used distance
measures, which is used as a reference. We compute the distance
matrix for each color palette, and for different LGDs used for con-
structing SGm. We then visually compare these distance matrices.

3.3. Reference Distance Measures

To understand our integrated SGm, we use reference distance mea-
sures from three separate components, namely, (a) geometric data,
i.e.,, positional information of points and the ensuing surface mesh
from the point clouds, (b) geometric classification, i.e.,, the saliency
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map and Egeom, and (c) semantic classification, which is the proba-
bility distribution of points across semantic classes for each dataset.

Conventional Distance Measures for Geometric Data: Hausdorff
distance (dH ) and Chamfer distance (dC) metrics are convention-
ally used for comparing distances between point clouds, using
the positional information of the points. We use the Hausdorff
distance also as a simplification of Gromov-Hausdorff distance
as the latter is needed for comparing point cloud under defor-
mation in metric space [MS04]. We use the symmetrized Haus-
dorff distance. Hausdorff distance is known to perform the worst
for point clouds with a small number of outlier points, whereas
Chamfer distance performs average, and EMD performs optimal
but with a requirement of equal-sized point clouds [FSG17]. Here,
we use the geometric distances only for relatively comparing the
distances between point clouds, for which approximate values suf-
fice. Hence, we use Hausdorff and Chamfer distance measures.

dH(P1,P2) = max{max
x∈P1

min
y∈P2

‖x− y‖2, max
y∈P2

min
x∈P1

‖x− y‖2}

dC(P1,P2) = ∑
x∈P1

min
y∈P2

‖x− y‖2
2 + ∑

y∈P2

min
x∈P1

‖x− y‖2
2

It must be noted that the distance measures have been computed
after normalizing the point cloud within a canonical view volume,
i.e. [−1,1]× [−1,1]× [−1,1], as used in computer graphics. The
canonical view volume is also used for normalization to get the
centroid of the point cloud closer to the origin (0,0,0).

Conventional Distance Measures for Geometric Classification:
For obtaining the distance between two point clouds using prob-
abilistic geometric classification, we use two methods. Firstly,
we compute the EMD between distributions of saliency maps
{Cl ,Cs,Cp}, using 2D histograms, as there are only two indepen-
dent variables in the saliency map. Secondly, we compute the EMD
between univariate distributions of the Shannon entropy Egeom.

Conventional Distance Measures for Semantic Classification:
The semantic classes are few. Hence, we use conventional distance
metrics, i.e., distribution distances between class probability dis-
tributions, for comparing the semantic classification of two point
clouds. We use the total variation distance (dTV D), and Hellinger
distance (dHD). We use distribution measures, such as symmetrized
Kullback-Leibler divergence (dKL), and Jensen-Shannon divergence
(dJS). dKL is computed only for non-zero probability measures. For
semantic class distributions, P and Q, with the same number of his-
togram bins (or classes) m, given by the common class order, we get:

(I) dTV D(P,Q) = 0.5∗dM(P,Q) for countable sets;

(II) dHD(P,Q) =

√
0.5∗

m
∑

i=1
(
√

Pi−
√

Qi)2;

(III) dKL(P,Q) =
m
∑

i=1
(Pi−Qi) · ln

( Pi
Qi
), for Pi,Qi 6= 0;

(IV) dJS(P,Q) = 0.5∗ (δKL(P,M)+δKL(Q,M)),

for M = 0.5∗ (P+Q) and δKL(A‖B) =
N
∑

i=1
Ai · ln

(Ai
Bi
) .

4. Experiments

We have used the airborne LiDAR dataset for residential areas,
Area-2 and Area-3, in the Vaihingen site, from the ISPRS bench-

mark [RSJ∗12], and two tiles out of 40 in the Dayton Annotated
LiDAR Earth Scan (DALES) dataset of the City of Surrey [VAG20].
The DALES dataset has a higher point density of 50 ppm compared
to the 4-7 ppm of the ISPRS dataset. We have divided the tiles of
the DALES dataset into quarters, and treat each quarter of the tiles
as separate point clouds for comparison purposes. Area-2 covers
170m×190m characterized by high-rising residential buildings, sur-
rounded by trees; and Area-3 covers 150m×220m characterized by
detached houses surrounded by trees. Each tile in DALES dataset
covers 500m×500m, and hence the quarter tiles cover 250m×250m,
each. The specifications of the 10 datasets with their size and class
probability distribution, are given in Table 1. Figures 4 and 5 show
the top-view of the 3D point clouds for the two regions in the Vaihin-
gen site, Germany, and eight regions in the City of Surrey, Canada,
respectively. These figures also show the probabilistic geometric
classification from selected local geometric descriptors and the se-
mantic classification of the selected point clouds.

Here, we have used the following LGDs:
AvgSM T3DCM using spherical neighborhood for Area-2 and Area-

3 [SNK17], and cubical neighborhood for DALES data [SSN20].
AvgSM T3DVT-GET using spherical neighborhood for Area-

3 [SNJ17].
OptSSM T3DCM as well as OptSSM T3DVT-GET, using k-

neighborhood for Area-3 [SNM20].

For computing the LGDs for AvgSM aggregation, we have used
three scales for each of the point clouds. For Area-2 and Area-
3, the spherical neighborhoods of radii r = {0.009,0.010,0.011}
have been used for points in the canonical view volume. This is
in metric scale, with step-size for radius ∆r = 0.21m; we have r =
{1.89m,2.10m,2.31m} for Area-2; and r = {1.92m,2.13m,2.34m}
for Area-3. For the quarter tiles in the DALES dataset, we have
used cubical neighborhoods of size l = {15m,20m,25m}. The value
of l is equivalent to the diameter of the largest sphere contained
in the cube; hence, l is comparable to 2r. We have identified the
scales based on the scale-wise distribution of entropy, Egeom, for
each of the scales, where we have selected scales with relatively low
entropy. The lowest value Egeom = 0. at a point implies that the point
belongs to one of the three geometric classes, and the highest value
(Egeom = ln(3)) implies that the point is equally likely to belong to
all the three classes.

We have used k-neighborhoods for computing OptSSM T3DCM
to use finer-grained neighborhoods compared to the spherical ones.
For both Area-2 and Area-3, we have used k values from 10 to
100, with step-size ∆k=10, i.e., we get 10 scales. This choice of a
range of scales is comparable to the scales used in the spherical
neighborhoods, as the area covered is comparable in both.

5. Results

We have visualized the entropy Egeom in the datasets to understand
the spatial context of geometric uncertainty (Figure 5, Right). The
entropy Egeom is maximum, i.e., ln (3.0), at the centroid of the
baseline triangle, owing to its barycentric representation

( 1
3 ,

1
3 ,

1
3
)
.

Egeom monotonously decreases towards the vertices, where Egeom =
0, i.e., ln (1.0), which is the minimum. We observe relatively high
entropy for the tree or vegetation class. While high entropy points
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Table 1: The count distribution of 3D points in each semantic class, in percentage, in point clouds of two regions in Vaihingen from the ISPRS
benchmark data [RSJ∗12] and the quarters of two tiles from the Dayton Annotated LiDAR Earth Scan (DALES) dataset [VAG20].

Dataset # Points ground/ buildings/ vegetation/ low vege- unknown cars trucks power- fences/ poles facade shrub
imper.surf. roof tree tation lines hedge

Vaihingen-A2 266,675 0.192 0.259 0.403 0.146 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Vaihingen-A3 323,896 0.257 0.215 0.418 0.110 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Dales-95-q1 2,754,623 0.626 0.227 0.130 0.000 0.002 0.007 0.001 0.004 0.001 0.002 0.000 0.000
Dales-95-q2 2,694,980 0.667 0.139 0.175 0.000 0.003 0.002 0.002 0.004 0.004 0.003 0.000 0.000
Dales-95-q3 3,382,989 0.440 0.149 0.393 0.000 0.004 0.009 0.001 0.001 0.003 0.001 0.000 0.000
Dales-95-q4 3,098,121 0.471 0.241 0.240 0.000 0.003 0.037 0.003 0.002 0.002 0.001 0.000 0.000
Dales-60-q1 3,021,032 0.581 0.172 0.223 0.000 0.003 0.012 0.000 0.000 0.008 0.001 0.000 0.000
Dales-60-q2 4,270,369 0.309 0.121 0.553 0.000 0.004 0.008 0.001 0.001 0.005 0.000 0.000 0.000
Dales-60-q3 3,554,997 0.414 0.127 0.433 0.000 0.009 0.005 0.000 0.007 0.004 0.001 0.000 0.000
Dales-60-q4 2,937,802 0.616 0.094 0.262 0.000 0.003 0.006 0.000 0.013 0.006 0.003 0.000 0.000

Figure 4: Top-down views of point rendering of Area-2 and Area-3 of the Vaihingen site. They demonstrate (i) semantic classification, (ii)
the variations in geometric classification for different local geometric descriptors (LGDs) with different multiscale approaches, and (iii)
orthoimage of the Vaihingen site [RSJ∗12]. In (ii), each point is colored with saturation in red, green, and blue channels corresponding to its
saliency map, {Cl ,Cs,Cp}, respectively. The following local geometric descriptors are used for generating signatures here: T3DCM with (a)
AvgSM, and (b) OptSSM; T3DVT-GET with (c) AvgSM, and (d) OptSSM.

Figure 5: (Left) Description of DALES tiles used in our experiments with its (left column) semantic classification, and (right column)
probabilistic geometric classification using AvgSM T3DCM. Each tile has been divided into four equal-area tiles, which are used separately
here. (Right) Visualization of saliency map-based Shannon entropy, Egeom, computed from AvgSM T3DCM as LGD.

belong to the tree class, we also observe that the points in the
tree class occupy the entire range of entropy, as seen in their global
descriptors (Figure 6, Left). We have analyzed the distances between
the selected datasets using distance matrices computed using EMD
and BD (Figure 6, Right). We then compare these distance matrices

with reference matrices for geometric data, geometric classification,
and semantic classification (Figure 7).

Observations from IMGD: In point clouds of the DALES dataset,
we observe that certain sparser classes, such as powerline, are promi-
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Figure 6: IMGDs generated using three different color palettes: (a) dataset-specific, (b) ColorBrewer 12-class one, and (c) binary one. (Left)
IMGDs for Vaihingen (i) Area-2, and (ii) Area-3, and the quarter tiles of (iii-vi) DALES-5110_54495 and (vii-x) DALES-5110_54460 point
clouds, using point rendering,The sparser classes in (iii-x) are {Unknown, Cars, Trucks, Power lines, Fences, Poles}, correspond to colors: (a)
{ , , , , , } (as shown in Figure 5); (b) { , , , , , }. (Right) Distance matrices of IMGDs of 10 datasets, using AvgSM from T3DCM.
(A) shows matrices for (i) EMD, (ii) Bhattacharyya Distance – with point rendering. In (B), important aspects of the EMD matrix in ((A), (b))
are highlighted.

nent in the global descriptors, e.g. for DALES-95-q2, DALES-60-q3,
and DALES-60-q4. This is because SGm is designed to visualize the
class distributions at each barycentric coordinate, which is different
from the class distribution of the entire point cloud. We can now
conclude that the powerline dominates line-type features (Figure 6,
Left), and hence, the powerline points cluster around the vertex
Cl = 1.0.

Through the binary colored IMGDs (Figure 6, Left, (c)), we
observe higher scatter in Vaihingen datasets than in the DALES
ones, due to the lower point density in the former. Area-2 and Area-3
have sparser points near the vertices, Cl = 1 and Cp = 1, indicating
surface-type features. Similarly, there are sparser points along the
edge, Cs = 0, and near the vertex Cp = 1, in DALES datasets.

SGm rendered using ColorBrewer is more reliable than the
dataset-specific one by the dataset providers. The higher reliabil-
ity is, by design, due to the commonality of color maps across the
Vaihingen and DALES datasets. The ColorBrewer palette is also
effective owing to its closeness to the dataset-specific one, without
the arbitrariness in the color maps by different data providers.

Visual comparison of the distance matrices (Figure 6(A)) gives
us insight into the influence of distance measures, and color palettes
on the effectiveness of SGm. We observe that EMD has higher
sensitivity in the differences between SGm of point clouds than
Bhattacharyya distance. We also find that the dEMD-Img integrates
the separate components of the distance measures from geomet-
ric classification, geometric distances, and semantic classification
(Figures 6(B) and 7). The bin-to-bin distance measures, dBD-Img, be-
tween binarized point-based rendering show negligible differences
between different point clouds, owing to which the distance matrix
captures low variation (Figure 6, Right, (ii), (c)). Overall, dEMD-Img
can be perceived to be a better distance measure than dBD-Img.

Overall, we choose the IMGD using the ColorBrewer 12-class
palette as an effective descriptor and dEMD-Img as a reliable distance
measure between the chosen SGm of point clouds. This is due
to its consistent results (Figure 6, Right), and confirmation to the
reference component-wise distance matrices (Figure 7). We observe
the following component-wise findings integrated into our chosen
descriptor and its distance measure (Figure 6(B)):
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Figure 7: Reference distance matrices of the 10 datasets. (i)
Geometric classification distances using (Left-to-right) EMD of
Egeom and EMD of {Cl ,Cs,Cp}. (ii) Geometric distances using
(Left-to-right) Hausdorff distance and Chamfer distance. (iii) Se-
mantic classification distances using (Clockwise from top-left) Total
variation distance, KL-divergence, Jensen-Shannon divergence, and
Hellinger distance. Comparing with our distance matrices (Figure 6,
(A)), we observe that the specific patterns captured in (i)-(iii) are
integrated in Figure 6(B), except for the white boxes in (ii).

• The Vaihingen datasets are different from the DALES region with
respect to all three components, namely, geometric classification,
geometric distances, and semantic classification. This difference
is highlighted as yellow box (Figure 7). Our integrated distance
measure captures the distances in the yellow box most similar
to the combination observed in geometric classification distance
using EMD of saliency map and semantic classification distance
measure using total variation distance.

• There are dissimilarities between Area-2 and Area-3 of Vaihingen
with respect to both geometric measures, i.e., from geometric
classification as well as geometric information, shown as a black
box (Figure 7 (i), (ii)); which are also present in our distance
measure (Figure 6(B)).

Figure 8: Patterns observed in the IMGDs, from LGDs using tensor
voting and optimal scale, are shown in red dotted lines and ellipses,
respectively, in the baseline triangle in barycentric coordinate space.
These images are generated for LiDAR point cloud of Area-3 of
Vaihingen dataset [RSJ∗12] (323,896 points).

• There is more similarity between the regions in DALES-95 than
in DALES-60 or Vaihingen, shown as a magenta box (Figure 7),
in EMD of Egeom (geometric classification), all distance measures
of semantic classification, and our distance measure.

• The region DALES-95-q1-q2 (half-tile) has relatively high dis-
similarity with the region DALES-60-q2-q3, shown as a red box
(Figure 7), as observed by all semantic classification distance mea-
sures and our distance measure. We know that DALES-60-q2-q3
has the highest percentage of points in tree class [45-50%], and
similarly, DALES-95-q1-q2 has the highest percentage in build-
ings [62-66%] (Figure 5), which explains the large differences
between the two half-tiles.

• The regions DALES-95-q4 and DALES-60-q1 are similar to each
other, and very different from DALES-60-q2-q3 region (orange
box in Figure 7). We know that DALES-60-q2-q3 has a large
percentage of points in tree class [45-50%] , and DALES-95-q4
and DALES-60-q1 have a larger percentage in buildings [47-58%]
(Figure 5), which explains the pattern.
• We observe that the semantic classification is prominently cap-

tured in our distance measure, which is owing to the characteristic
of SGm being an image, with colors corresponding to the seman-
tic classes.

• The patterns observed in geometric uncertainty are captured as
well in our IMGD, but not much with geometric distances (white
box in Figure 7(ii)).

Overall, we have demonstrated, by visual comparison of distance
matrices, that: (a) our IMGD effectively integrates both geometric
and semantic classification information, and (b) our distribution
distance measure of our image-based descriptor effectively captures
integrated differences between point clouds.

Discussion:

Using different LGDs for generating the IMGD, we observe two
salient patterns in our global descriptor SGm (Figure 8). The first
pattern is a distinct one in the SGm of the tensor voting-based LGDs,
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Figure 9: IMGD of the Area-3 of Vaihingen site using different set-
tings. (Top) SGm for different local geometric descriptors, namely,
T3DCM with (a) AvgSM, and (b) OptSSM; and T3DVT-GET with (c)
AvgSM, and (d) OptSSM. The red insets show the zoomed-in version
of the apex of the triangle, and magenta insets show the binarized
variant of point-based rendering. (Bottom) Effects of sampling den-
sity on IMGD studied for SGm from AvgSM T3DCM in the point
cloud of Area-3 of the Vaihingen site. Different point densities have
been generated using uniform spatial sampling in the point cloud in
the Cartesian coordinate space.

T3DVT or T3DVT-GET, and the second one is seen in OptSSM LGDs.
The first one is explained by the characteristic of T3DVT being
computed using ball tensors, as an initialization. Hence, T3DVT is
characterized by (Cl ≤Cp +Cs) in T3DVT, since the ball tensor is
computed in the normal space, unlike the T3DCM in the tangent
space [SNK17]. The computation in normal space causes the vote
from each neighbor to be a curvel, i.e., a plate tensor, where the mi-
nor eigenvalue is zero [TTMM04]. Thus, when these votes add up, a
constraint on Cl builds up, which manifests as (Cl ≤Cp+Cs). When
computing the saliency map, the upper bound of this constraint,
Cs
Cl
≤ 3.0, appears as the partitioning line in the barycentric space.

The partitioning line is between (0,1,0) and (0.25,0,0.75) (red dot-
ted line in Figure 8). We perform anisotropic diffusion on tensor
voting to strengthen weak line-type features [WHL∗13] and to make
the tensor voting-based LGD substitutable for T3DCM [SNK17].
Now, anisotropic diffusion transforms the partitioning line in the
signature of T3DVT to the curved boundary between (1,0,0) and
(0,0.93,0.07) (Figure 8), which is our first pattern. This pattern in
SGm demonstrates two known characteristics of anisotropic diffu-
sion on T3DVT [SNK17,SNJK18], i.e., (i) the increase in the number
of line-type features, and (ii) decrease in the number of point-type
features in T3DVT. Thus, the SGm gives a visual validation of the
characteristics of tensor voting and anisotropic diffusion.

For the second pattern in Figure 8, we observe that the SGm using
an optimal scale based on Egeom shows a distinct “hole,” or i.e., an
empty region in the neighborhood of the centroid. The optimal scale
occurs at the global minimum of Egeom. Low-entropy regions are
in the vicinity of the vertices of the baseline triangle, i.e., where
Cl , Cs, or Cp is 1. The entropy is maximum in the neighborhood of
the centroid of the triangle. Thus, the crowding of points closer to
the vertices of the baseline triangle causes the second pattern. We

also observe the pattern for T3DCM (Figure 9). In the case of optimal
scale in tensor voting, we observe an additional hemispherical “dent”
in the partitioning line in T3DVT, which transforms to the “hole”,
upon applying anisotropic diffusion (Figure 8). Thus, the SGm with
T3DVT combines both the patterns.

We observe these patterns in SGm using different LGDs (Figure 9
(Top)). For Area-3, the overlap of the scatter of points of the tree
and building classes has the following ascending order, with respect
to its LGD: OptSSM T3DCM < AvgSM T3DCM < AvgSM T3DVT-GET
< OptSSM T3DVT-GET. The area of class overlap is inversely pro-
portional to the extent of class separability. We thus conclude that
OptSSM T3DCM performs the best for feature extraction for semantic
classification, as demonstrated by Weinmann et al., [WJHM15].
Considering the resilience of IMGD to sampling, we observe that
perceptually the descriptor remains the same until 50% uniform
spatial downsampling (Figure 9 (Bottom)). This also shows that the
IMGD of the point cloud can be generated using its downsampled
version. Note that for this experiment, the LGDs generated from the
entire cloud are used in the downsampled ones.

6. Conclusions

This paper addresses the gap in studying geometric and semantic
information of ALS point clouds in an integrated manner. We have
addressed the gap by constructing a novel image-based multiscale
global descriptor (IMGD) of the cloud that incorporates this infor-
mation and using appropriate distance measures on this descriptor
for finding distances between point clouds. We have showcased
the effectiveness of our global descriptor on the publicly available
datasets from ISPRS [RSJ∗12] and DALES [VAG20]. Our IMGD
uses the transformation of the point cloud from the 3D Cartesian
coordinate system to the 2D barycentric coordinate system (BCS)
using probabilistic geometric classification [SNK17]. We have iden-
tified reference distances to compare our integrated distance mea-
sures, which are Bhattacharyya distance and Earth Movers Distance
(EMD) of the descriptors. Our experiments have enabled us to nar-
row down different parameters in rendering the descriptor, namely
the color palette, to obtain the descriptor most effective for comput-
ing distances. We conclude that a common color palette mapping the
classes is essential for constructing our novel global descriptor. Our
work shows that the point rendering with the ColorBrewer palette
gives us the most effective IMGD and that EMD is a better-suited
distance measure for our proposed descriptor. This work is overall a
step towards formalizing perceptual differences in the visualization
of point clouds as quantifiable distance measures.
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