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Abstract

While there has been considerable applied research in computer graphics on polarisation rendering, no principled investi-
gation of how the inclusion of polarisation information affects the mathematical formalisms that are used to describe light
transport algorithms has been conducted so far. Simple uni-directional rendering techniques do not necessarily require such
considerations: but for modern bi-directional light transport simulation algorithms, an in-depth solution is needed.
In this paper, we first define the transport equation for polarised light based on the Stokes Vector formalism. We then define
a notion of polarised visual importance, and we show that it can be conveniently represented by a 4 × 4 matrix, similar to
the Mueller matrices used to represent polarised surface reflectance. Based on this representation, we then define the adjoint
transport equation for polarised importance. Additionally, we write down the path integral formulation for polarised light,
and point out its salient differences from the usual formulation for light intensities. Based on the above formulations, we
extend some recently proposed advanced light transport simulation algorithms to support polarised light, both in surface and
volumetric transport. In doing that, we point out optimisation strategies that can be used to minimise the overhead incurred by
including polarisation support into such algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Display Algorithms

1. Introduction

Polarisation is a fundamental property of electromagnetic radia-
tion. Humans are not directly capable of perceiving it (at least not
strongly so), but in Computer Graphics, inclusion of the effect can
be necessary for highly accurate renderings of scenes that contain
specular surfaces and inter-reflections, especially in outdoor set-
tings. As the visual effects caused by the phenomenon are often
rather subtle, and as the engineering changes needed to support it
in a given rendering codebase are non-trivial, currently only a few
rendering research systems offer simulation of the effect as a fea-
ture: no commercially available rendering packages are capable of
handling the effect. However, continually rising demands on the ac-
curacy and reliability of rendering solutions makes it feasible that
polarisation support will become a regular feature of rendering soft-
ware in the future.

But some issues still remain to be solved on the path to that point.
While the basics of polarisation support in rendering systems are
reasonably well understood [WW12], rendering technology has ad-
vanced considerably in the last years, and with it the complexity of
the core light transport algorithms [KKG∗14]. As such, our goal
in this paper is to provide a solid foundation for the inclusion of
polarisation support into a modern, bi-directional renderer. In or-
der to avoid ambiguities related to the way the light transport al-

gorithms are affected by this, we develop a theoretical background
that describes exactly what is being computed, to generally under-
stand the role played by the additional information that is present
in such a system, and in particular, how visual importance is to
be handled. Generally, polarisation renderers require differentiation
between data structures that describe light and attenuation: the usu-
ally tacitly assumed symmetry of using RGB (or spectral) values
for all colour-related quantities in a renderer is broken in such sys-
tems. And in a bi-directional polarisation rendering system, visual
importance turns out to be yet a third distinct data type: as it turns
out, neither light nor attenuation data structures are adequately ca-
pable of describing this quantity. This finding is fairly important, as
only this knowledge enables one to implement polarisation-capable
versions of modern light transport algorithms correctly. Addition-
ally, we provide a reference implementation of polarisation support
in bi-directional path tracing, photon mapping and volumetric path
tracing, which involves a number of engineering decisions that may
not be obvious from the outset.

This paper is organised as follows: in section 2, we first give a
brief overview over the area of polarisation rendering. In section 3,
we present an overview of the formalisms used to describe light
polarisation, and we outline some aspects of light transport theory
that we base our later derivations on. In section 4, we conduct a for-
mal derivation of polarised light transport to match the formalisms
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introduced in the previous section. In section 5, we discuss the im-
plementation we performed to test the validity of our derivations,
and we finally offer some conclusions on our findings.

2. Related Work

The state of research in polarisation-aware rendering, which is pre-
sented in considerable detail in [WWG12], can be briefly sum-
marised as follows: there are known basic techniques, mathemat-
ical formalisms and infrastructure components needed to get a pro-
totype path-tracer capable of handling basic scene geometries and
surfaces to work [WK90,WTP01,WW10]. Some progress has also
been made in covering the handling of some basic effects and set-
tings, such as perfectly specular surfaces, and simple sky-dome
models [WUT∗04,WW11]. In addition to this, there has been work
on materials and geometries for which polarisation is a characteris-
tic feature, such as bi-refringent crystals [TTW94,WW07,LSG12],
and rainbows [SML∗12]. And recently, there also has been work
on more complex sub-surface scattering models that involve polar-
isation [CPLB14].

Beyond rendering proper, where its role is still limited, polarisa-
tion plays a much bigger role in the capture community [MTHI03].
Face scanning devices like light stages routinely use analysis of
the polarisation state of reflected light to separate various compo-
nents of reflected light from each other [GFT∗11], and polarisation
is generally useful to help with the acquisition of material extended
material properties, such as glossiness [GCP∗10].

3. Background

3.1. The Stokes Vector Representation of Polarised Light

Stokes vectors. For expressing the polarisation state of light in
computer graphics, the Stokes vector representation is commonly
used [Gol03]. A Stokes vector has 4 components S0, S1, S2 and
S3, where S0 specifies the radiant intensity of light, S1 specifies
the preference of horizontal to vertical linear polarisation, S2 spec-
ifies the preference of 45◦ to 135◦ linear polarisation and S3 spec-
ifier the preference of right to left circular polarisation. Additional
constraints on the values are that S0 ∈ R+, S1,S2,S3 ∈ [−S0,S0]
and S2

0 ≥ S2
1 + S1

2 + S2
3. For example, a non-polarised light of radi-

ant intensity 2 would be a vector (2,0,0,0), while a light with the
same intensity that is completely left circularly polarised would be
(2,0,0,−2).

Mueller matrices. For defining how the intensity or polarisation
state of light changes during its propagation, the counterpart to
Stokes vectors are Mueller matrices, 4× 4 real-valued matrices.
Examples of Mueller matrices are the matrix for ideal linear po-
larisation filter P(θ), where θ specifies the polarisation angle, and
for ideal retarder Q(φ), where φ specifies the induced phase differ-
ence:

P(θ) = 1
2


1 cos2θ sin2θ 0

cos2θ cos2 2θ sin2θ · cos2θ 0
sin2θ sin2θ · cos2θ sin2 2θ 0

0 0 0 0



Q(φ) =
1
2


1 0 0 0
0 1 0 0
0 0 cosφ sinφ

0 0 −sinφ cosφ



The permissible operations with these structures are addition of
two Stokes vectors, and multiplication of Mueller matrix and a
Stokes vector to get another Stokes vector. In addition to these,
there are several others that emerge from these, such as the multi-
plication of two Mueller matrices (thanks to associativity), addition
of two Mueller matrices (thanks to distributivity) and multiplica-
tion by scalar value v of either of the structures (thanks to a scalar
multiple of the identity matrix being a valid Mueller matrix).

Coordinate systems. The polarisation of light is described within
the 2D plane perpendicular to the direction of light propagation and
specifically the S1 and S2 components of the Stokes vectors are de-
pendent on the choice of the coordinate system within that plane.
Whenever any calculation is done with regard to Stokes vectors
and Mueller matrices, it is important to express all of the elements
in the appropriate coordinate systems. Specifically, whenever any
two Stokes vectors are added together, they have to be expressed
in the same coordinate system; Whenever a Muller matrix multi-
plies a Stokes vector, the Stokes vector has to be expressed in the
same coordinate system that the Mueller matrix expects on its in-
put, while the coordinate system in which the multiplication result
is expressed depends on the output coordinate system in which the
matrix is defined.

If it would so happen that one quantity is expressed in a different
coordinate system than the one expected, it is possible to use the
following rotation matrix

R(φ) =


1 0 0 0
0 cos(2φ) sin(2φ) 0
0 −sin(2φ) cos(2φ) 0
0 0 0 1


where φ would be the angle by which it is necessary to rotate around
the propagation direction to reach the expected coordinate system.
The rotation matrix R can only fix the orientation of the coordinate
system for a specific direction of light propagation. It is not phys-
ically meaningful to add Stokes vectors that describe light which
propagates in different directions, or to multiply Stokes vector and
Mueller matrices that define or expect light in different directions.

Measuring polarised light. A useful property of Stokes vectors
is that their components can be directly measured. By doing four
different measurements of intensity of light with a retarder and a
polarisation filter, we can compute all components of a Stokes vec-
tor. When light passes through a retarder and a polarisation filter, its
Stokes vector changes from S to P(θ)Q(φ)S. The intensity of this
light can be obtained by taking dot product with eT

0 = (1,0,0,0),
the measured intensity is eT

0 P(θ)Q(φ)S. We take four different
measurements with different polarisation angles θ and phase shifts
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φ. They can be neatly expressed in matrix form
eT

0 P(0◦)Q(0◦)S
eT

0 P(45◦)Q(0◦)S
eT

0 P(90◦)Q(0◦)S
eT

0 P(45◦)Q(90◦)S

=
1
2


1 1 0 0
1 0 1 0
1 −1 0 0
1 0 0 1




S0
S1
S2
S3

 (1)

By inverting the above relation, we can obtain all components of
a Stokes vector from four physically doable measurements. Note,
however, that we can construct any row vector wT through linear
combination of the four measurement vectors and interpret wT S as
a measurement that we can obtain by a linear combination of the
four measurements: but not all these "measurements" are physically
meaningful. For example, the canonical basis eT

0 ,e
T
1 ,e

T
2 ,e

T
3 can be

thought of as directly measuring components of a Stokes vector,
even though such measurements can not be performed in reality.
Since we do not share all the restrictions of the real world in com-
puter graphics, we actually use this convenient canonical basis for
measurements, instead of the physically meaningful measurements
described before. But we will strictly distinguish between a com-
ponent Si of a Stokes vector S, and a measured value eT

i S. The
reason is that adding two Stokes vectors has meaning only when
they describe light propagating in the same direction, while sum-
ming results from sensors with different orientations is perfectly
fine and the sum is just the total energy received by those sensors.
This distinction will be important when defining visual importance
in the context of polarising light transport. The last thing to men-
tion is that we will always take four simultaneous measurements so
instead of working with row vectors for a single measurement we
will be working with matrices such as in Eq. 1.

4. Theory

Motivation. One of the major difficulties when implementing a
polarised light transport simulation is to make sure that all the co-
ordinate systems used during the computations meaningfully align.
So before generalising the light transport equations, we first dis-
cuss how to properly handle this multitude of coordinate systems
in a formal way. Much of the literature about polarised light deals
with fairly simple geometries where only a few coordinate systems
that can be specified manually are needed [Gol03]. However, this
is not the case in computer graphics where scene geometry, and by
extension, path propagation, can be arbitrarily complex. So fixing
a few select coordinate systems beforehand is not a viable option.
Instead, we keep track of the corresponding coordinate system for
each Stokes vector and Mueller matrix. This is why we need to for-
mulate this "coordinate system bookkeeping" already at the level
of our theory.

4.1. Stokes Space

Coordinate system notation. An orthogonal coordinate system of
the 2D plane perpendicular to the light direction ω is uniquely de-
termined by a unit vector u orthogonal to the direction ω. Such a
coordinate system is formed by vectors u and ω×u; we will denote
it by Fu and the set of all coordinate system of this plane by Fω. If
we want to change the coordinate system of a Stokes vector S ∈R4

from Fu to Fv, we have to multiply S by the matrix R(φ), where φ is

the oriented angle between u and v. For the sake of brevity, we do
not want to refer to the specific directions u,v and the angle φ every
time we change the coordinate system. Therefore if we have two
coordinate systems F,G ∈ Fω, we denote the corresponding rota-
tion matrix R(φ), which transforms a Stokes vector from F to G,
by GF−1. Note that we do not attribute any meaning to the symbol
F−1 on its own; only the symbol GF−1 as whole has one.

Stokes space definition. On its own, a Stokes vector S ∈ R4 is
just a collection of four numbers. To assign a physical meaning to
it, we need to know the light direction ω and the coordinate system
F ∈ Fω in which it is expressed. Therefore, instead of working with
just a Stokes vector S, we work with pairs [S,F ] that consist of a
Stokes vector and its coordinate system.

The physical quantity that we are attempting to describe does not
depend on any particular coordinate system that we use, only the
Stokes vector representation does. A pair [GF−1S,G] for G ∈ Fω

expresses the exact same quantity as [S,F ]. As we would like to
describe the physical quantity itself using the notation of pair [S,F ],
we say that the following alternate representations are equal:

[S,F ] = [GF−1S,G], F,G ∈ Fω.

We denote the space of all pairs [S,F ] which describe polarised
light traveling in the direction ω by Sω and call it the Stokes space.
For a precise definition of the Stokes space see Appendix A.

Discussion. At first glance, it may seem overly complicated to de-
fine something like the Stokes space. But later on, this formalism
will greatly simplify our notation. Also, it bears a close resem-
blance to the actual implementation of a polarisation-capable ren-
derer, where one has to store a coordinate space together with each
Stokes vector. From now on, we refer to pairs [S,F ] as Stokes vec-
tors; this should not cause any confusion as most of the time we
want to address the actual physical quantity, instead of the particu-
lar representation of Stokes vector in a given coordinate system.

Stokes vector addition. We can add two Stokes vectors together
if, and only if, the light direction is the same for both. In addition,
we have to ensure that their coordinate systems are aligned before
summing them. This is all easy to formulate in Stokes space: if we
have two Stokes vectors [S,F ], [T,G] ∈ Sω, their sum is defined as

[S,F ]+ [T,G] = [S+FG−1T,F ].

It might seem that when written this way, the result of the addition
depends on the order of Stokes vectors. But the contrary is true, as
we show in Appendix A.

4.2. Mueller Space

The situation with Mueller matrices is similar to the Stokes vectors.
Without knowing the directions of incoming and outgoing light and
the corresponding coordinate systems, a Mueller matrix is just a ta-
ble of numbers without a physical meaning. Therefore, instead of
working with just a Mueller matrix M ∈R4×4, which describes op-
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tical element for incoming light in direction† ωi and outgoing light
in direction ωo, we work with triples [M,Fi,Fo] where Fi ∈ F−ωi

and Fo ∈ Fωo are coordinate systems of incoming and outgoing
light, respectively. The triple [M,Fi,Fo] represents a physical quan-
tity and should not depend on the choice of the coordinate systems.
Therefore, changing to coordinate systems Gi ∈ F−ωi ,Go ∈ Fωo

does not change it:

[M,Fi,Fo] = [GoFo
−1MFiGi

−1
,Gi,Go].

We denote the space of all triples [M,Fi,Fo] which represents
Mueller matrix for incoming light in direction ωi and outgoing light
in direction ωo by Mωo

−ωi
, and call it the Mueller space. For a pre-

cise definition of Mueller space see Appendix A.

Convention on incoming light direction. ωi. In computer graph-
ics, the common convention for the incoming light direction ωi is
that it is opposite to the actual light propagation direction. This con-
vention was introduced by Veach, because it brings symmetry into
equations of light transport [Vea97, pg. 110]. Unfortunately, this
symmetry is broken for polarising light anyway. Still, we have de-
cided to conform to this convention because when one implements
polarising light transport, one will most probably modify an exist-
ing code where this convention is already used. Therefore, in this
paper the incoming direction ωi is always opposite to the direction
of light propagation, but the subscripts in Fω,Sω,Mωo

−ωi
are always

the direction of light propagation.

Operations with Mueller matrices. A Mueller matrix
[M,Fi,Fo] ∈Mωo

−ωi
describes how a Stokes vector [S,F ] ∈ S−ωi is

modified when it goes through an optical element:

[M,Fi,Fo][S,F ] = [MFiF
−1S,Fo].

Because we can sum Stokes vectors, we can also sum Mueller ma-
trices. If we have two Mueller matrices [M,Fi,Fo], [N,Gi,Go] ∈
Mωo
−ωi

, their sum is

[M,Fi,Fo]+ [N,Gi,Go] = [M+FoGo
−1NGiFi

−1
,Fi,Fo]

The result does not not depend on the order of addition (see Ap-
pendix A).

We can multiply Mueller matrices as well. But we have to be
extremely careful, as the outgoing light direction of one matrix has
to be the incoming light direction of the other matrix. We can mul-
tiply a Mueller matrix [M,Fi,Ft ] ∈ Mωt

−ωi
with a Mueller matrix

[N,Gt ,Fo] ∈Mωo
ωt .

[N,Gt ,Fo][M,Fi,Ft ] = [NGtFt
−1M,Fi,Fo]

Notice that the outgoing coordinate system of M is different from
the incoming coordinate system of N, but the light direction is the
same. Doing the multiplication in reverse order does not make any
sense because the outgoing direction of N does not match the in-
coming direction of M.

† The common convention in computer graphics is that incoming direction
ωi is opposite to the actual direction of light propagation. The following
paragraphs discuss this issue.

4.3. Importance Space

When performing measurements of polarised light, we have to be
careful about the used coordinate system as well. Instead of work-
ing with just a row vector wT , which represents a measurement in a
coordinate system F ∈ Fω, we work with the pair [wT ,F ]. The act
of measurement of a Stokes vector [S,G] ∈ Sω is expressed as a dot
product, but we have to align the coordinate systems accordingly:

[wT ,F ][S,G] = wT FG−1S.

The measurement does not depend on the chosen coordinate sys-
tem, i.e.

[wT ,F ] = [wT FG−1
,G] G ∈ Fω

We denote the space of all pairs [wT ,F ] which represents a mea-
surement of light traveling in direction ω by Iω and call it the Im-
portance space.

Matrix form of the importance space. As we discussed in
Sec. 3.1 above, we almost always do four simultaneous mea-
surements, [wT

0 ,F ], [wT
1 ,F ], [wT

2 ,F ], [wT
3 ,F ]. We can assemble them

into a single matrix W T , and then work with the pair [W T ,F ] in-
stead. The act of measuring a Stokes vector [S,G] ∈ Sω is done
with matrix vector multiplication

[W T ,F ][S,G] =W T FG−1S.

Notice that the result is a vector, but this time with no coordinate
system attached to it. Indeed, it is just a collection of four measure-
ments. This may seem counter-intuitive: when we pick W T equal to
the identity matrix and F = G, then the result of the measurement is
S, the four components of the Stokes vector. But keep in mind that
it is not a real Stokes vector (member of the Stokes space), instead,
it is just a collection of readings from sensors.

We denote the space of all pairs [W T ,F ] which represent four
simultaneous measurements of light traveling in direction ω by Iω.
For precise definitions of Iω and Iω see Appendix A.

Multiplication by Mueller matrix. We can also multiply ele-
ments of Iω by a Mueller matrix. If we have a measurement
[wT ,F ] ∈ Iωo and a optical element [M,Fi,Fo] ∈Mωo

−ωi
we can in-

clude the optical element into the measurement and the new mea-
surement is represented by:

[wT ,F ][M,Fi,Fo] = [wT FFo
−1M,Fi].

4.4. Radiometry of polarised light

We have just set the foundations of polarised light transport in such
a way that we do not have to worry about coordinate systems much.
We now can proceed with definitions of polarised radiance, the bi-
directional scattering distribution function (BSDF), and visual im-
portance.

Radiance. The central quantity in light transport is radiance. In po-
larising light transport the radiance becomes a Stokes vector-valued
function. Because of the common convention on incoming light di-
rection discussed earlier, we have to make a distinction between
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incoming and outgoing radiance, they are

Lo :M×S2→ Sω

(x,ω)→ Lo(x,ω)

Li :M×S2→ S−ω

(x,ω)→ Li(x,ω)

and the emitted radiance Le is of the same type as outgoing radi-
ance.

Importance. In polarising light transport importance becomes ei-
ther a vector or matrix valued function, depending if one is inter-
ested in measuring light polarisation or not. A real-world example
for the vector valued importance would be taking just a single pic-
ture with a particular polarising filter placed in front of it. An ex-
ample for the matrix-valued importance would be taking the same
picture with four different polarising filters, so one can later re-
construct the picture as taken with any other polarising filter. That
allows us to decide on the polarising filter after the rendering has
finished.

Because of the convention we have to again make a difference
between incoming and outgoing importance, the vector valued im-
portance is

wT
o :M×S2→ I−ω

(x,ω)→ wT
o (x,ω)

wT
i :M×S2→ Iω

(x,ω)→ wT
i (x,ω)

and the matrix valued importance is

WT
o :M×S2→ I−ω

(x,ω)→WT
o (x,ω)

WT
i :M×S2→ Iω

(x,ω)→WT
i (x,ω)

The emitted importance wT
e and WT

e is of the same type as outgo-
ing importance. From now on, we will use only the matrix valued
importance even in the theory, and resort to the vector valued one
only when necessary.

Asymmetry. There is an apparent asymmetry of light transport
when one uses different types for importance and radiance. This
asymmetry is not fundamental: one could also write a system that
only uses vector-valued importance, albeit with loss of expressiv-
ity (the end result is just a single measurement, not a full Stokes
Vector for each pixel). Alternatively, it would also be possible to
use matrix-valued radiance. This would allow one to alter the po-
larisation of light sources after the fact: a feature that is rarely, if
ever needed, but adds considerably to the computational cost of the
system. So in practice, asymmetric data types are what is normally
used in real implementations of polarisation renderers: this allows
one to apply a polarising filter to a rendered image, without impos-
ing a too large overhead on the computation.

Choice of importance. As we discussed in section 3.1, we directly
measure elements of the Stokes vector. Therefore the importance
matrix W T is just an identity matrix, but we have still to specify
in which coordinate system we do this measurement. We take the
simplest possible choice, the upward direction u with the respect to
the camera, and orthogonalise it to the incoming light direction ω:

v(ω) =
u− (u ·ω)ω
‖u− (u ·ω)ω‖ .

The coordinate system for incoming light is then Fv(ω) ∈ F−ω and
the emitted importance is

WT
e (x,ω) = [Id,Fv(ω)].

Where Id is the identity matrix. Other choices of importance should
be investigated in the future, to better match real, non-ideal polar-
ising filters.

Measurement equation. The analogue of the measurement equa-
tion [Vea97, pg. 89] in polarising light transport is the polarised
measurement equation:

I =
∫
M×S2

WT
e (x,ω)Li(x,ω)dA(x)dσ

⊥
x (ω) (2)

Thanks to the definitions of Sω and Iω, the polarised measurement
equation does not differ much from the original measurement equa-
tion, but one has to be careful when interpreting it. The same is true
about all other equations in polarised light transport, but as this is
the first equation of this sort we introduce, we point out the salient
aspects in this case. Incoming radiance and importance are both
pairs of a vector (or a matrix) and a frame:

Li(x,ω = [Li(x,ω),G(x,ω)]

WT
e (x,ω) = [W T

e (x,ω),F(x,ω)]

So the polarised measurement equation can be also written as

I =
∫
M×S2

W T
e FG−1Li dA(x)dσ

⊥
x (ω)

where we have dropped the function arguments (x,ω). This form
makes the necessary coordinate system alignment explicit.

BSDF. Before stating the light transport equation for polarised
light we have to generalise the notion of a BSDF. In polarising light
transport a BSDF becomes a Mueller matrix-valued function

fs :M×S2×S2→Mωo
−ωi

(x,ωi,ωo)→ fs(x,ωi,ωo)

Notice the −ωi that is because of the convention that incoming
direction ωi as function argument is opposite to the actual light
propagation direction.

Light transport equation. The light transport equation stays al-
most the same as in the non-polarising case, we only replace ra-
diance and BSDF with their polarised counterparts, and we have
to be careful about the order of multiplication. The polarised light
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transport equation (a.k.a. the polarised rendering equation) is

Lo(x,ωo) = Le(x,ωo)

+
∫
S2

fs(x,ωi,ωo)Li(x,ωi)dσ
⊥
x (ωi) (3)

Since the incoming direction of the Mueller matrix fs(x,ωi,ωo) co-
incides with the direction of the incoming radiance Li(x,ωi), the
multiplication is well defined. Similarly the polarised scattering
operator is defined as

(KLo)(x,ω) =
∫
S2

fs(x,ωi,ωo)Li(x,ωi)dσ
⊥
x (ωi).

Transport equations for importance can be derived as in [Vea97,
pg. 132] from the measurement equation (2) and the light transport
equation (3). The resulting polarised importance transport equa-
tion is

WT
o (x,ωo) = WT

e (x,ωo)

+
∫
S2

WT
i (x,ωi)fs(x,ωo,ωi)dσ

⊥
x (ωi) (4)

and the adjoint operator K∗ is(
K∗Wo

)
(x,ω) =

∫
S2

fs
T (x,ωo,ωi)Wi(x,ωi)dσ

⊥
x (ωi)

Propagation operator. Converting outgoing radiance or impor-
tance to incoming radiance/importance can be done with the prop-
agation operator G [Vea97, pg. 110]. Its analogue in our theory of
polarising light transport is

(GHo)(x,ω) =

{
Ho(xM(x,ω),−ω) if dM(x,ω)<∞
0 otherwise

where Ho is either outgoing radiance Lo or importance Wo,
xM(x,ω) is the first point a light ray hits when it starts at the point
x in the direction ω and dM(x,ω) is the distance between x and
xM(x,ω); if xM(x,ω) does not exists then the distance is infinite
[Vea97, pg. 110]. With the propagation operator, we can convert
outgoing radiance/importance to incoming radiance/importance as
follows:

Li = GLo

Wi = G∗Wo

and the polarised light transport equation 4 as:

Lo = Le +KGLo.

Whose solution is

Lo =
∞
∑
n=0

(KG)n Le

Path integral formulation. The last thing to do is to write down
the rendering equation in path integral formulation. First, we need
to establish some notation. The direction from a point x to a point
y is denoted by x→ y with this we write

Le(x→ y) = Le(x,x→ y)

WT
e (x→ y) = WT

e (y,y→ x)
fs(x→ y→ z) = fs(y,y→ x,y→ z)

Furthermore GV (x↔ y) is the geometry-visibility term [Vea97, pg.
221] between points x and y. The measurement equation 2 in the
path integral formulation has the form:

I =
∞
∑
k=1

∫
Mk+1

WT
e (xk−1→ xk)

k−1

∏
i=1

fs(xi−1→ xi→ xi+1)GV (xi−1↔ xi)

Le(x0→ x1)GV (x0↔ x1)dA(x0) . . . dA(xk)

Where the product of Mueller matrices has to be understood as

k−1

∏
i=1

fs(xi−1→ xi→ xi+1)GV (xi−1↔ xi) =

k−1

∏
i=1

GV (xi−1↔ xi)

fs(xk−2→ xk−1→ xk) . . . fs(x0→ x1→ x2)

Note that the product is well defined, two consecutive Mueller ma-
trices in the product are

fs(xi→ xi+1→ xi+2)fs(xi−1→ xi→ xi+1)

As it should, the outgoing light direction of the second matrix
matches the incoming direction of the first matrix.

5. Implementation

We used SmallUPBP [KGH∗14] as the basis of our ref-
erence implementation, and extended this codebase to be
polarisation-capable by following the general guidelines given in
Wilkie et al. [WWG12]. We built on the path integral formu-
lation defined earlier to include polarisation support into a uni-
directional and bidirectional path tracer [LW93], and to include
volumetric scattering effects. Additionally, we also implemented
a polarisation-capable version of Vertex Connection and Merg-
ing [GKDS12, HPJ12].

5.1. Standard polarisation support

Data types. The backbone of polarisation are structures that hold
the Stokes vector and Mueller matrices. In our implementation,
those are represented by the Light and Attenuation struc-
tures, respectively. To work with them, it is necessary to implement
the eligible operations – linear scaling, Stokes vectors addition,
Mueller matrix multiplication etc., as mentioned in the Background
section. In our implementation, those are done through C++ opera-
tor overloading, which allowed a smooth transition from the origi-
nal codebase to polarisation capable code. Both of these structures
also have to include their associated coordinate reference frames,
which makes the implementation of the eligible operations more
clear (as opposed to possibly storing them separately). Keeping the
frames together with the data structures also makes it easier to in-
sert assertions into the code, e.g. to spot a reversed multiplication
order for two Mueller matrices on a path.
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Returning correct types. The next step is to use the defined struc-
tures as the results of BSDF and emission evaluations. Changes to
light sources are fairly straightforward in case they are assumed to
be producing unpolarised light. Changes to the BSDF are slightly
more complicated, but the appropriate Mueller matrices for vari-
ous surface models for which the matrix are known and available.
However, as there is no polarised version of the Phong model, we
implemented the Torrance-Sparrow model in our test renderer, in
order to have a BRDF model for glossy surfaces.

Polarisation-capable uni-directional path tracer. In this simple
case, the path throughput takes the form of a matrix with which a
Mueller matrix for each surface hit is multiplied. After we reach
the light source, we compute the resulting Stokes vector and rotate
it according to the sensor orientation. All other variables, fields or
arguments have to be changed accordingly for the operations to
be valid. When multiplications are done, it may be necessary to
reorder the terms to reach eligible operations, as the non-polarised
implementation could have assumed commutativity. Because we
used operator overloading in our implementation, this step turned
out to be very straightforward, as all places that had to be altered
were pointed out by the compiler itself.

5.2. Polarisation-Capable Bi-directional Path Tracer

Importance. We use the matrix importance formulation outlined
in the theory section in order to compute the full Stokes vector mea-
surements. Note that the theory uses transposed importance W T in
all occurrences with the exception of the dual operator K∗. As we
are building upon the path integral formulation, it is much simpler
to directly store the transposed importance as that is the term that
is used in computation and there is no use for non-transposed im-
portance anywhere in the implementation.

Separate data type. Although importance in a form of a matrix
might seem as just another instance of a Mueller matrix, the key dif-
ference lies in the fact that as opposed to the two reference frames
that are stored with Mueller matrices, importance defines only one.
This fits with the usage of importance, as is should not be possible
to multiply importance and a Mueller matrix from the other side.
Also, the product of multiplying a Stokes vector of radiance with
importance does not produce an actual Stokes vector, only four sep-
arate measurements. Due to this, it is desirable to define a separate
structure that represents importance. In our implementation, it is
represented by the Importance structure. The last operation not
yet mentioned is the multiplication of Importance and Light
to produce a measurement. As mentioned, that operation should not
just produce another Stokes vector, but rather a measurement value,
which in our case would be a generic vector of 4 colour values that
is then stored in the resulting image.

Reference frames. When defining reference frames for Mueller
matrices, it is important to differentiate which frame is the enter
and which is the exit frame according to the actual direction of
light propagation. That direction may be different from the sup-
plied incident and outgoing directions that would be based on the
direction of path generation, unlike regular path tracer, where the
mapping is always the same. Note that this would not be helped, if

we would have changed the orientation of the frames to both point
outwards from the scattering location, as the order in which the re-
sulting Mueller matrix is multiplied with a Stokes vector, or with
other Mueller matrix along the path, is still fixed and as such the
enter/exit frames have to be set up appropriately.

Polarisation-capable bi-directional path tracing. Similar to the
modification of a standard path tracer outlined above, the changes
that have to be made to the algorithm are straightforward after all
of the data types are properly set up. In this case, the only new
aspect is the definition of importance. A proper importance matrix
has to be defined whenever a path ends (when tracing from a light
source) or starts (when tracing from a sensor). That matrix is an
identity matrix multiplied with whatever the importance value for
a standard computation would be. The associated reference frame
is set up to point towards the sensor (as that would be the direction
of light propagation) with the other directions based on the “up”
direction of the sensor as outlined in section 3.

Backporting importance to the uni-directional path tracer. The
concept of importance is useful enough to include it even in a uni-
directional path tracer, as it properly abstracts the functionality of
throughput as a concatenation of Mueller matrices, and the final ro-
tation of the measured radiance to the reference frame of the cam-
era.

5.3. Polarisation-Capable Photon Mapping

Vertex merging. As VCM is a combination of bi-directional path
tracing and photon mapping, what remains to cover is how pho-
ton mapping can be made polarisation-capable. As photon tracing
corresponds to the light tracing portion of BPT, it is sufficient to
just talk about the photon map itself. The only change that actually
needs to happen is exchanging the type representing radiance that
is stored along the photon to a Stokes vector Light.

Validity of a photon lookup. The process of averaging radiance
over photons amounts to the addition of Stokes vectors and mul-
tiplication by scalar value, which are both possible if all photon
vectors point in the same direction. Considering that each photon,
before being averaged, is multiplied by the BSDF element com-
puted for a specific incident direction ωi, which is the same for
every photon, all of the resulting Stokes vectors end up being de-
fined as radiance in direction −ωi. They might not share the exact
same coordinate system, but the outlined implementation of data
types should properly handle such a case.

Glossy materials. Note that it is not necessary to store entire
Stokes vectors in the photon map, if the only surface BRDF models
in the scenes are ideally specular and ideally diffuse, as photons are
not stored on specular surfaces and diffuse surfaces are depolaris-
ers. In such case, any photons that would be stored would then lose
all polarisation information. In our implementation, we added the
Torrance-Sparrow model so that the functionality of photon map-
ping could be properly examined.
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5.4. A Polarisation-Capable Volumetric Path Tracer

Polarising media. Similarly to how regular path tracer was made
polarisation-capable, attenuation coming from participating media
has to be modified to yield a Mueller matrix instead of a single
attenuation value, which is a scalar multiple of an identity matrix.
Note that for such matrices the choice of reference frames does not
matter, as long as both of them are chosen to be in the direction
of light propagation. The scattering events can be altered in the
same way the BSDF was altered. Rayleigh scattering is known to be
produce polarised light, while Mie scattering can be for rendering
purposes considered to be a de-polariser.

Polarisation-capable volumetric path tracers. Afterwards, the
changes that need to be made to the volumetric algorithms are anal-
ogous to those done in the non-volumetric case. Note that some of
the evaluation of attenuation by media might require information
about the direction of light propagation, even though it was not
previously necessary. This problem goes further than just storing
the appropriate reference frames in the correct field (enter or exit)
as it was with the BSDF. If the attenuation over a given path can
be composed from multiple attenuation elements that are concate-
nated separately from the actual volumetric algorithm, then such
concatenation must know the direction of light in order to multiply
the Mueller matrices in correct order.

5.5. Optimisations

Storage of path vertices. Bidirectional path-tracing can be imple-
mented by either storing light vertices and connecting them to cam-
era vertices or vice versa. For camera paths, we need to store the
computed importance, which in our case is a 4× 4 matrix, while
the radiance that would be stored for light paths, is only a 4 compo-
nent vector. As such, it may be more beneficial to use the variant of
storing light vertices in order to cut down on memory consumption
and possible performance decrease caused by manipulating with
larger data structures. The BPT implementations in SmallUPBP al-
ready stored light vertices, as the same code was reused for Vertex
Connection and Merging, so in our case this optimisation was done
implicitly just by making the code polarising.

Differentiating edge cases. There are various Mueller matrices
that we can encounter during rendering. However, some of them
pop up more often than others – and those are depolarisers (from
diffuse surfaces) and plain attenuations over a ray (for volumetric
pathtracing). It is not necessary to store them in their full matrix
form, as they are fully described by one colour value. In order to
use homogenous data type for all, we might still reserve space for
the full matrix, but we do not need to initialize or further touch
the remaining space, as long as we store a flag identifying the type
of the matrix. Similarly, non-polarised light can also be seen as a
special case that can be store and worked with more efficiently. As
we are already in the process of distinguishing different types of
Stokes vectors and Mueller matrices, it may also be useful to add a
zero attenuation and zero vector to the list so that we have a neutral
element for addition of Stokes vectors and Mueller matrices. Oth-
erwise, we might have to deal with setting up the reference frames
of a zeroed Mueller matrix to be collinear with the expected result.

With these special matrix representations, large numbers of full
matrix-matrix multiplications can be replaced with scalar-matrix
multiplications or even scalar-scalar multiplications. This leads to
a reduction of the polarisation performance penalty, as exactly these
matrix operations are the main difference from the non-polarising
case. Additionally, some special forms of Mueller matrices and
Stokes vectors are invariant to the choice of reference frames, so
it is not necessary to perform rotations on them, in order to match
the frames during multiplications or additions.

In our implementation, an Attenuation structure can be
flagged as being either:

• zero – stored as only a flag
• plain – stores only 1 colour value
• depolarising – stores only 1 colour value
• depolarising enter – result of multiplying standard Mueller ma-

trix and depolarising Attenuation, stores only 4 colour val-
ues, only exit reference frame is valid

• depolarising exit – result of multiplying a depolarising Atten-
uation and standard Mueller matrix, stores only 4 colour val-
ues, only enter reference frame is valid

• standard – regular full Mueller matrix with both of its reference
frames

The Light structure can be flagged as being either zero, non-
polarised, or standard.

5.6. Results

For generating the result images and measuring the time taken, we
ran our tests on a machine with Intel i5-2500 CPU with four cores
at 3.3 GHz and 8 GB RAM. As with normal SmallUPBP, Embree
was used for ray-scene intersections.

Measured variants. For our efficiency comparisons, we evaluated
several different variants of SmallUPBP with different configura-
tions:

• orig – the original implementation
• nonpol – non-polarising variant of the altered code
• naive – initial simple implementation of polarised light trans-

port
• opti – an optimised implementation of polarisation as de-

scribed above

The orig variant is included in order to anchor our experiments
with respect to a known and publicly available codebase. The non-
pol variant should be the one that is considered to be the reference
for measuring the impact of polarised light transport, as it shares
the rest of the infrastructure that was altered from orig by im-
plementing certain features deemed necessary for testing polarised
light transport (beside the polarisation support itself). Note, that as
orig doesn’t support the Torrance-Sparrow BRDF model, it uses
the Phong model for rendering glossy surfaces instead.

Measured algorithms. We tested the following light transport al-
gorithms in surface-only transport:

• PT – Path Tracing with next-event estimation
• VCM – Vertex Connection and Merging
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Figure 1: The top row shows the intensity of computed light, bottom row shows the scene in greyscale with degree of polarisation overlaid
in red. Scenes from left to right: diffuse, glossy, glass and glass with participating media enabled.

For participating media, we ran tests with these volumetric light
transport algorithms:

• VPT – Volumetric Path Tracing with next-event estimation
• VBPT – Volumetric Bidirectional Path Tracing

Test scenes. We used the following scenes in our tests:

• diffuse – Cornell box with diffuse walls and five diffuse
spheres of various colours. There is not polarisation in the scene.

• glossy – Cornell box with glossy walls and five glossy spheres
of various colours. Every surface is polarising in some way.

• glass – Cornell box with a mirror floor, glossy left, right walls
and ceiling and a diffuse back wall with a mirror sphere and a
glass sphere. For participating media, the glass sphere contains
a very dense atmosphere showing off polarised Rayleigh scatter-
ing.

• bathroom – Complex bathroom scene showcased previously
with SmallUPBP, now altered to include a complex IOR for mir-
ror surfaces and to show better results with regular path tracer.

Performance. Table 1 shows the measured results for various
combinations of scenes and algorithms with each measured vari-
ant. The values given are only comparable in each row separately,
as different setups may produce different results due to the com-
plexity of the scene and efficiency of algoritms themselves. Not all
combinations are present, as the impact of each variant on different
algorithms can be gathered from the presented subset.

Impact of modifications. Even though a number of changes were
made, specifically the introduction of a complex index of refrac-
tion, more complex Fresnel term calculations, a Torrance-Sparrow

Figure 2: Our bi-directional polarised light transport algorithms
converge to the same results as polarised unidirectional path trac-
ing. Each quadrant of the images shows one of the Stokes compo-
nent, from top to bottom, left to right: S3, S1, S2, S0. Left image
rendered with PT (top) or VPT (bottom), right image rendered with
VCM (top) or VBPT (bottom) and the middle image shows the dif-
ference between the two. Top row shows scene glossy and bottom
row shows scene glass.

BRDF model for glossy surfaces instead of a Phong model and a
framebuffer capable of storing both non-polarised and polarised re-
sults, the altered code seems to be outperforming the original with
the only exception being the volumetric bathroom. As the origi-
nal SmallUPBP was never properly optimised, it can be explained
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scene+algorithm orig nonpol naive opti
diffuse +PT 14520 14001 9129 12425
glossy +PT 12076 18263 13728 15074
glossy +VCM 3354 5839 4533 4859
glass +PT 11883 15665 10642 13638
glass +VCM 4105 5540 3388 4732
glass +VPT 7372 8401 2445 6477
glass +VBPT 2855 4020 1097 2589
bathroom+VCM 628 626 420 524
bathroom+VBPT 561 376 165 267

Table 1: The number of iterations that were run for the specified
combination of an algorithm and a scene for the different algorithm
variants when rendering images at 256×256 pixels for 30 minutes.

through inadvertent optimisation of some portions of the code when
it was being modified to be capable of running in polarisation mode.

Slowdown of naive approach. In the naive implementation, we
only replaced the types used within the algorithms with Stokes vec-
tors and Mueller matrices and occasionally repaired the ordering
of terms in computations. The memory consumption increase as
a result of that is unavoidable. As that approach leads to a high
number of matrix multiplications, which includes frame rotations
in the form of additional matrix multiplications, it is expected that
we would observe some sort of a slowdown. In the case of PT and
VCM, that results in a slowdown to approx. 65-75 % of nonpol.
However, in the case of volumetric algorithms VPT and VBPT, the
slowdown reaches approx. 30 %, of nonpol, as there is a greater
amount of matrix multiplications conducted when attenuation of a
medium is computed, even when the medium is clear and results in
an identity matrix.

Efficiency of optimizations. The optimisations do result in a per-
formance increase, decreasing the slowdown of PT and VCM to
approx. 85 % of nonpol. The volumetric algorithms VPT and
VBPT achieve even higher reduction to approx. 60 % of non-
pol, which is still higher slowdown than for non-volumetric al-
gorithms, but it can be expected as the number of attenuation con-
catenations is greater. The efficiency of distinguishing individual
attenuation types varies depending on the amount of depolarisers in
the scene – diffuse has no polarising surfaces, while glossy
has no depolarising surfaces. But we do observe speedup even for
scene glossy, as one of the distinguished matrices was the zero
matrix, thanks to which initialising and passing it around is done
much more efficiently. Note that importance, even thought it start
off as only a scalar multiple of an identity matrix, still has to keep
its reference frame and as such is treated as a full matrix. As such,
operations with full matrices cannot be completely eliminated.

6. Conclusion

We have presented a theoretical treatment of how modern rendering
techniques can be made to properly work with polarised light. We
also presented results from our reference implementation of these
findings, discussed optimisation strategies that can be applied to
polarisation rendering systems, and analysed the performance of
our test implementation.
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Figure 3: Bathroom scene. Left: intensity of the computed light, right: degree of polarisation overlaid over a grayscale image
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Appendix A: Stokes, Mueller and Importance spaces.

Here we formally define the spaces Sω,Mωo
ωi and Iω.

First we define the space Sω of all pairs a Stokes vector and its
coordinate system

Sω =def R4×Fω

On this space we define non-commutative addition and scalar mul-
tiplication

(S,F)+(T,G) =def (S+FG−1T,F)

λ(S,F) =def (λS,F) λ ∈ R

In addition we define an equivalence relation ∼, two pairs
(S,F),(T,G) ∈ Sω are equivalent if

(S,F)∼ (T,G)
def⇐⇒ (S,F) = (FG−1T,F)

The Stokes space Sω is just a quotient space of Sω

Sω =def Sω

/
∼

Operations on Sω induce addition and scalar multiplication on Sω

and the addition becomes commutative, for [S,F ], [T,G] ∈ Sω

[S,F ]+ [T,G] = [S+FG−1T,F ] =

[T +GF−1S,G] = [T,G]+ [S,F ]

With these operations the space Sω forms a vector space and if
we choose arbitrary coordinate system F ∈ Fω then the elements
[e0,F ], [e1,F ], [e2,F ], [e3,F ] form a basis therefore Sω is isomor-
phic to R4. We also define scalar product on the Stokes space

〈[S,F ], [T,G]〉Sω
=def ST FG−1T

Mueller space Mωo
−ωi

is nothing else then the space of all lin-
ear transformations from the space S−ωi to the space Sωo . Alter-
natively, the Mueller space can be also constructed as a quotient
space.

Mωo
−ωi

=def

(
R4×4×F−ωi ×Fωo

)/
∼
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where the equivalence relation is defined as

(M,Fi,Fo)∼ (N,Gi,Go)
def⇐⇒

(M,Fi,Fo) = (FoGo
−1NGiFi

−1
,Fi,Fo)

It can be shown that these two definitions coincides. The first one
is useful to realize what the Mueller space does and the second
definition is useful for representing its elements. A Mueller matrix
[M,Fi,Fo] ∈Mωo

−ωi
acts on a Stokes vector [S,F ] ∈ S−ωi as

[M,Fi,Fo][S,F ] =def [MFiF
−1S,Fo].

The sum of Mueller matrices [M,Fi,Fo], [N,Gi,Go] ∈Mωo
−ωi

does
not depend on the order

[M,Fi,Fo]+ [N,Gi,Go] = [M+FoGo
−1NGiFi

−1
,Fi,Fo] =

[N +GoFo
−1MFiGi

−1
,Gi,Go] = [N,Gi,Go]+ [M,Fi,Fo]

The Importance space Iω is just a dual space of the Stokes space
Sω.

Iω =def S∗ω
It can be also defined as a quotient space

Iω =def

(
R1×4×Fω

)/
∼

where the equivalence is defined as

(wT ,F)∼ (zT ,G)
def⇐⇒ (wT ,F) = (zT GF−1

,F)

The action of an element [wT ,F ] ∈ Iω on a Stokes vector [S,G] ∈
Sω is

[wT ,F ][S,G] =def wT FG−1S

Thanks to the inner product on Stokes space we can identify Iω

with Sω and the action of [wT ,F ] on [S,G] can be done with the
inner product

〈[w,F ], [S,G]〉= 〈[w,F ], [S,G]〉Sω
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