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Abstract

A polynomial method is described for computing the shortest circuit with a prescribed homotopy on a surface. The surface
is not described by a mesh but by a constellation: a set of sampling points. Points close enough (their distance is less than a
prescribed threshold) are linked with an edge: the induced graph is not a triangulation but still permits to compute homologic
and homotopic properties. Advantages of constellations over meshes are their simplicity and robustness.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Computational Geometry and Object

Modeling

1. Introduction

This self contained article describes a method to compute the short-
est circuit with prescribed homotopy, lying on a given surface. This
problem was met with some industrial contract, to simulate and op-
timize the shape of electric wiring. A mould surface is given, with
obstacles (convex polyhedra, for short). Ignoring obstacles, the sur-
face has initially the topology of a disk, or a cylinder, or a sphere,
and any geometry (shape) compatible with this topology. The ge-
ometry is described by a given triangular mesh. A slack circuit on
the surface is also given; it typically turns around some obstacles to
avoid them. The shortest circuit with the same homotopy (turning
around the same obstacles and in the same order) is computed with
the method presented here (Fig. 1 and 3). Then electric wires are
taut along this shortest circuit: their shape is computed and approxi-
mated by convex polyhedra; they create new obstacles, which mod-
ify the topology of the mould surface. About sixty shortest circuits
are computed; our program needs 5 to 10 minutes on a standard PC.

We first represented the free region on the mould surface with a
triangular mesh but we faced terrible robustness issues [BMP94],
for instance when updating the free region with new obstacles. Ac-
tually, the initial mesh was not always consistent. We then realized
that the mesh is useless, and that a constellation is sufficient, sim-
pler and robust: all robustness problems disappear.

To get a constellation from the triangular mesh of the mould
surface, each triangle is sampled with points. Some uniform ran-
dom distribution is assumed (from 0.1 to 1.0 point per square mil-
limeter). Each time two sampling points are distant by less than
a prescribed threshold R, and the segment they define does not
cut any obstacle, they are linked by an edge, the cost of which is
the distance between the two points. This induces a non oriented
graph, where edges carry positive weights. This graph still permits
to compute shortest tours, and updating the BRep of the free area
on the mould surface becomes useless: instead, it is sufficient to
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Figure 1: Circuits A and B are equivalent. A and C are not.

©0.L.

Figure 2: In a disk, the shortest tour equivalent to the slack one has
length 0. In the annulus, it is the inner cercle. Right: how the wire
ac can continuously glide in the triangle abc to eventually coincide
with ab, bc.

test whether each edge between two close sampling points cuts a
new obstacle or not. The graph is quite large, and some bucketing
technique is used for optimization, as usual.

With sensors, cloud of points emerge as a basic and ubiquitous
data structure in CADCAM; rendering in Computer Graphics and
NC machining also use it; thus it is interesting to see how far we
can go with such a simple data structure.

E. Colin de Verdiere and F. Lazarus investigate the same ques-
tions [dVLO3], but consider triangular meshes. Numerous papers
deal with shortest paths on surfaces or meshes [Mit97], but com-
putations of shortest tours with given homotopy is less investi-
gated up to now. As far as we know, this is the first article which
deals with this problem with constellations. Homology and homo-
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Figure 3: Left: a slack tour around 4 black square obstacles. Mid-
dle: the shortest homotopic tour. Right: the shortest homologic tour
is composed of 4 squares around the 4 obstacles.

topy are standard concepts in algebraic or combinatorial topology
[FK98, Veg97] but the latter always considers cellular complexes.

Section 2 gives basic definitions. Section 3 and 4 explain how
to compute a base of the constellation to test homology and homo-
topy between circuits. Section 5 defines the disk and cuts decompo-
sition, the unfolded graph, round trips and shortcuts, and presents
our method. Section 6 illustrates by an example the difference be-
tween homology and homotopy. Section 7 concludes.

2. Definitions

Fig. 1 shows equivalent and non equivalent tours. In a disk, all
shortest tours have null length because no obstacle inside the tour
prevents to contract it into a single point (Fig. 2 left). In an annulus,
some tours are not contractible into a single point, because of the
hole (an obstacle), see Fig. 2 middle; thus the smallest equivalent
tour is the inner circle. Fig. 3 shows there are two definitions for
the shortest tour: the homotopic one and the homologic one. In our
application, we need the homotopic one. They are now defined.

Three vertices a, b, ¢ of a constellation are a triangle iff the three
edges exist in the graph. It is assumed (simplicity axiom) that every
triangle abc in the graph also exists in the surface in the following
sense: a wire (a,c¢) from a to ¢ lying on the underlying surface can
be smoothly deformed into (a,b) followed by (b,c), without leav-
ing the surface (see fig. 2, right). This property can be noted in two
ways, first an homologic notation, second an homotopic notation.

In homology, each triangle a, b, ¢ defines a linear relation: x4 =
Xab + Xp,c, Where each arc i, j in the graph has a corresponding
symbol x; j; moreover, for each edge i, j, the relation x; ; = —x;;
holds. Triangles and edges give a system of linear equations on
arc symbols. The empty set is noted 0; for instance x; j +x;; = 0.
With Gauss elimination, or some other method such as LU decom-
position, it is possible to compute a base of arc symbols; all arc
symbols can then be expressed as a linear combination of the basic
arc symbols; coefficients in linear combinations are rational num-
bers; actually they are integers 0, £1, apart in exotic cases (similar
to non eulerian polyhedra or non manifold objects) which are not
discussed here.

Homotopy preserves order, contrarily to homology. Each trian-
gle a, b, c defines a word relation: x4, = x4 ) .. Homotopy uses
the (non commutative) product, or concatenation, as notation, in-
stead of the (commutative) additive notation used by homology.
Each edge u, v gives two inverse (instead of opposite) symbols x.,
and x,,,. We use the notations: xy,y = x,,;, = Xy and xy,yXyy = €.
€ is the neutral element for concatenation. Two sequences o and 3
are inverse when o = €; for instance each triangle a, b, ¢ gives a

Figure 4: Bold edges, middle and right, give possible bases. abcda
and efghe are homologic circuits, non zero (they cannot be con-
tracted into a single point). They are also homotopic.

circuit homotopic to &: x4 ,Xp cXc,a = €. The only sequences used
in this paper are paths or circuits: for two contiguous symbols, the
right index (a vertex in the graph) of the first symbol and the left
one of the second symbol (another vertex) are equal.

Other examples: two triangles a,b,c and a,b,c’ contiguous
along a, b give a circuit Xa,bXb,cXe,b' Xb' a = (xa_’bxb,c)(xcvb/xbzya) =
(Xa,e) (Xepr%pr ) = (Xac)(Xc,a) = € homotopic to €, by using the
two triangular relations, and an edge relation. On the other hand,
not all circuit are homotopic to €; for instance the square a,b,c,d
(the graph contains edges (a,b), (b,c), (¢,d), (d,a), but not the
edge (a,c) nor (b,d)) is not homotopic to €, because no triangular
relation permits to reduce the sequence x, ,Xp cXc gXd 4. The sim-
plicity axiom implies that all circuits non hornotoypic to € contain
strictly more than three edges of the graph.

Figure 4 shows a simple constellation (it is even a triangulation),
equivalent to an annulus. Circuits abcda and e f ghe are homologic,
because they express the same in some base, for instance the base in
the middle part of figure 4. Both circuits abcda and e fghe express
as: (—be+bf)+ (—cf +cg)+ (—dg+dh)+ (—ah+ae).

Homology is weaker than homotopy. For instance sequences
OLBGB is not homotopic to € whereas it is homologic to O :
o+ B —a— P =0. Two homotopic sequences are always homo-
logic; the converse is wrong. All bases for homology give a base for
homotopy. A base can be computed with Gauss elimination method
in the (homology) linear system, in O(m3 ) time, where m is the
number of arcs. Another method is proposed in section 3.

3. Computation of a base

To test homotopy between two given circuits, the naive method,
which explores all possible transitions, has an exponential cost.
A polynomial solution is to first compute a base. All edges can
then be expressed with basic edges only (for homology and ho-
motopy). Two circuits are homologic iff their decompositions (two
linear combinations in a vectorial space) are equal. Two circuits are
homotopic iff their sequences are equal up to some circular permu-
tation.

To compute a base, compute first a covering tree of the graph.
The graph is assumed to be connected, without loss of generality.
Any covering tree can be used. By definition it contains no triangle,
thus all its edges are homotopy (homology) independent.

Any set of edges generate, by homotopic (homologic) relations
of edges and triangles, a superset of edges called its closure. To
compute the closure of a given generating set, the closure is ini-
tialized with the generating set. Then, each time an edge ac is the
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Figure 6: An unfolded graph, with two cuts.

third edge of some triangle abc whose two other edges ab and bc
are already in the closure, the edge ac is inserted in the closure. The
closure of the covering tree is called the "disk" because all its cir-
cuits are homotopic to &, as circuits in a topologic disk (Fig. 2 left).
Later, the disk will be graphically displayed as a disk (fig. 6). If all
edges are in the disk, ie the closure of the covering tree, the method
is terminated: all circuits are homotopic to €, and the optimal cir-
cuit with prescribed homotopy (it can only be €) is the null circuit,
with null cost. Otherwise, while there is an edge outside the closure
of the current base, it is inserted in the current base, and the corre-
sponding closure is updated. It means the latter edge is inserted in
the closure, together with all third edges of triangles whose two
other edges are already in the closure. In other words, each time an
edge uv is inserted in the closure, we have to "propagate" it: we con-
sider all triangles uvw (all triangles which contain the uv edge); if
uw is in the closure and vw is not, then vw is inserted in the closure,
and propagated. Propagation is managed as usual with some stack,
and stops when the stack is empty. Each edge is propagated once
(just after it is inserted in the closure). Finding all triangles with a
given edge uv can be done in time proportional to the degrees of u
and v. The sum of all degrees is O(m) where m is the number of
edges in the graph. Thus the construction of the base is in O(m).
In constellations (as in triangulations), m is O(n), the number of
vertices, but the average degree is greater for constellations (30 or
60).

The base is composed of a covering tree, plus / edges, one edge
per independent tour (a four is a circuit not homotopic to €). The ho-
mologic relations are just a system of linear equations, making ob-
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Figure 7: A round trip is a path in the unfolded graph which comes
back to the copy it started from.

vious the matroidal [CLR90, PS98] structure and properties of ho-
mology. As a consequence, for a given graph, all homologic bases
have equal cardinality (the so called rank of the matroid). All cov-
ering trees have also equal cardinality (covering trees are bases of
another matroid, called graphic matroid). Thus the difference be-
tween these two numbers (%) is independent of the used covering
trees and homologic bases. Actually all (accurate enough) constel-
lations for the same surface and obstacles yield the same value for
h, while their number of edges and vertices can be very different.

4. Expressing edges in the base

It is also possible to compute the homologic expression of edges
in the base, while constructing the base. For homology, the expres-
sion of a basic arc uv is x,,y, and the opposite arc xy,;, has definition
—xu,v. Each time an edge uw is inserted in the closure because it
is the third edge of a triangle uvw whose two other edges already
belong to the closure, the definition of uw is the sum of the defi-
nition of uv and the one of vw, which are already known. Clearly,
computation of all expressions is O(m(n — 1 + h)) time, using a
vectorial representation for definitions: n is the number of vertices,
a covering tree has thus n — 1 edges, thus the base has cardinality
n—1+4h (h is the number of independent tours). In practice, the
matrix of definitions is sparse, and this measure O(m(n— 1+ h)) is
very pessimistic.

The same method can be used to compute homotopy definition
sequences, for each edge (if arc uv has definition o, arc vu has in-
verse definition o~ !, also noted o). Each time an edge uw is in-
serted in the closure because it is the third edge of a triangle uvw
whose two other edges already belong to the closure, the definition
of uw is the concatenation (instead of the sum for homology) of the
definition of uv and the one of vw, which are already known. Ac-
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tually, some reduction step is also needed, to eliminate contiguous
inverse terms; for instance xyzzZy must be reduced to x. Reduction
uses a stack, initially empty. The sequence to be reduced is read
from left to right, one symbol at a time; if the stack is empty, or
if the top of the stack and the current symbol are not inverse, the
current read symbol is pushed on the stack, otherwise the top sym-
bol is removed from the stack and the current read symbol is dis-
carded (since these two symbols annihilate each other). Eventually
the stack contains the reduced sequence (in reverse order). Finally,
homotopy sequences for circuit must also be "circularly reduced":
while the first and the last symbol are inverse, they must be re-
moved. Then, two circuits with (reduced and circularly reduced)
homotopy sequences s and ¢ are homotopic iff s and ¢ have equal
length and ss contains # (see [CLR90] for algorithms on words). In
practice, the time for computing homotopy definitions is the same
as the one for computing homology definitions.

5. Shortest homotopic tour
5.1. An example

Fig. 8 shows a simple example. For readability, the euclidean plane
is sampled with a regular grid; there are four square (unsampled)
holes or obstacles, thus & = 4. Top subfigure displays in thick lines
an initial circuit around the upper left hole. Middle part displays
one of the numerous possible disks. Bottom displays in thick lines
the shortest homotopic circuit (it is also homologic). In real world
applications, sampling is more random, the average degree of ver-
tices is much greater (30 or 60, instead of § in this trivial example),
and there are several thousand points.

5.2. Principles

Some circuit is given, and one wants the shortest circuit with the
same homotopy. The method presented here computes a base, and
partitions the edges of the graph into several sets: the disk and &
cuts. The disk is the closure of the used covering tree; the h edges
in the base which do not belong to the covering tree are basic cut
edges.

To simplify, it is assumed that the definition sequence of each
edge depend only of at most one basic cut edge, and of an arbitrary
number of basic disk edges. Section 5.4 explains how insertion of
auxilliary vertices reduces complex cases to this simple one.

An enlightening idea is the one of unfolding the graph. Figure
5 shows from left to right a constellation of an annulus (& = 1),
a covering tree and its disk (cut edges are dotted), a part of the
unfolded graph. The unique cut is composed by arcs bf, ec, ef,
the inverse cut by arcs fb, ce, fe. To get the entire unfolded graph,
the central copy of the figure must be repeated an infinity of times,
at left and right. Note the asymmetry of cut edges between two
contiguous copies: edges are bf, ec, ef (the first vertex lie in the
copy on the left, the second in the copy on the right), and not fb,
ce, fe.

Figure 6 shows the structure of an unfolded graph for a constel-
lation with & = 2 basic cut edges o and B. The disk (represented
as a disk) is copied an infinity of times. Two contiguous copies are
linked either by a cut edge o (representing all edges depending on
o) according a first direction, or by a cut edge 3 (representing all
edges depending on B) according a second direction. This can be

generalized to any number £ of basic cut edges. The fractal nature
of the figure seems unavoidable, for copies afy and fo not to be
superimposed, but it is a bit confusing, since in the unfolded graph,
all copies are equivalent: there is not a "central copy".

Consider a path in the unfolded graph, starting from a vertex s
of some copy, and ending at the same vertex s but of another copy.
Then this path is a tour in the initial graph: a tour is a circuit not
homotopic to €. The path traverses a sequence of cut edges, labelled
(xftl(xitl ...ocicl. This sequence is called the cut definition of the
path; it is obtained just by removing disk edges in the definition of
the path (or circuit). The cut definition is sufficient to describe the

homotopy of the circuit.

5.3. A method a la Dijkstra

Searching the shortest circuit passing from some vertex s and with
some given cut definition y = (xf—Lloczil ...(x,:(tl reduces to finding
the shortest path between a vertex s in some initial copy of the
unfolded graph, and the vertex s in the final y copy. Of course, Di-
jkstra method can be used for that. The fact that the unfolded graph
is infinite is not an insurmountable difficulty: it suffices to gener-
ate vertices in a lazy way, only when they are reached. Lazyness,
or lazy evaluation, is used in lazy exact arithmetics and geomet-
ric computing [BMP94]. Some functional programming languages,
like Haskell, are intrinsically lazy: they naturally handle (poten-
tially) infinite data structures, like N or subsets of N.

After a finite number of steps, the vertex s in the final copy is
reached, and the shortest circuit with prescribed homotopy (or cut
definition) y and passing by s is found. Of course, a priori no vertex
s of the shortest circuit with homotopy (cut definition) 7y is known.
But the circuit must pass by some of the n vertices of the initial
graph, so we try them all. Actually, it is possible to reduce the num-
ber of tries, since the circuit must pass by a relevant vertex: a vertex
is relevant when it is an endpoint of some cut edge (an edge the def-
inition of which depends on a basic cut edge). Let o be the basic
cut edge which is used in y (‘y uses o or @), and which has the min-
imal set A of edges, the cut definition of which depends on o or &:
then the shortest circuit Y must pass by one of the vertices of A. In
practice |A| can be an order of magnitude smaller than n.

Unfortunately, this algorithm is not polynomial. It can happen
that there is a very short tour, which is not y: then the Dijkstra
method turns around this short tour an arbitrary number (a non
polynomially bounded number) of times, before reaching the final
vertex. Maybe somebody will find some criteria or theorem which
will permit to not to sink deep into an irrelevant very short tour. In
absence of such a criteria, this paper proposes another approach.

5.4. Auxilliary points

The cut definition of some edges may contain several basic cut
edges. A simple solution adds auxilliary, virtual, points ("intersec-
tion point" between the edge and the cuts) on such edges. If the cut
definition of the edge (a,b) is a0y ...04 (0 are basic cut arcs,
or their inverses), then k — 1 auxilliary vertices ay,...a;_| are cre-
ated, and edge (a,b) is replaced by edges (a,a;) having cut defini-
tion ay, (ag,ap) having cut definition oy, ... and (a;_1,b) having
cut definition o.. The cost of (a,b) is distributed on the new edges.
In practice, very few auxilliary points are added, thus there is no
consequence on the complexity and running time.

(© The Eurographics Association 2004.
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Figure 8: A trivial example.

5.5. A three steps method

First, all shortest paths in the unfolded graph between two vertices
of the same disk copy are computed (see below, sections 5.6 and
5.8). This first step provides a matrix D, where D;; is the cost of
the optimal path from vertex i to vertex j in the unfolded graph. D
is symmetric, and its diagonal entries are 0. This cost is smaller or
equal to the cost of the optimal path from i to j in the disk, and it
is greater or equal to the cost of the optimal path from i to j in the
original graph.

Second, shortest paths in the unfolded graph between vertices
of all pairs of neighboring copies are computed; there is 4 such
pairs of neighboring copies. Let K be the cost matrix of one of
these cuts, a: K;; is +o0 if there is no arc ij with cut definition c.
Note that, though the initial graph is symmetric, K has no reason
to be symmetric: the sets indexed by its rows and its columns are
different copies of the disk. For the same reason, Kj; is infinite for
all i. Then the shortest paths from an initial arbitrary disk copy and
its neighbor o is given by the pseudo product DKD (the transpose
gives the matrix for ¢). The pseudo product P = AB is defined by
P;j = ming Ay + By ;. The analogy of the pseudo product with the
usual matrix product is well known, and fast multiplication matrix
methods have inspired some fast pseudo products [CLR90]. Due
to the complexity of the first step, which is dominant, the naive
pseudo product is sufficient. This second step requires 24 pseudo
products, thus it is O(hn3 ). Eventually it provides 4 matrix for cuts
op,...0y, called C(ay), C(ap)...C(oy,), and their transposes for
cuts Oy, ... 0.

Third, for computing the shortest tour with the prescribed homo-
topy (or cut definition) Y= af'a3? ... ou* (e; is +1), the matrix M
of optimal costs is computed: it is the pseudo product C,C;...Cy,
where C; equals C(a;) if ¢; = 1 and the transpose of C(oy) if
e; = —1. Mj; is the cost of the optimal tour Y passing by the ver-
tex i: the smallest entry in the M diagonal gives the optimal tour
Y. The vertices list of the tour is then rebuilt with one of the usual
methods (see [CLR90]). This step is O(kn3).

5.6. The naive first step method

For short, call a round trip a path or a circuit in the unfolded graph,
the starting and ending vertices of which lie in the same disk copy.

(© The Eurographics Association 2004.

Figure 9: A shortcut.

The cut definition of all round trips (optimal or not) is €. The first
step has to compute all optimal round trips.

The simplest method first computes all optimal paths in the disk,
either with the Warshall Floyd method [CLR90], or with several
calls to the classical Dijkstra method (note the disk is a finite
graph). If we are lucky, there is no shortcut (defined below) and
optimal round trips are just optimal paths in the disk. A shortcut
(see fig. 9) between a vertex a and a vertex a’ in the same disk copy
is composed of an exit arc ab which belongs to some cut @, an opti-
mal round trip (or the best round trip currently known) from b to b,
with b’ in the same copy as b, and a return arc b’a’ which belongs
to the cut @; finally, to be a shortcut, its cost has to be strictly less
than the one of the currently best known path from a to a’. a is the
exit vertex, and a’ the return vertex, of the shortcut.

The naive method is as follows: each time a shortcut from a to
d' is detected (O(m?) tests are needed, where m is the number of
edges in the initial graph, which bounds the number of cut edges),
an edge aa’ is inserted in the disk, the cost of which is the cost of
the found shortcut; if such an edge already exists, its cost is just
updated. Possibly, some flag is attached to the edge, to make easier
the reconstitution of optimal tours later (the method is inspired by
the classical one, presented in [CLR90]). The cost matrix of opti-
mal tours is then updated, either in O(n°) time with Warshall Floyd
method, or in O(n?) time (section 5.7).

Let I be the maximal number of cut edges appearing in an opti-
mal round trip. Then [+ 1 steps of shortcut detection and updates
are needed. Thus this method is O(n3 + lmznz) time. In practice /
is constant: 0, 1, rarely 2. By hand, it is easy to construct (very un-
likely) worst cases where [ = O(n). We now prove that [ = O(n?):
an optimal round trip can not contain two distinct copies D; and
D, with the same exit vertex a and the same return vertex a’; other-
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Figure 10: Tiwvo neighboring copies of the disk, linked by a cut
with matrix K. P is the current cost matrix of optimal round trips.

wise, removing copies between them would give a shortest tour: a
contradiction; there are only O(nz) possible pairs of exit and return
vertices; conclude.

5.7. Updating the cost matrix

Updating the cost matrix can be done in O(n?) time. Let G be the
matrix of the non directed graph, with G,;, the weight of arc ab
(4o if there is no arc ab); all diagonal entries are 0. Let D be the
cost matrix of optimal paths in G. Let G’ be equal to G, except
that G’ contains one edge uv with cost smaller than D,,,. We want
to compute the optimal cost matrix D’ of G’. D is copied into D'.
D), and D), receive the cost ¢,y = ¢y of uv. All distances to u are
updated: for each vertex s, Dj, < min(D},, Dy, 4 cvu) and Dy
Dy,,. Symmetrically, all distances to v are updated: for each vertex s,
Dy, « min(D},, D, + cuy), and D)s < Dy,. Then, for each couple
s,¢ in G', the shortest path for st is updated: D} « min(D,, D}, +
Cuy +D(1t7D§'v =+ Cyu +Dz/4t)~

5.8. Another first step method

As previously, the optimal paths in the disk are computed. Then
successive improvements of round trips are made, until the fix point
is reached. Define a piece as the complete graph with n vertices,
where the cost of each edge ij is the currently known best round
trip from i to j (initially it is the optimal path in the disk). Then
the graph (fig. 10) with two pieces is considered: the two pieces are
linked with cut edges of one of the % cuts. If K is the cost matrix of
this cut, then the cost matrix of the graph is:

P K
(% 7)

where the first line (column) corresponds to the initial copy Py, the
second to its neighbor P, = Py. The graph G is symmetric. Op-
timal paths in G are computed with the Floyd Warshall method.
The resulting matrix takes into account for the piece P; possible
round trips which exit P; by some arc o and return by some arc
Q. and for the piece P, possible round trips which exit P, by some
arc & and return by some arc .. An improvement for P is deduced:
P;j=min((P;);j,(P2);j). An improvement by % cuts calls the Floyd
Warshall method /4 times. Since [+ 1 improvements are needed, this
method is O(n® 4 In*), which is better than the naive method which
is O(n® + Im*n?).

6. Shortest homologic tour

Figure 11 displays two homologic non homotopic tours (left- and
rightmost parts). The two middle parts use one of the possible par-
titions in disk and cuts, to show that, seen as flows passing through

(m)  [mj

Figure 11: Left and right tours are homologic.

the 4 gates (cuts), these two circuits have equal balances at gates:
they are homologic, and it does not depend on the chosen partition
(or base). Computing the shortest homologic tour can be relevant
for some applications, such as optimizing the shape of wirings for a
given global electro magnetic field. It is a variant of a max flow min
cost network problem. Standard related methods [CLR90, PS98]
can be used, at least when the homology matrix is totally unimod-
ular, ie for standard (non exotic) cases. These issues are not dis-
cussed here.

7. Conclusion

Constellation are sufficient to perform topologic computations, and
are simple and robust. But many questions arise from this first in-
vestigation: improve the proposed method; extend it to more gen-
eral initial surfaces such as surfaces with handles: in this case the
unfolded graph of Fig. 6 contains circuits; understand which topo-
logic invariants can be computed from only a constellation; study
the shortest homologic circuit problem.
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