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Abstract
We address the problem of updating non-manifold mixed-dimensional objects, described by three-dimensional simplicial com-
plexes embedded in 3D Euclidean space. We consider two local update operations, edge collapse and vertex split, which are
the most common operations performed for simplifying a simplicial complex. We examine the effect of such operations on a
3D simplicial complex, and we describe algorithms for edge collapse and vertex split on a compact representation of a 3D
simplicial complex, that we call the Non-Manifold Indexed data structure with Adjacencies (NMIA). We also discuss how to
encode the information needed for performing a vertex split and an edge collapse on a 3D simplicial complex. The encoding of
such information together with the algorithms for updating the NMIA data structure form the basis for defining progressive as
well as multi-resolution representations for objects described by 3D simplicial complexes and for extracting variable-resolution
object descriptions.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling -Curve, surface, solid and object representations

1. Introduction

We consider the problem of locally updating a three-dimensional
simplicial complex describing a non-manifold object by perform-
ing edge collapses and vertex splits. An edge collapse applied to a
simplicial complex contracts an edge e of the complex into a new
vertex v, or into one of the extreme vertices of e. Vertex split is the
inverse of edge collapse: it replaces a vertex v of a complex with
an edge e. Edge collapse and vertex split are common operations
performed for coarsening or refining a complex in simplification
algorithms [10, 25].

The ultimate goal of our work is to develop a continuous multi-
resolution representation for non-manifold objects described by
three-dimensional simplicial decompositions, i.e., by combinations
of tetrahedral meshes with lower dimensional entities described
by chains of edges, or by triangle meshes. In order to develop a
multi-resolution representation, we need a data structure for en-
coding 3D simplicial complexes, that can be used to describe the
variable-resolution complexes extracted from a multi-resolution
model. Such a data structure must be compact, and must support
efficient navigation within the complex through adjacencies, as re-
quired by common geometric modeling operations. Since most ob-
jects encountered in the applications contain a relatively small num-
ber of non-manifold singularities, the data structure should scale to

the manifold case with a small overhead. Moreover, we need algo-
rithms to perform edge collapse and vertex split on such represen-
tation as well as a compact way of encoding vertex splits and edge
collapses. This will be the basis for designing a data structure for
representing the multi-resolution model.

In [5], we have defined a model for non-manifold objects de-
scribed by simplicial complexes, called a Non-Manifold Multi-
Tessellation (NMT), and we have described an implementation of
the NMT for the case of two-dimensional complexes. Here, we
plan to develop some basic tools for designing and implementing
an NMT in the three-dimensional case.

In [4], we have defined a compact data structure, called a Non-
Manifold Indexed data structure with Adjacencies (NMIA), for de-
scribing three-dimensional simplicial complexes embedded in the
3D Euclidean space. The NMIA data structure encodes the vertices
and the top simplexes of the complex plus a restricted subset of
topological relations, and it supports retrieval of incidence and ad-
jacency relations among the entities in the complex in time linear in
the number of entities involved in the relations. Here, we briefly de-
scribe the entities and relations defining the NMIA data structure,
and an improved implementation of such structure, which exhibits
an even better scalability to the manifold case, i.e., a very low over-
head cost with respect to a similar data structure, the indexed data
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structure with adjacencies, commonly used to represent manifold
simplicial meshes.

In [10], conditions are studied under which an edge collapse can
be performed on a complex without changing its topological type,
which have been applied in simplification algorithms for 3D sim-
plicial complexes with a manifold domain to avoid creating non-
manifold situations [2]. Here, we allow edge collapses and vertex
splits to change the topological type of the domain of the simplicial
complex as well as to create, or remove, lower-dimensional entities,
such as wire edges and dangling faces.

In [25], Popovic and Hoppe describe the effect of applying a gen-
eralization of edge collapse, called vertex-pair collapse, which con-
sists of collapsing a pair of vertices (not necessarily connected by
an edge), into a vertex, without imposing restrictions on topology
changes. They sketch updating algorithms, which assume a ver-
bose representation of the complex as an incidence graph, but they
do not specify how topological relations in the incidence graph are
affected. The storage cost of an incidence graph is three times the
cost of the NMIA data structure. The restricted number of entities
and relations encoded in the NMIA data structure makes updating
algorithm considerably more complex.

Novel contributions of this paper are:

• a compact and scalable implementation of the NMIA data struc-
ture;

• an analysis of the effect of edge collapse and of vertex split on a
3D simplicial complex;

• algorithms for performing edge collapse and vertex split on the
NMIA data structure;

• an encoding of vertex split to be used as the basis for a pro-
gressive volumetric representation of the object and for a data
structure for encoding a 3D Non-Manifold Multi-Tessellation.

The remainder of this paper is organized as follows. In Section
2, we summarize some background notions. In Section 3, we re-
view some related work. In Section 4, we describe the NMIA data
structure, and we discuss our new implementation and its storage
costs. In Section 5, we analyze the effect of edge collapse and ver-
tex split on a three-dimensional simplicial complex. In Section 6,
we describe an algorithm for performing edge collapse on a 3D
simplicial complex encoded in the NMIA data structure. In Sec-
tion 7, we present an encoding for the vertex split operation, and
we describe an algorithm for performing vertex split. In Section 8,
we present an instance of the NMT based on 3D simplicial com-
plexes, generated through edge collapse. Finally, in Section 9, we
draw some conclusions and discuss future work.

2. Background

In this Section, we review some basic notions about Euclidean sim-
plicial complexes in arbitrary dimensions, and the topological rela-
tions among the cells of a complex.

A manifold object is a subset of the Euclidean space for which
the neighborhood of each internal point is homeomorphic to an
open ball. Objects, that do not fulfill this property at one or more
points, are called non-manifold objects.

A Euclidean simplex of dimension d is the convex hull of d + 1
linearly independent points in the 3-dimensional Euclidean space

E3, with d ≤ 3. We simply call a Euclidean d-simplex a d-simplex:
a 0-simplex is a vertex; a 1-simplex an edge; a 2-simplex a trian-
gle; a 3-simplex a tetrahedron. d is called the dimension of σ and is
denoted as dim(σ). Any Euclidean k-simplex, with k < d, σ′ gen-
erated by a set Vσ′ ⊆ Vσ of cardinality k + 1 ≤ d is called a k-face
of σ.

A finite collection Σ of Euclidean simplexes is a Euclidean sim-
plicial complex when (i) for each simplex σ ∈ Σ, all faces of σ
belong to Σ, and (ii) for each pair of simplexes σ and σ′, either
σ∩ σ′ = ∅ or σ∩ σ′ is a face of both σ and σ′. The domain, or
carrier, of a Euclidean simplicial complex Σ embedded in E3, with
d ≤ 3, is the subset of E3 defined by the union, as point sets, of all
the simplexes in Σ. We will consider in the paper three-dimensional
simplicial complexes (3-complexes) embedded in E3.

The boundary b(σ) of a simplex σ is defined as the set of all
faces of σ. Similarly, the co-boundary, or star, of a simplex σ is
defined as ?σ = {ξ ∈ Σ | σ is a face of ξ}. Simplexes ξ in ?σ are
called co-faces of σ. In the following, we will call restricted star of
a simplex σ, ?σ−{σ}, and we will denote it as st(σ). The link of
a simplex σ, denoted link(σ), is the set of all faces of the co-faces
of σ, that are not incident at σ. Any simplex σ such that ?σ = {σ}
is called a top simplex of Σ.

Two distinct simplexes are said to be incident if one of them is a
face of the other. Two simplexes are called k-adjacent if they share
a k-face. For example, a tetrahedron and a triangle are 1-adjacent if
they share an edge. Two p-simplexes, with p > 0, are said to be ad-
jacent if they are (p−1)-adjacent. Two vertices (i.e., 0-simplexes)
are called adjacent if they are both incident at a common 1-simplex.

An h-path is a sequence of simplexes (σi)
k
i=0 such that two suc-

cessive simplexes σi−1, σi in the sequence are h-adjacent. Two sim-
plexes σ and σ′ are h-connected if and only if there exists an h-path
(σi)

k
i=0 such that σ is a face of σ0 and σ′ is a face of σk. A subset Σ′

of a complex Σ is called h-connected if and only if every pair of its
vertices are h-connected. Any maximal h-connected sub-complex
of a complex Σ is called an h-connected component of Σ.

A complex Σ, where all top simplexes are maximal (i.e., of di-
mension d), is called regular. A regular, (d − 1)-connected com-
plex in which each (d − 1)-simplex is on the boundary of one or
two d-simplexes is called a pseudo-manifold. Note that every 3-
complex embedded in E3 is always a pseudo-manifold. A pseudo-
manifold satisfying the additional property that all its vertices have
a link combinatorially equivalent to the (d−1)-dimensional sphere
is called a (combinatorial) manifold. The domain of a Euclidean
simplicial complex, which is described by a combinatorial mani-
fold, is a manifold in E3.

Let Σ be a d-complex and let σ ∈ Σ be a p-simplex, with 0 ≤ p ≤
d. For each integer value q, 0 ≤ q ≤ d, we define the topological
relation Rpq(σ) as a retrieval function that returns the q-simplexes
of Σ that are not disjoint from σ. In particular:

• For p < q, Rpq(σ) consists of the set of simplexes of order q in
the star of σ.

• For p > q, Rpq(σ) consists of the set of simplexes of order q in
the set of faces of σ.

• For p > 0, Rpp(σ) is the set of p-simplexes in Σ that are (p−1)-
adjacent to σ.

• R00(v), where v is a vertex, consists of the set of vertices w such
that {v,w} is a 1-simplex of Σ.

c© The Eurographics Association 2004.

170



Leila De Floriani & Annie Hui / Update operations on 3D simplicial decompositions of non-manifold objects

Relation Rpq is called a boundary relation if p > q, a co-
boundary relation if p < q, and an adjacency relation if p = q.
Boundary and co-boundary relations are called incidence relations.
Boundary relations in a 3-complex are R30, R31, R32, R20, R21 and
R10. Adjacency relations in a 3-complex are R33, R22, R11 and R00.
Co-boundary relations are R23, R12, R13, R01, R02 and R03.

3. Related Work

In this Section, we review related work on data structures for de-
scribing three-dimensional simplicial and cell complexes, and on
simplification algorithms for tetrahedral meshes (i.e., simplicial
complexes with a manifold domain).

The Facet-Edge data structure [11] and the Handle-Face data
structure [23] have been proposed for three-dimensional cell com-
plexes. Both describe 3-cells implicitly by encoding the 2-manifold
complexes that form the boundary of such cells. The most common
representation for three-dimensional simplicial complexes with a
manifold domain is the Indexed data structure with Adjacencies
(IA), which directly extends to arbitrary dimension, being called
winged representation [24]. In a d-dimensional IA data structure,
vertices and top simplexes are encoded together with Rd0 and Rdd
relations. The IA data structure can be extended by encoding only
one incident d-simplex for each vertex v, thus allowing efficient
navigation around a vertex. In three dimensions, the storage cost
of the indexed data structure with adjacencies is equal to 8nt + n
integers, where nt is the number of tetrahedra and n is the number
of vertices of the complex.

Dimension-independent data structures have been proposed for
d-dimensional manifold complexes, which include the Cell Tuple
[1], and the n-G-maps [22] for cellular complexes. When used to
describe simplicial complexes, the storage cost of such data struc-
tures is much higher than that of the IA data structure, for a fac-
tor that grows combinatorially with the dimension of the complex
(see [8]). The representation domain of all such data structures
is larger than that of d-manifolds: the IA data structure can de-
scribe Euclidean pseudo-manifolds embedded in the Euclidean d-
dimensional space, while the other two can describe a sub-class
of pseudo-manifolds introduced in [22], and called cellular quasi-
manifolds. Selective Geometric Complexes (SGCs) [27] can de-
scribe non-manifold and non-regular objects through cell com-
plexes whose cells can be even open, or not simply connected. In
SGCs, cells and their mutual adjacencies are encoded in an inci-
dence graph [12].

An alternative approach to the design of non-manifold data struc-
tures consists of decomposing a non-manifold object into simpler
and more manageable parts [6, 9, 14, 18, 26]. Most proposals de-
compose the two-dimensional boundaries of r-sets [9, 14]. The al-
gorithm presented in [26] tries to minimize the number of dupli-
cations introduced by the decomposition process. In [18], the idea
of cutting a two-dimensional non-manifold complex into manifold
pieces is exploited to develop compression algorithms. In [6], a
decomposition for d-dimensional non-manifold objects described
through simplicial complexes is defined, which is unique and pro-
duces a description of a d-complex (not necessarily embeddable in
the Euclidean space) as a combination of nearly manifold compo-
nents. A dimension-independent data structure for such decompo-
sition is defined in [7], which describes the components and their
connectivity in a two-level representation.

Data structures for non-manifold, non-regular, three-
dimensional cell complexes have been proposed for modeling
non-manifold solids [19, 20, 30]. Experimental evaluations re-
ported in [21] show that these data structures do not scale well
to the manifold case, since their storage cost is between 2.1 and
4.4 times higher than that of the winged edge data structure. The
partial entity structure [21] has been shown to require half of
the space of the radial-edge structure introduced in [20]. A data
structure for encoding any two-dimensional simplicial complex,
called the triangle-segment data structure, has been proposed in
[5], which extends the IA data structure to deal with non-regular
(1-dimensional) parts and with non-manifold adjacencies of
2-simplexes at an edge. This data structure is compact, and scales
very well to the manifold case, since it requires just one byte per
vertex more than the IA data structure when applied to a manifold
complex.

Mesh simplification has been extensively studied for triangle
meshes (see, e.g., [16] for a survey). Some techniques have been
extended to the case of tetrahedral meshes. In [15], Farias et al. pro-
pose a non-incremental decimation method based on vertex clus-
tering. The techniques proposed in [2, 17, 28] are all based on edge
collapse and differ in the way they control the error for produc-
ing a simplified mesh. Gross and Staadt [17] present a decimation
technique based on collapsing an edge to an arbitrary interior point,
and propose various cost functions to drive the collapsing process.
Cignoni et al. [2] propose an algorithm based on collapsing an edge
to one of its extreme vertices (called half-edge collapse), in which
the simplification process is driven by a combination of the ge-
ometric error introduced in simplifying the shape of the domain
and of the error introduced in approximating the scalar field with
fewer points. In [29], Véron and Léon describe how to perform sim-
plification on a two-dimensional simplicial complex embedded in
the three-dimensional Euclidean space. The complex is simplified
through vertex removal as the primary operation, and then through
edge collapse and face removal as secondary operations.

Popovic and Hoppe [25] consider general arbitrary-dimensional
simplicial complexes, and describe how to perform vertex-pair col-
lapse and its inverse by considering only how the entities in the
complex are updated. In [10], a set of necessary and sufficient con-
ditions to preserve the topological type of a simplicial complex
when simplified through edge collapse are studied.

4. The NMIA Data Structure

The NMIA data structure describes 3D simplicial complexes con-
taining one- and two-dimensional top simplexes, that we call wire
edges and dangling faces, respectively, (see Figure 1(a)), in order
to represent parts of different dimensionalities in the object. Also,
it describes situations in which the restricted star of an edge, or
of a vertex, consists of more than one connected component. At
such edges and vertices, the manifold condition does not hold (see
Figures 1(b) and 1(c)). Since we are dealing with 3-complexes em-
bedded in E3, any 2-simplex, which is not a top simplex, must be
on the boundary of either one or two tetrahedra.

We call each 2-connected component in the restricted star of an
edge an edge-based cluster. Edge-based clusters can be ordered
around the edge, for instance, in a counter-clockwise direction. An
edge-based cluster consists either of a single dangling face, or of a
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Figure 1: (a) a wire edge, we = {v1,v2}, and a dangling face, d f =
{v1,v3,v4}, (b) e = {v1,v2}, st(e) has two connected components,
(c) st(v) has three connected components

2-connected set of tetrahedra sharing edge e (see Figure 1b). Simi-
larly, each 1-connected component of the restricted star of a vertex
is called a vertex-based cluster. If two simplexes σI and σ j belong
to the same vertex-based cluster in st(v), then there exists a 1-path
passing through only those simplexes which form the cluster.

To describe edge- and vertex-based clusters, we introduce three
auxiliary relations, that represent the incidence of the edge-based
clusters at an edge, and of the vertex-based clusters at a vertex:

• Relation R0,clusters(v) is a retrieval function which associates,
with vertex v, one representative k-simplex for each vertex-based
cluster incident at v. If dangling faces and tetrahedra belong to
the same cluster, a tetrahedron is chosen.

• Relation R2,clusters( f ) is a retrieval function which associates,
with each edge ei of a dangling face f , the two edge-based
clusters incident at ei, and following and preceding face f in a
counter-clockwise order around ei.

• Relation R3,clusters(t) is a retrieval function which associates,
with each edge ei of a tetrahedron t, at most two edge-based
clusters incident at ei, and following and preceding tetrahedron t
in a counter-clockwise order around ei.

Note that each edge-based cluster at an edge e is represented ei-
ther by a dangling face incident at e, or by a tetrahedron, if the
edge-based cluster consists of just one tetrahedron, or by two tetra-
hedra, i.e., the two tetrahedra that do not have 2-adjacent neighbors
along one of their two faces incident at e.

4.1. Entities and Relations

In the NMIA data structure, vertices, tetrahedra, wire edges and
dangling faces are encoded as entities. Edges bounding a face or
a tetrahedron, or faces bounding a tetrahedron are not explicitly
represented.

The following relations are stored:

• for each tetrahedron t:

– relation R30(t), which associates, with each tetrahedron t, its
four vertices ordered according to the orientation chosen for
t.

– relation R33(t), which associates, with each tetrahedron t, the
four tetrahedra adjacent to t through a 2-simplex, (the i-th
tetrahedron in R33(t) is the one that does not contain the i-th
vertex of t).

– relation R3,clusters(t), as defined above, for each of the six
edges of tetrahedron t (considered in an order compatible
with the orientation of t).

• for each dangling face f :

– relation R20( f ), which associates, with each dangling face f ,
its three vertices (ordered according to the orientation chosen
for f ).

– relation R2,clusters( f ), as defined above, for each of the three
edges of dangling face f (considered in an order compatible
with the orientation of f ).

• for each wire edge e, relation R10(e), which associates, with edge
e, its two extreme vertices.

• for each vertex v, relation R0,clusters(v), as defined above.

4.2. Implementation

R30(t), R20( f ) and R10(e) relations are encoded as arrays of in-
dexes for each tetrahedron t, dangling face f and wire edge e, re-
spectively. R33(t) relation is encoded as a fix-sized array A of four
elements. If a tetrahedron t has less than four adjacent neighbors,
then the last element of array A stores a pointer to a variable-sized
array B encoding R3,clusters(t). A 1-bit flag f1(t) is used to indicate
whether R3,clusters(t) 6= ∅. In the first element of array B, we store
three flags, namely:

• a 4-bit flag, f2(t), which indicates which 2-adjacent neighbors
are present in R33(t),

• a variable-sized flag, f3(t), which indicates on which edges tetra-
hedron t has 1-adjacent neighbors related through R3,clusters re-
lation,

• a variable-sized flag, f4(t), which indicates whether 1-adjacent
neighbors in R3,clusters(t) are tetrahedra or dangling faces.

For each dangling face f , relation R2,clusters is encoded in a simi-
lar way. Two flags, f5( f ) and f6( f ), are used to encode the posi-
tions and the values of 1-adjacent neighbors related to f through
R2,clusters relation.

For each vertex v, R0,clusters(v) is encoded as follows:

• a 1-bit flag f (v) is used to indicate whether the restricted star of
v, st(v), consists of one cluster formed by a 2-connected set of
tetrahedra

• a field which contains either the index of a tetrahedron in st(v),
if st(v) is a 2-connected set of tetrahedra, or a link to a list of rep-
resentative elements (tetrahedra, dangling faces, or wire edges),
one for each vertex-based cluster in st(v).

4.3. Storage Cost

Let nt ,nd ,nw,n denote the number of tetrahedra, dangling faces,
wire edges, and vertices in a simplicial complex Σ, respectively. Let
cv denote the sum of all vertex-based clusters over all non-manifold
vertices of Σ. Let ce denote the sum of all edge-based clusters over
all non-manifold edges of Σ. Let nb be the number of tetrahedra t
such that R3,clusters(t) 6= ∅.

The storage cost of the NMIA data structure is equal to (8nt +
5nd + 2nw + nb + 2ce + 2(cv − n)+ n) integers + (nt + n) bits, by
assuming that pointers and indexes are stored as integers on 32 bits.

In the case of manifold complexes, the cost of the NMIA data
structure reduces to (8nt + n) integers + (nt + n) bits, since such
complexes do not contain dangling faces (nd = 0), wire edges
(nw = 0), non-manifold edges (ce = 0), or non-manifold vertices
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(cv−n = 0). For tetrahedral complexes used as the decomposion of
the domain of a three-dimensional scalar field, it has been shown
experimentally that nt ≈ 6n [3]. Thus the cost of the NMIA data
structure becomes 49n integers + n bytes.

The extended IA data structure exhibits the same performances
as the NMIA in the manifold case. The extended IA data structure
encodes, for each tetrahedron t, R30(t) and R33(t) relations and, for
each vertex v, a link to one tetrahedron incident at v. The storage
cost is, thus, equal to 8nt +n integers, which becomes 49n integers
under the assumption that nt ≈ 6n. Thus, the NMIA data structure
exhibits an overhead of just one byte per vertex due to the repre-
sentation of non-manifold singularities.

5. Edge Collapse and Vertex Split in a 3D Simplicial Complex

In this Section, we discuss the effect of applying an edge collapse
or a vertex split on a three-dimensional simplicial complex Σ.

5.1. Edge Collapse

Let e = {v1,v2} be the edge to be collapsed in a 3D simplicial
complex Σ. Let Σ′ be the complex resulting from Σ by collapsing
edge e into a vertex v.

An edge collapse applied to e = {v1,v2} in Σ consists of replac-
ing edge e with the new vertex v in Σ′, collapsing all dangling faces
and tetrahedra in the restricted star of e, st(e), to wire edges and
faces incident at v, respectively, and in updating all the simplexes
in st(v1)∪ st(v2), i.e., all the simplexes incident at either v1 or v2.

Given a k-simplex, σ, k = 1,2,3, in Σ, such that σ ∈ st(e)∪
st(v1)∪ st(v2), either σ is incident at edge e, or σ is incident at
v1 or v2 but not at both. In the former case, σ must be either a dan-
gling face or a tetrahedron. In the latter case, there are two possible
situations. Let us assume that σ is incident at v1, then either σ in-
tersects some other simplex σ incident at the other vertex, v2, or σ
has an empty intersection with all other simplexes incident at v2.

Therefore, the following three cases may occur:

1. σ ∈ st(e): in this case, σ can either be a 2-simplex or a 3-
simplex.

2. σ ∈ st(v1), σ 6∈ st(v2) and there exists σ ∈ st(v2) such that σ∩
σ 6= ∅: in this case, σ is incident at v1 but not in v2, and there
exists a simplex σ incident at v2 which intersects σ. This case
also includes the symmetric situation in which σ ∈ st(v2) and
σ 6∈ st(v1) and there exists σ ∈ st(v1) such that σ∩σ 6= ∅.

3. σ ∈ st(v1), σ 6∈ st(v2) and σ∩σ = ∅, for every σ ∈ st(v2): in
this case, σ is incident at v1 and not in v2 and it does not have
any intersection with simplexes incident at v2. This case also
includes the symmetric situation in which σ ∈ st(v2) and σ 6∈
st(v1) and ∀σ ∈ st(v1), σ∩σ = ∅.

Figure 2 gives six examples of simplexes that are incident at edge
e = {v1,v2} to be collapsed as in case 1. In Figures 2(a) to 2(c),
st(e) consists of tetrahedron t1, and of its two faces {u1,v1,v2} and
{u2,v1,v2} which are incident at e. In Figures 2(d) to 2(f), st(e)
consists of dangling face d f1. In Figure 3, six examples are given
of simplexes that are incident at only one extreme vertex of the
edge to be collapsed, and that intersect some simplexes that are
incident at the other extreme vertex. As in Figure 2, e is the edge
to be collapsed. In Figures 3(a) to 3(c), the non-empty intersection
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Figure 2: Six examples of simplexes that are incident at the edge
e = {v1,v2} to be collapsed: in (a), (b) and (c), the simplexes in-
cident at e are tetrahedron t1 and two of its faces, {u1,v1,v2} and
{u2,v1,v2}, i.e., st(e) = {t1,{u1,v1,v2},{u2,v1,v2}}. In (d), (e)
and (f), the dangling face d f1 is incident at e, i.e., st(e) = {d f1}.
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Figure 3: Six examples of simplexes that are incident at one vertex
of the edge e to be collapsed, and that have non-empty intersection
with some other simplexes that are incident at the other vertex. In
(a), dangling face d f2 is incident at v1 and dangling face d f3 is
incident at v2. Their intersection is edge {u1,u2}. (b) and (c) are
similar to (a), except that the simplex incident at either vertex may
also be a tetrahedron. In (d), wire edges we1 and we2 are incident at
v1 and v2, respectively, and their intersection is vertex u. Similarly,
in (e) and (f), the intersection is at vertex u. (Case 2)

of those simplexes incident at v1 and those incident at v2 is edge
{u1,u2}. In the other three examples, the non-empty intersection is
vertex u. Figure 4(a) shows an example where a simplex incident at
v1 does not intersect any simplex incident at v2.

Let λ: st(e) → st(v) be a map such that σ′ = λ(σ) ∈ Σ′ is ob-
tained from σ by replacing {v1,v2} with v. We call it a dimension-
reduction map. Let µ: st(v1)∪ st(v2)− st(e) → st(v) be a map that,
given a simplex σ∈ st(v1)∪st(v2)−st(e), provides σ′ = µ(σ) such
that σ′ ∈ st(v) and σ′ = {v}∪{w | ∀w∈ σ−{vi},v = 1,2}. We call
map µ a simplex transformation map.

When performing edge collapse, we apply:
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t 3

v2

v1t 2

e
⇔

t 3

v

t 2

(a) (b)

Figure 4: An example in which a simplex, that is incident at one
vertex of the edge e to be collapsed, has an empty intersection with
all other simplexes that are incident at the other vertex. (a) Tetra-
hedra t2 and t3 are incident at v1 and v2, respectively, and they do
not intersect each other. (Case 3) (b) When edge e is collapsed, the
two tetrahedra become 0-adjacent.

• in case 1: a reduction map λ for every k-simplex σ ∈ st(e) into a
(k−1)-simplex σ′, k = 2,3.

• in cases 2 and 3: a transformation map µ.

Figure 5 and Figure 6 show the effect of edge collapse on each
of the examples in discussed in Figures 2 and 3. In each exam-
ple, the drawing on top is a reproduction of that in Figures 2 and
3. The drawing at the bottom shows what happens after edge e is
collapsed. In Figures 5(a) to 5(c), tetrahedron t1 is incident at e.
After edge collapse, t1 may be become a dangling face, as in Fig-
ure 5(a), a boundary face, as in Figure 5(b), or an internal face, as
in Figure 5(c). In Figures 5(d) to 5(f), d f1 is incident at e. After
edge collapse, d f1 may become a wire edge, as in Figure 5(d), or a
boundary edge, as in Figures 5(e) and 5(f). Figure 6 is similar. The
result of edge collapse on the example of Figure 4(a) is shown in
Figure 4(b). Note that, in all the cases, at most two simplexes are
merged into one simplex as the effect of transformation map µ.

5.2. Vertex Split

Vertex split is the inverse operation with respect to edge collapse.
It consists of splitting a vertex v in a 3D simplicial complex Σ into
an edge e = {v1,v2}. The k-simplexes in st(v) either expand into
(k +1)-simplexes forming st(e), or become incident at v1 or v2, or
are duplicated.

Given a k-simplex σ′ ∈ st(v), the following three cases may oc-
cur:

1. σ′ is expanded into a simplex σ in st(e). In this case, we apply
the inverse λ−1 of the dimension-reduction map λ which maps
σ′ ∈ st(v) into σ ∈ st(e) such that λ(σ) = σ′. This is equiva-
lent to replacing v in σ′ with {v1,v2}. (Each of the examples of
Figure 5, when read from bottom to top, illustrates the effect of
vertex split.)

2. σ′ ∈ st(v) is mapped into two k-simplexes σa and σb such that
σa ∈ st(v1) and σb ∈ st(v2) and σ′ = µ(σa) = µ(σb). (See the
examples of Figure 6 from bottom to top.)

3. σ′ is transformed into one simplex σ incident at v1 or in v2. In
this case, we map σ′ ∈ st(v) into σ ∈ st(v1)∪ st(v2) such that
σ′ = µ(σ) by replacing v in σ with v1 or v2. (See Figure 4 from
right to left.)

6. Performing an Edge Collapse

Performing the collapse of an edge e = {v1,v2} into a vertex
v in a complex Σ requires specifying just edge e and vertex v.
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Figure 5: Effect of edge collapse on the six examples shown in Fig-
ure 2. Edge e = {v1,v2} is collapsed into vertex v. In (a), (b) and
(c), tetrahedron t1 becomes a new dangling face, d f , an external
face, f , of tetrahedron t2, or an internal face, f ′, shared by tetra-
hedra t2 and t3, respectively. In (d), dangling face d f1 becomes a
wire edge, we. In (e) and (f), d f1 becomes a boundary edge, e′, of
simplexes incident at both u and the new vertex v.

Rk0 relation is affected for all k-simplexes in st(v1)∪ st(v2). R33,
R3,clusters, R2,clusters and R0,clusters relations are affected for all sim-
plexes belonging to st(v1) ∪ st(v2), or adjacent to simplexes in
st(v1)∪ st(v2). In this Section, we discuss in detail the different
situations which can arise and show how the entities and the rela-
tions in the NMIA data structure have to be updated. Based on this
analysis, we present an algorithm for performing edge collapse.

As discussed in Subsection 5.1, case 1, in which a k-simplex is
reduced to a (k−1)-simplex and case 2, in which two k-simplexes
may be merged into a single one, require more attention. We enu-
merate here the different situations which may arise in these two
cases. This will also help us encoding the inverse of edge collapse,
vertex split.

To this aim, we consider L = link(v1)∩ link(v2). L is a collection
of vertices and edges which can be ordered clockwise or counter-
clockwise around edge e = {v1,v2}. If e is a manifold edge, then
L is homeomorphic to a circle or to a portion of a circle. If e is a
non-manifold edge, then L is composed of several connected com-
ponents, one for each edge-based cluster incident at e. Each compo-
nent may consist of an isolated vertex or of a chain of edges. Figure
7 gives an example of L = link(v1)∩ link(v2). Edge e = {v1,v2} is
the edge to be collapsed. st(v1) is composed of tetrahedra t1, t2, t4
and of all their faces. link(v1) consists of the simplexes in st(v1)
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Figure 6: Effect of edge collapse on the six examples shown in
Figure 3. Edge e = {v1,v2} is collapsed into a new vertex v. In
(a), dangling faces d f2 and d f3, which originally intersect at edge
{u1,u2}, become one face d f2. In (b), d f3 becomes an external face
of tetrahedron t2. In (c), the two tetrahedra t2 and t3 become face-
adjacent at f ′. In (d), wire edges we1 and we2 become a single wire
edge, we1. In (e), we2 becomes a boundary edge of simplexes inci-
dent at both u and the new vertex v. In (f), the two set of simplexes
that are incident at v1 and v2, respectively, become edge-adjacent
at edge e′ after edge collapse.

that are not incident at v1, namely faces f1 and f3 with all their
boundaries. st(v2) is composed of tetrahedra t1, t3, t5 and of all their
faces. link(v2) is defined similarly to link(v1), and consists of faces
f2 and f4 with all their boundaries. Thus L consists of one edge,
namely, edge {u1,u2}.

t 4t 2
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v2t 3 t 5

u1
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f 1
f 3

f 4
f 2

t 1
e

L

Figure 7: An illustration for L = link(v1)∩ link(v2): link(v1) is
composed of faces f1, f3 and of all their boundaries. Similarly,
link(v2) is composed of faces f2, f4, and of their boundaries.
Therefore, L is composed of edge {u1,u2}. Let ω0 = {t2, t3}. Then,
l(ω0) = {t2, t3}, and c(ω0) = {t1}.

Let us consider ωi ∈ L: ωi can be a vertex, u, or an edge {u1,u2}.

We denote with l(ωi) the set of simplexes incident at ωi, i.e. in
st(ωi), and incident at either v1 or v2 but not in both. In the exam-
ple of Figure 7, L has only one component, namely edge {u1,u2},
which we call ω0. Thus, l(ω0) = {t2, t3}. We denote with c(ωi) the
set of simplexes incident at ωi, i.e., in st(ωi), and in both v1 and v2.
In the example of Figure 7, c(ω0) = {t1}.

We consider a simplex σ ∈ c(ωi), which can be either a tetrahe-
dron, or a dangling face, and two simplexes σ1 and σ2, incident at
v1 and v2, respectively, and belonging to l(ωi). Note that σ1 and σ2
can be tetrahedra, dangling faces or wire edges. This latter case is
possible only when ωi is a vertex.

The possible combinations of σ1, σ and σ2 are reported in Table
1. The first eight cases apply when ωi is an edge. The other eight
cases apply when ωi is a vertex. In the columns corresponding to
σ1, σ and σ2, the symbol T, F, E or ∅, means that the corresponding
simplex is a tetrahedron, a dangling face, a wire edge or is non-
existent, respectively. When ωi is an edge, σ is always bounded
by four vertices {v1,v2,ωi} and can be either a tetrahedron or a
hole. In both cases, it shares face {v1,ωi} with σ1 and face {v2,ωi}
with σ2. If σ is a tetrahedron, it undergoes a dimension-reduction
transformation into face {v,ωi}. In all cases, simplexes {v1,ωi}
and {v2,ωi} are merged into simplex {v,ωi}. In the NMIA data
structure, we are only interested in the case in which {v,ωi} is a
dangling face, since we do not encode the faces bounding a tetra-
hedron explicitly.

When ωi is a vertex, σ can be either a dangling face or a hole, but,
in both cases, it is bounded by three vertices {v1,v2,ωi}. Simplexes
σ1 and σ2 share edges {v1,ωi} and {v2,ωi} with σ, respectively.
Note that, in general, there are several σ1 and σ2 in l(ωi), except
when σ1 or σ2 are wire edges: in this case, they are completely
defined by {v1,ωi} or {v2,ωi}. Moreover, either σ1 or σ2 can be a
wire edge only if σ is empty.

ωi is an edge {u1,u2} ωi is a vertex u
Case σ1 σ σ2 Case σ1 σ σ2

1 ∅ T ∅ 9 ∅ F ∅
2 T T ∅ 10 T/F F ∅
3 ∅ T T 11 ∅ F T/F
4 T T T 12 T/F F T/F
5 F ∅ F 13 E ∅ E
6 T ∅ F 14 T/F ∅ E
7 F ∅ T 15 E ∅ T/F
8 T ∅ T 16 T/F ∅ T/F

Table 1: Cases for simplex σ in c(ωi) and simplexes σ1 and σ2 in
l(ωi). T = tetrahedron, F = dangling face, E = wire edge, ∅ stands
for the absence of a simplex.

Examples of cases 1, 2, 4, 9, 10 and 12 in Table 1 are shown
in Figures 2(a) to 2(f). The examples in Figures 3(a) to 3(f) are
instances of cases 5, 6, 8, 13, 14 and 16, respectively. Cases 3, 7,
11 and 15 are symmetric to cases 2, 6, 10 and 14 respectively.

In what follows, we examine how the entities and the relations
are affected in the sixteen cases shown in Table 1. We consider L
as an ordered sequence of elements ωi, where ωi is either a vertex
or an edge. We denote as ωi−1 and ωi+1, respectively, the prede-
cessor and the successor of ωi along L. Note that ωi does not need
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to be connected to either ωi−1 or ωi+1. Also, ωi can be an isolated
vertex, or a vertex which is common to the two edges ωi−1 and
ωi+1, or an extreme vertex of either ωi−1 or ωi+1. These two latter
cases occur when σ is a dangling face {u,v1,v2} and {ωi−1,v1,v2}
or {ωi+1,v1,v2}, or both, define an empty tetrahedral hole. Thus,
similarly to isolated vertices, we consider such a vertex as a sepa-
rate element of L and not as an extreme vertex of an edge.
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Figure 8: Examples of the updates needed at edge {u1,u2} after
the collapse of edge e: In (a), tetrahedron t1 becomes a dangling
face d f . R2,cluster(d f ) at edge {u1,u2} consists of dangling face
d f2 and tetrahedron t2. The adjacency relations of the original
neighbors of t1 at edge {u1,u2}, namely d f2 and t2, need to be
updated. d f replaces t1 in R2,cluster(d f2) and R3,cluster(t2). In (b),
after edge e is collapsed, tetrahedron t2 becomes a boundary face of
tetrahedron t3, and tetrahedra t1 and t3 become immediate neigh-
bors of each other at edge {u1,u2}. Therefore, t2 is removed from
R33(t3) relation and t1 is added to R3,cluster(t3). t3 replaces t2 in
R3,cluster(t1). In (c), dangling face d f2 is merged into dangling face
d f1. d f1 and tetrahedron t4 become immediate neighbors of each
other. So t4 replaces d f2 in R2,cluster(d f1), and d f1 replaces d f2 in
R3,cluster(t4).

When ωi = {u1,u2} is an edge, (which holds for cases 1 to 8 in
Table 1,) the collapse of edge e = {v1,v2} may cause the 1- and
2-adjacency (i.e., R2,clusters, R3,clusters and R33) relations to change
for simplexes incident at edge {u1,u2}. These relations need to be
updated. The three examples in Figure 8 illustrate how the update
is done at {u1,u2}. In each example, the left part illustrates the
situation before edge collapse, and the right part after. After edge

collapse, adjacency relations (R3,clusters or R2,clusters) at the new
edges {u1,v} and {u2,v} are updated in a similar fashion. Spe-
cial attention has to be given, however, when ωi = {u1,u2} is con-
nected to ωi−1 or to ωi+1 because neighboring simplexes may also
be merged due to the collapse of edge e. Figure 9(a) illustrates a
situation in which ωi is not connected to its predessesor or suc-
cessor, and Figure 9(b), a situation in which ωi is connected to its
predessesor. In Figure 9(a), tetrahedron t1 is incident at the edge
e = {v1,v2} to be collapsed. Let ω0 be edge {u1,u2}. ω0 is not
connected to any other components of L since it is the only compo-
nent of L. Dangling face d f1 is the immediate neighbor of t1 at edge
{u1,v1}, and dangling face d f2 is the immediate neighbor of t1 at
edge {u1,v2}. After edge collapse, d f1 and d f2 become 1-adjacent
at the new edge, {u1,v}. In Figure 9(b), the edge to be collapsed is
e = {v1,v2}. L has two components, namely {u3,u1} and {u1,u2},
which we call ω0 and ω1. Similar to the example of 9(a), before
edge collapse, dangling faces d f1 and d f2 are neighbors of t1 at
edges {u1,v1} and {u1,v2}, respectively. After edge collapse, d f2
is merged to d f1.
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Figure 9: Two examples to show the update of the edge-based
clusters at edge {u1,v} after an edge collapse operation. In (a),
tetrahedron t1 becomes a dangling face d f3. Dangling faces d f1
and d f2, which are neighbors of t1 at edge {u1,v1} and edge
{u1,v2}, respectively, become neighbors of each other at the new
edge {u1,v} Therefore, R2,clusters(d f3) consists of d f1 and d f2. d f3
replaces t1 in both R2,clusters(d f1) and R2,clusters(d f2). In (b), after
edge collapse, tetrahedron t1 becomes dangling face d f3, and dan-
gling face d f1 is merged into dangling face d f2. So R2,clusters(d f3)
consists of only d f1 and R2,clusters(d f1) consists of only d f3.

When ωi = u is a vertex, (cases 9 to 16 in Table 1,) the collapse
of edge e = {v1,v2} causes two 1-connect clusters to merge into
one. R0,clusters at the new vertex v needs to be defined. We need
to update R3,clusters or R2,clusters relations at edge {u,v}. These up-
dates are completely similar to those done for simplexes incident at
edge {u1,v} and {u2,v} for the case where ωi is an edge.

We summarize now the various cases in an edge collapse algo-
rithm. Let Σ be the given complex. Let e = {v1,v2} be the edge
to be collapsed into a vertex v. Recall that L = link(v1)∩ link(v2).
We denote with ΩL1 the set of top simplexes (tetrahedra, dangling
faces and wire edge) σ such that σ is incident at v1 and in some
entity of link(v1)−L, and with ΩL2 the set of simplexes incident at
v2 and in some entity of link(v2)−L.

The Edge Collapse algorithm performs the following steps:
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Step 1: Compute L, ΩL1, ΩL2, and, for each ωi ∈ L, l(ωi) and
c(ωi) as follows:

1. Compute st(v1) and st(v2) by using R0,clusters(v1) and
R0,clusters(v2), respectively.

2. Compute link(v1) and link(v2) from the boundary relations
of the entities in st(v1) and st(v2).

3. Compute L = link(v1)∩ link(v2). If a face exists in L, the
edge collapse operation is invalid.

4. For each ωi ∈ L, compute l(ωi) and c(ωi) by using R0,clusters,
R2,clusters and R3,clusters relations.

5. Compute ΩL1, ΩL2 from L, st(v1) and st(v2).

Step 2: For each simplex ωi ∈ L:
If ωi = {u1,u2} is an edge,

1. Perform validity check to ensure that the region
{v1,v2,u1,u2} is either a tetrahedron or is empty.

2. Case 1: mark σ as deleted, and create a new dangling face σ′

in Σ.
Cases 2, 3 and 4: mark σ as deleted.
Cases 5 and 6: mark σ2 as deleted.
Case 7: mark σ1 as deleted.

If ωi = u is a vertex,

1. Perform validity check to ensure that the region {v1,v2,u} is
either a dangling face or is empty.

2. Cases 9 to 12: mark σ as deleted.
Case 9: create new a wire edge σ′ in Σ,
Cases 13 and 14: mark σ2 as deleted.
Case 15: mark σ1 as deleted.

Step 3: For each simplex ωi ∈ L:
Update the relations affected at the neighborhood of ωi, as
described before.

Step 4: For each simplex σ′ ∈ ΩL1, Update Rk0(σ′) by replacing
v1 with v.

Step 5: For each simplex σ′ ∈ ΩL2, Update Rk0(σ′) by replacing
v2 with v.

Step 6: Update R0,clusters(v). Delete all the marked simplexes.

7. Performing a Vertex Split

7.1. An Encoding Scheme for Vertex Split

In this Subsection, we describe a compact encoding scheme for a
vertex split. The encoding scheme is composed of two parts: a la-
beling of the entities in the restricted star of v and an encoding of
L = link(v1)∩ link(v2) together with the cases discussed in Section
6. The labeling of the entities in the star of v allows us to mod-
ify all the simplexes which become incident at v1 or v2 to generate
the new k-simplexes obtained by expanding (k−1)-simplexes and
to duplicate simplexes. The encoding of L is necessary for encod-
ing boundary faces and edges which are duplicated and expanded
(since they are not described in the NMIA data structure), and for
updating topological relations locally.

For every k-simplex σ′ in st(v), we store a 2-bit code, c1(σ′)
for detecting whether σ′ after the split becomes incident at v1

(c1(σ′) = 00) or at v2 (c1(σ′) = 01) or it is duplicated into two k-
simplexes incident at v1 and at v2 respectively (c1(σ′) = 10), or it is
expanded into a (k+1)-simplex incident at edge e (c1(σ′) = 11). A
unique traversal of st(v) is defined by following the order in which
the representative simplexes are encoded in the R0,clusters relation
and a predefined traversal inside each vertex-based cluster.

For each element ωi ∈ L, we store:

• a 4-bit code c2(ωi), which encodes the sixteen cases shown in
Table 1;

• 1-bit code c3(ωi) which indicates whether ωi is connected to
ωi−1 through vertex u. If ωi is connected to ωi−1, then vertex u
is not encoded;

• one or two indexes of the vertices which define ωi (only one
vertex is encoded when ωi is a vertex or is connected to ωi−1);

• other information which depend on the specific case according
to Table 1:

– Case 1: index of the dangling face {u1,u2,v}, which be-
comes a tetrahedron {u1,u2,v1,v2};

– Cases 2, 4, 6 and 8: index of σ1;
– Cases 3 and 7: index of σ2;
– Case 5: index of the dangling face {u1,u2,v}, which be-

comes two faces {u1,u2,v1} and {u1,u2,v2};
– Case 9: index of wire edge {u,v}, which becomes a dangling

face {u,v1,v2};
– Cases 10 and 14: index of σ1;
– Cases 11 and 15: index of σ2;
– Cases 12 and 16: index of σ1 and σ2.
– Case 13: index of wire edge {u,v}, which becomes two wire

edges {u,v1} and {u,v2};
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Figure 10: Two examples of encoding a vertex split: In (a), the
encoding of L is [4 0 u1 u2 t2]. In (b), the encoding of L is [1 0 u1 u2
d f1; 5 1 u3 d f2].

Figure 10 shows two examples of the encoding scheme. In the
example of Figure 10(a), L consists of just one element, namely
{u1,u2}, which we call ω0. The encoding of L relative to ω0 is
[4 0 u1 u2 t2]. The first field is code c2, meaning that we are in
case 4. The second field indicates that the first vertex of ω0 is not
connected to the last vertex of ω0. So, both vertices u1 and u2 are
found in the next field, which is followed by tetrahedron t2 incident
at v1. During vertex split, t3 is retrieved from R33(t2) relation, and,
a new tetrahedron t1 is created, which is incident at the new edge e.

In Figure 10(b), L consists of two elments, {u1,u2} and {u2,u3},

c© The Eurographics Association 2004.

177



Leila De Floriani & Annie Hui / Update operations on 3D simplicial decompositions of non-manifold objects

that we call ω0 and ω1, respectively. The encoding of L is [1 0 u1
u2 d f1; 5 1 u3 d f2]. ω0 is in case 1. The value 0 in the next field
indicates that the first vertex of ω0 is not connected to the last vertex
of ω1. The simplex incident at ω0 is d f1. During vertex split, d f1 is
expanded into a tetrahedron incident at both v1 and v2. ω1 is in case
5. The value 1 in the next field means that first vertex of ω1 is the
same as the last vertex of ω0. The second vertex of ω1 is u3, which
is given in the third field. The last field gives the simplex, d f2,
which is incident at ω1. During vertex split, d f2 becomes incident
at v1, and a new dangling face incident at v2 is created.

7.2. An Algorithm for Performing Vertex Split

The algorithm for performing vertex split uses the encoding of the
vertex split operation described in Section 7.1 and updates the sim-
plicial complex Σ on which the vertex split is applied through the
following steps:

Step 1: Compute st(v) by retrieving R01(v) for wire edges
incident at v, R02(v) for dangling faces incident at v and R03(v)
relations from R0,clusters(v).

Step 2: For each σ′ ∈ st(v),

• If c1(σ′) = 00 (σ′ becomes incident at v1),
then update Rk0(σ′),k = 2 or 3 by replacing v with v1.

• If c1(σ′) = 01 (σ′ becomes incident at v2),
then update Rk0(σ′),k = 2 or 3 by replacing v with v2.

• If c1(σ′) = 10 (σ′ is duplicated into two simplexes),
then replace k-simplex σ′,k = 1 or 2, with two new k-
simplexes σa and σb such that Rk0(σa) is obtained from
Rk0(σ′) by replacing v with v1 and Rk0(σb) is obtained from
Rk0(σ′) by replacing v with v2.

• If c1(σ′) = 11 (σ′ is expanded into a (k +1)-simplex),
then replace k-simplex σ′,k = 1 or 2, with a new (k + 1)-
simplex σ such that Rk0(σ) is obtained from Rk0(σ′) by re-
placing v with {v1,v2}.

Step 3: For each ωi ∈ L :

Case 2: (σ1 is already incident at v1) A new tetrahedron σ =
{u1,u2,v1,v2} is created which shares face {u1,u2,v1} with
σ1.

Case 3: (σ2 is already incident at v2) A new tetrahedron σ =
{u1,u2,v1,v2} is created which shares face {u1,u2,v2} with
σ2.

Case 4: (σ1 is already incident at v1 and σ2 is already inci-
dent at v1) A new tetrahedron σ is created which shares faces
{u1,u2,v1} and {u1,u2,v2} with σ1 and σ2, respectively.

Case 6: (σ1 is already incident at v1) A new dangling face σ2 =
{u1,u2,v2} is created.

Case 7: (σ2 is already incident at v2) A new dangling face σ1 =
{u1,u2,v1} is created.

Cases 10, 11 and 12: A new dangling face σ = {u,v1,v2} is
created.

Case 14: (σ1 is already incident at v1) A new wire edge σ2 =
{u,v2} is created.

Case 15: (σ2 is already incident at v2) A new wire edge σ1 =
{u,v1} is created.

All other cases: nothing to be done.

In all cases, define Rk0 for each newly created k-simplex.

Step 4: Define adjacency and incidence relations for each newly
created entity. Update relations for each simplex σ′ incident at
an element ωi ∈ L and at v1 or at v2, and update relations for
each neighbor of σ′. This step reverses the modifications to the
adjacency and incidence relations encoded in the NMIA data
structure performed in edge collapse (see Section 6).

Step 5: Compute R0,clusters(v1) and R0,clusters(v2).

8. A Non-Manifold Multi-Tessellation for 3D simplicial
complexes

The basic ingredients in a Non-Manifold Multi-Tessellation (NMT)
are modifications and a dependency relation among modifications.
A modification of a complex Σ is an operation that replaces a set
of simplexes from Σ with another set of simplexes, under the con-
straint that the result is still a simplicial complex [5]. A dependency
relation among refinement modifications is defined as follows: a
modification M depends on another modification M’ if M deletes
some simplexes introduced by M’. The transitive closure of the de-
pendency relation defines a partial order among a set of refinement
modifications applied to the complex at coarsest resolution, called
the base complex.

A Non-manifold Multi-Tessellation (NMT) is a partially ordered
set of nodes {M} = ({M0,M1, . . . , Mh},≺), where each node Mi,
i = 1,2, ..,h represents both a refinement modification and its in-
verse coarsening modification and node M0 is the base complex
[5]. A subset S of the nodes of an NMT is called closed with re-
spect to the partial order if and only if, for each node M j ∈ S, all
nodes Mi, such that Mi precedes M j , are also in S. The modifica-
tions corresponding to a closed subset of nodes can be applied to
the base complex Σ0 in any total order extending the partial order.
This produces an extracted mesh ΣS at a level of resolution interme-
diate between the base complex and the complex at full resolution.

Here, we are interested in an NMT based on three-dimensional
simplicial complexes and built through the iterative application of
the edge collapse operation. Generating an NMT requires devel-
oping a simplification algorithm which applies edge collapse iter-
atively by starting from the most refined representation. The sim-
plification algorithm requires a cost function to decide the order in
which the edges must be collapsed [16]. The design and implemen-
tation of a simplification algorithm based on edge collapse is one
of the objectives of our future work. The data structure we plan to
develop for a 3D NMT is described below.

The root node of the NMT, M0, is encoded through the NMIA
data structure representing the base complex Σ0, while each other
node encodes all information needed to perform edge collapse and
vertex split, The edge e = {v1,v2} to be collapsed and the vertex v
into which e collapses are sufficient to perform edge collapse, while
performing a vertex split requires specifying how the simplexes in
the star of v are modified by the vertex split operation, as described
in Subsection 7.1. The dependency relation can be implicitly de-
scribed as a binary tree which encodes only the dependencies be-
tween vertex v and the two extreme vertices of edge e = {v1,v2}
and by a vertex enumeration mechanism proposed by El-Sana and
Varshney [13] for triangle meshes simplified through vertex-pair
contraction, which we have used in the implementation of the 2D
NMT [5].

c© The Eurographics Association 2004.

178



Leila De Floriani & Annie Hui / Update operations on 3D simplicial decompositions of non-manifold objects

The basis of any query on a multi-resolution model is selective
refinement, which consists of extracting a complex, that satisfies
some application-dependent requirements, such as approximating a
spatial object with a certain accuracy which can be either uniform,
or variable in space. The solution of a selective refinement query is
the extracted complex ΣS of minimum size associated with a closed
set S of modifications applied to the base complex Σ0. Selective
refinement is performed by traversing the NMT and constructing
a closed subset S of nodes, and its associated mesh ΣS either by
recursive top-down refinement applied to the base complex or by
an incremental fashion, which finds a solution to a new query by
applying refinement and coarsening modifications to the complex
obtained as a solution to a previous query. The extracted complex
is described through the NMIA data structure and the modifications
are performed on the NMIA structure by applying the vertex split
and edge collapse algorithms described in Sections 7 and 6.

9. Concluding Remarks

We have considered the problem of representing and updating a
decomposition of a non-manifold object into a 3D simplicial com-
plex as support to progressive and multi-resolution object represen-
tations.

We have described a compact and scalable implementation of
the NMIA data structure, which exhibits a overhead of just one
byte per vertex when applied to manifold objects. The implemen-
tation presented in [4] costs 1/3 more when applied to manifolds.
Moreover, the NMIA data structure requires 1/3 of the space with
respect to the incidence graph and about 2/3 of the space required
by a simplified version of the incidence graph discussed in [4].
We have also compared the NMIA data structure with a general,
dimension-independent, data structure based on the decomposition
of a d-dimensional simplicial complex into nearly manifold com-
ponents, called IQM data structure [7]. The 3D instance of the IQM
data structure requires about two more integers per manifold ver-
tex and four more integers per non-manifold vertex with respect to
the NMIA data structure. This is due to the fact that the IQM data
structure explicitly encodes the object decomposition.

We have discussed the effect of edge collapse and vertex split
operations in a 3D simplicial complex in a completely general set-
ting, which allows changing the topological type of the complex.
We have specified such operations based on the entities and re-
lations stored in the NMIA data structure, and we have proposed
an encoding for vertex splits to be used for progressive as well
as for multi-resolution volumetric representations of non-manifold
objects. The compactness of the NMIA data structure makes the
updating task on such data structure more complex than on a com-
plete, but verbose, representation such as the incidence graph.

We have implemented the NMIA data structure, an algorithm
for constructing it from the collection of top simplexes describing
the complex, navigation algorithms to retrieve adjacency and inci-
dence relations efficiently, and the algorithms for performing the
edge collapse and vertex split as described in this paper.

Figure 11 shows some experimental results we have obtained by
applying edge collapse to a simple non-manifold and non-regular
model of a wind-chime described by a 3D simplicial complex con-
sisting of 360 tetrahedra, 9 dangling faces, and 7 wire edges, (see

Figure 11(a)). We show in Figure 11(b-d) a progressively simplified
sequence after 54, 114 and 138 edge collapse operations.

(a) (b) (c) (d)
T=360, F=9 T=264, F=3 T=138, F=3 T=0, F=105

E=7 E=7 E=7 E=7

Figure 11: Simplication of a wind-chime: (a) is the original object.
(b) to (d) show the results after 54, 114 and 138 edge collapse
operations, respectively. T, F and E are the numbers of tetrahedra,
dangling faces and wire edges in the model.

In our future work, we plan to design and develop a simplifica-
tion algorithm for objects described through a 3D simplicial com-
plex, based on the technique for edge collapse described here. To
this aim, we need to design and implement suitable cost functions
to define an order in which the collapses must be performed. More-
over, we plan to develop a data structure for the 3D NMT, and to
implement selective refinement algorithms based on a representa-
tion of the extracted mesh as an NMIA data structure and on the
techniques for performing vertex split and edge collapse described
here.
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