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Abstract
Despite the growing interest in subdivision surfaces within the computer graphics and geometric processing communities, sub-
division approaches have been receiving much less attention in solid modeling. This paper presents a powerful new framework
for a subdivision scheme that is defined over a simplicial complex in any n-D space. We first present a series of definitions
to facilitate topological inquiries during the subdivision process. The scheme is derived from the double (k + 1)-directional
box splines over k-simplicial domains. Thus, it guarantees a certain level of smoothness in the limit on a regular mesh. The
subdivision rules are modified by spatial averaging to guarantee C1 smoothness near extraordinary cases. Within a single
framework, we combine the subdivision rules that can produce 1-, 2-, and 3-manifold in arbitrary n-D space. Possible solutions
for non-manifold regions between the manifolds with different dimensions are suggested as a form of selective subdivision rules
according to user preference. We briefly describe the subdivision matrix analysis to ensure a reasonable smoothness across
extraordinary topologies, and empirical results support our assumption. In addition, through modifications, we show that the
scheme can easily represent objects with singularities, such as cusps, creases, or corners. We further develop local adaptive
refinement rules that can achieve level-of-detail control for hierarchical modeling. Our implementation is based on the topo-
logical properties of a simplicial domain. Therefore, it is flexible and extendable. We also develop a solid modeling system
founded on our theoretical framework to show potential benefits of our work in industrial design, geometric processing, and
other applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling – Curve, surface, solid, and object representations

1. Introduction

Since Requicha and Voelcker [RV82]’s famous survey paper in
1982, the past two decades have witnessed significant growth in
solid modeling, especially in the development of new solid repre-
sentation techniques. In essence, we can classify the existing tech-
niques by how they represent models: namely, either continuous
or discrete representation. Parametric representations and implicit
function methods are two classic examples of the continuous rep-
resentation. Although models will be eventually approximated to
vertices, edges, and/or faces to be displayed on computer screen,
they are described as an image of continuous functions, level-sets
of functions, or patches of locally smooth functions, internally. As
Boehm et al.[BFK84] surveyed, parametric curves and surfaces had
been widely used especially in computer-aided design and manu-
facturing for a long time. Bernstein-Bézier solids [Las85], B-spline
solids, and other tensor product based [GP89] approaches are typ-
ical examples of parametric representations in solid modeling. Im-
plicit function methods, such as CSG [PS94] and blobby models
[WMW86], define an object by a solution set of implicit functions.
In this method, it is especially easy to perform set operations, such
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as intersections and unions. However, even for the implicit func-
tion method, which has a great flexibility in the topologies of the
models that it can represent, it is relatively hard to model objects
with different dimensionality (e.g., non-manifold objects) in a sin-
gle representation.

In contrast, the discrete representations include cell decomposi-
tion, triangular models for surfaces, and tetrahedral or hexahedral
models for solids. These techniques represent models as a finite
number of elements, such as pixels, voxels, triangles, or tetrahedra.
Because there is no function involved, it can represent an object
with arbitrary manifold properties, such as a combination of lines
and surfaces, self-intersecting faces, etc. We can achieve a certain
level of detail, for instance, by using an octree or a progressive
mesh [Hop96]. One obvious problem with the discrete represen-
tation is that there is no geometric interpretation on the elements.
Thus, we have to rely on approximation to obtain any geometric
properties. Topological inquiry is rather easier, but it still requires
intensive graph searching in most cases.

In fact, there is no clear distinction between these two cate-
gories in current modeling applications. Every continuous repre-
sentation has to be converted to discrete objects for computer dis-
play and practical use, and sophisticated approximation techniques

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org


Y. Chang & H. Qin / A Framework for Multi-dimensional Adaptive Subdivision Objects

have been developed to obtain geometric information from discrete
models. Accordingly, various computer-aided design systems uti-
lize both representations in a hybrid fashion. The subdivision tech-
nique is an example of new representation that shares the features
of both categories. From an initial control mesh that is essentially
discrete, we successively perform a series of computations – mostly
simple linear combinations – to obtain the next level of mesh that
is finer than the previous one. In the limit, we end up getting an ob-
ject which is an image of smooth functions. Topological informa-
tion can be acquired from the initial meshes, whereas geometrical
properties can be obtained from the subdivision matrix analysis.

In this paper, we establish a framework that is based on flexible
parametric domains and powerful subdivision rules which can be
applied to objects with complicated dimensionality. The goals of
our new approach are as follows: (1) Define a parametric domain
that provides high flexibility in modeling and simplicity in topolog-
ical inquiry; (2) Represent objects with multiple dimensions in a
single framework; (3) Develop subdivision rules for arbitrary man-
ifolds and multiple dimensions; and (4) Support features and level-
of-detail (LODs) control. We begin the discussion by reviewing the
previous work that is related to the goals specified above.

Parametric domain. For nearly all subdivision schemes,
the tensor-product is a standard way to expand the dimensions.
For instance, the Catmull-Clark scheme by Catmull and Clark
[CC78] and the Multi-linear Cell Averaging scheme by Bajaj et
al.[BSWX02] both utilize tensor-product cubic B-splines. In any
case, their parametric domains should have the form of a tensor-
product space. Some shortfalls are apparent for the tensor-product
space. First, tensor-product functions have a higher polynomial de-
gree than the functions that are natively defined over the space
with the same smoothness. Secondly, tensor-product meshes are
less flexible than others, such as triangular or tetrahedral meshes.
Also, there is an ambiguity problem if each face of the mesh is
not planar. We choose a simplicial mesh as our parametric do-
main for the framework because of its flexibility, extendability, and
the ability to accommodate non-manifolds. There has been sub-
stantial research on simplicial meshes. For instance, Floriani et
al.[FMPS02, FMP03] proposed techniques to represent progressive
non-manifolds by simplicial meshes. Most of the work on simpli-
cial meshes has been related to numerical analysis, especially for
the finite element method (FEM).

Subdivision schemes. Since one of the purposes of the frame-
work is to represent multi-dimensional objects, we are required to
have subdivision schemes that can be easily extended to various
dimensions. Moreover, as explained in the previous paragraph, we
want the schemes to be based on a simplicial domain. Cubic B-
spline subdivision is one of the simplest schemes for curves. An
example of the surface subdivision schemes that are based on 2-
simplices, or triangular meshes, is Loop’s scheme [Loo87]. For 3-D
solid objects, MacCracken and Joy [MJ96] proposed the tensor-
product extension of the Catmull-Clark subdivision in the volu-
metric setting, mainly for the purpose of free-form deformation in
3-D space. Later on, Bajaj et al. [BSWX02] further extended the
scheme with an analysis based on numerical experiments. They are
both the tensor-product extensions of the cubic B-spline curves,
and hence, are not suitable for our purpose. Most recently, Chang
et al.[CMQ02] suggested a non-tensor-product based subdivision
scheme over simplicial meshes whose limit converges to the trivari-

(a) (b) (c)

Figure 1: A non-manifold object represented by the subdivision. (a)
The initial complex that consists of 1-, 2-, and 3-simplices. (b) After
level 3. (c) The cross-section of the 3-manifold reveals the internal
structure.

ate box spline. They also proposed an interpolatory subdivision
solid scheme [CMQ03] over simplicial complexes. In fact, the cu-
bic B-spline scheme, Loop’s scheme, and Chang’s box spline solid
scheme are the direct analogs of the double directional box splines
over 1-, 2-, and 3-simplicial meshes. These three schemes serve
as basic rules for our framework. In addition, even for a single di-
mensional scheme, non-manifold regions can occur through self-
intersection. Ying et al.[YZ01] suggested modified rules for the
Loop’s scheme to deal with non-manifold surfaces. In our frame-
work, the cases are more complex than those of a single subdivision
scheme.

Non-manifolds, features and detail control. The models
represented by subdivision schemes tend to be smooth everywhere.
However, the vast majority of real-world models, especially manu-
factured objects, have sharp features. Hoppe et al.[HDD∗94] pro-
posed modifications to Loop’s scheme to represent features like
corners and creases. We follow similar approaches to introduce
features within the framework. For level-of-detail control, a con-
siderable amount of research has been done for progressive mesh
approaches. For instance, Popovic et al.[PH97] presented the idea
of a progressive simplicial complex. In our framework, we follow
the traditional local refinement method for triangular and tetrahe-
dral meshes to achieve the LODs.

The rest of the paper is organized in the following fashion. In
Section 2, we define a parametric domain and document other topo-
logical definitions, which serve as the fundamentals of our unique
framework. In Section 3, we discuss the subdivision rules, their
modifications, and a brief sketch of the analysis. We tackle the
problem of features and level-of-detail control in Section 4. Sec-
tion 5 describes the implementation of the framework in detail and
demonstrates several models generated by our framework. Finally,
we discuss future work and conclude the paper in Section 6.

2. Simplicial Complex

In the paper, we define an object in the space as a manifold, or a
union of manifolds. Topologically, a manifold is defined as a lo-
cally Euclidean countable Hausdorff space. By locally Euclidean,
we mean that for any point x on the manifold, we can find a home-
omorphic map from an open subset of R

n. In addition, there is a
manifold with boundary if the domain of a local Euclidean map is
half-space-like. From the solid modeling point of view, it is a mat-
ter of choosing a continuous, injective, and surjective function from
an appropriate domain in Euclidean space.
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Figure 2: Examples of simplices. (a) A 1-simplex, (b) a 2-simplex,
and (c) a 3-simplex.

Throughout the framework, we choose the domain to be k-
simplices in R

3 (k ≤ 3). Local Euclidean maps are defined and
evaluated by a series of subdivision rules whose supports are lim-
ited in a single simplex or a small number of adjacent simplices.
In fact, the initial control points for the subdivision rules also pro-
vide the simplicial domain of our objects. Moreover, they are not
only homeomorphic, but also satisfy the higher-level of smooth-
ness on their supports and are C1 across the simplices. In the next
few sections, we introduce several definitions related to the simpli-
cial complex that are to be utilized for various topological inquiries
during the subdivision process.

2.1. Definitions

Our domain of choice is a simplicial complex in R
n. A k-simplex S

can be defined as a set in R
n,

S = {x ∈ R
n|x =

k

∑
i=1

ci(xi −x0)}, (1)

where

ci ≥ 1,
k

∑
i=1

ci = 1, xi ∈ R
n. (2)

Since S can be uniquely determined by k + 1 points x0, x1, ...
,xk, and is independent of their ordering, we simply use a set no-
tation S := {x0,x1, ...,xk}. In this paper, we limit k to be less than
or equal to three. Note that any subset of S also forms a simplex.
Geometrically, each subset can be considered as a face, an edge, or
a vertex. We call k the dimension of the simplex S, or dim(S).

In any collection of simplices, we call a simplex a subsimplex if
it is a subset of any other member of the collection. Likewise, it is
called a proper subsimplex if it is a proper subset of a simplex in
the collection.

A simplicial complex, or a complex, C is a collection of sim-
plices where: (1) the subsimplices of each simplex in C is in C; (2)
the intersection of any two simplices of C is a subsimplex of both.
The second property prevents the introduction of T-junctions or the
improper incursion among simplices. Also, a nonempty subset D of
a simplicial complex C is called a simplicial subcomplex if it also
satisfies the properties. We simply call it a subcomplex. The dimen-
sion of a complex is defined by the highest dimension of simplices
in it.

In summary, the domain space of our framework can be ex-
pressed as the pair of the following sets:

(a) (b) (c)original

Figure 3: The subsimplices of a 3-simplex. (a) The 2-subsimplices,
(b) the 1-subsimplices, and (c) the 0-subsimplices.

C C3 C2 C1

Figure 4: Complex decomposition. A complex C can be decom-
posed into Ck’s with k = 1,2,3.

• Set of vertices

V = {x | x ∈ R
3}, (3)

• A simplicial complex

C = {S ⊂ V | S �= ∅, |S| ≤ 4}, (4)

with the following property:

If S ∈ C, then T ∈ C for all T ⊂ S, T �= ∅. (5)

2.2. Complex Decomposition

A complex C can contain simplices of different dimensions. Since
each k-simplex is to be used as a part of the initial control points of
a k-manifold, we need to decompose C with respect to the dimen-
sions of the simplices. We define Ck as the largest subcomplex of
C, whose maximal elements have the dimension k. We consider the
maximality by set inclusion order. In other words, Ck comprises of
all maximal k-simplices and their subsimplices in C. We call it a
k-subcomplex. Therefore, we can express C as:

• k-subcomplex decomposition

C = C0 ∪C1 ∪C2 ∪C3, (6)

where each Ck satisfies the following property:

If S ∈ Ck and is maximal in Ck, then dim(S) = k. (7)

In Section 3, we define k-manifolds (with boundary) over the k-
subcomplex using appropriate subdivision rules. However, Ck’s are
not mutually exclusive. This fact leads us to the need for special
rules across the intersections of the k-subcomplexes. In fact, the in-
tersections represent non-manifold regions in the result. Moreover,
some non-manifold regions could appear within C1 and C2, since
the complex is defined over R

3.

2.3. Boundary and Non-manifold Simplex

A face of a k-simplex S is simply defined as a (k− 1)-subsimplex
of S. A boundary of a complex can be defined as follows:
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(a) (b) (c)

Figure 5: Examples of complexes containing non-manifold sim-
plices. (a) Type 1, (b) type 2, and (c) type 3. The vertices or edges
in gray are the non-manifold simplices.

• Boundary simplex: If (k− 1)-simplex S ∈ C is a face of a max-
imal k-simplex, and is not a subsimplex of any other simplices,
than S defines a boundary. We call it a k-boundary simplex.

It is clear that boundary simplices and their subsimplices form a
subcomplex of C. It is denoted by ∂C.

It is not possible to define a manifold map over a certain region.
For instance, if a 1-manifold and a 2-manifold meet at a single ver-
tex, the vertex is not locally Euclidean, even though we can define
each manifold over a 1- and a 2-simplex, respectively. On the other
hand, if a 1-manifold intersects itself, it is not possible to find the
map either. We categorize the non-Euclidean part of our domain
complex as follows:

• Non-manifold simplex: A k-simplex S ∈ C is a non-manifold
simplex, if

1. S ∈ Ck ∩Cl where k �= l.
2. S ∈ Ck exclusively, and it is a face to more than two k-

simplices, or
3. S ∈ Ck exclusively, and it is a face to more than one k-

boundary simplex.

We call them a type 1, a type 2 and a type 3 non-manifold sim-
plex, respectively. We employ various strategies to tackle the non-
manifold cases. Generally, non-manifold simplices create ill-posed
problems. There could be several different solutions to meet a
particular requirement in certain applications. We rely on a user-
specific preference to resolve the problems. If no rule is specified
by the user, we use the subdivision rules for 3-manifolds to spa-
tially blend the manifolds of different dimensions. It is worthwhile
to mention that the type 2 only occurs in C1 and C2 because our
complex is defined in R

3.

3. Subdivision Scheme

In the previous section we defined the domain of the framework as
a simplicial complex. Our object can be represented by the sum of
smooth basis functions that are defined locally over the simplices
in the complex:

f (x) = ∑pN(x), (8)

where p ∈ S ∈ C with dim(S) = 1. Therefore, the 1-simplices (or
vertices) in the complex act as the control points of the shape. N(x)
is a basis function with local support defined over the complex. Ba-
sis functions form a partition of unity on C. We choose the box
spline as the function N(x) whose support lies in the 1-ring of sim-
plices. For multivariate cases, we do not use the tensor-product
generalization of splines in strong contrast to many other subdi-
vision schemes, since our domain is based on a complex. Instead,

(a) (b) (c)

Figure 6: The domain support for the box splines. The upper im-
ages are the unit cubes whose projections are taken. The thick ar-
rows are the direction vectors. For (c), we only display the support,
since it is hard to visualize a 4-hypercube.

we introduce multivariate box splines with simplex support. One
example is Loop’s scheme [Loo87] for surfaces. For 3-D, we use
the box spline solid that has been employed in our previous work
[CMQ02]. Non tensor-product box splines are particulary useful in
the subdivision process, since: (1) Their subdivision rules are ob-
tained intuitively from their definitions; (2) They can achieve com-
parable smoothness with relatively low polynomial degree.

3.1. Box Splines

Box splines can be understood as projections of hypercubes into
R

n. Because of this, each box spline ND(x) can be represented by
the collection of direction vectors D = [δ1, ...,δd ]. Note that each
δi ∈ R

k is the projection of an edge of a hypercube, and thus, is
not necessarily distinct. We employ the double (k + 1)-directional
box spline for each k-manifold defined over Ck, except k = 0. Each
double (k+1)-directional box spline has the properties as follows:

1. For k = 1, the direction vectors are chosen to be D = [1,1,1,1],
where each 1 is a unit vector lying in a 1-simplex, or a line seg-
ment. It is double 2-directional, but the two directions coincides
in a 1-simplex. In fact, this is exactly the same spline as the cu-
bic B-spline. As such, it follows the same properties as cubic
B-splines.

2. For k = 2, D = [(1,0),(1,0),(0,1),(0,1),(1,1),(1,1)]. The box
spline ND is the double 3-directional box spline. As shown in
Figure 6(b), its domain lies in the 1-ring of 2-simplices, or tri-
angles. Loop’s scheme is based on this box spline.

3. For k = 3, D = [e1,e1,e2,e2,e3,e3,u,u], where ek is a unit vec-
tor for each axis in R

3 and u = ∑ek. The support of the box
spline is shown in Figure 6(c). Unfortunately, it is not embedded
in the 1-ring of 3-simplices, or tetrahedra. However,by adding
few more edges, we can turn it into a simplicial complex.

Generally, the box splines satisfy the following two properties, as
proven in [dBHR93]:

1. The box spline ND is piecewise polynomial of degree |D|− k.
2. The box spline ND is a Cm function where m = |D|− |D′|− 2,

and D′ is a maximal subset of D that does not span R
k.

For instance, the double (k + 1)-directional box splines are piece-
wise polynomials of degree k +2.
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(c) (d)(b)(a)

Figure 7: Subdivision of the box splines.

(c) (d)(b)(a)

Figure 8: Split a tetrahedron and an octahedron.

3.2. Subdivision Meshes

The box splines can be expressed as a sum of the box splines with
the half-sized supports (See Figure 7). Using this property, we can
find out the rules for the subdivision scheme. We first consider the
split of the domain. As mentioned in the previous sections, our box
splines are defined over the 1-ring of k-simplices. It is easy to sub-
divide the domain if it is comprised of only 1-, or 2-simplices as
shown in Figure 7(b) and (d). Trivial edge bisection results in the
half-sized simplices of the originals in these cases. However, it is
not so simple for 3-simplices. A 3-simplex, or a tetrahedron, does
not split into congruent tetrahedra by edge bisecting. In fact, there
is no way to obtain congruent tetrahedra from any subdivision of a
tetrahedron. This is also related to the problem that a single type of
tetrahedra can not fill the entire R

3 , unlike 2-simplices, or triangles
in R

2. We resolve the problem by the following approaches:

1. The boundary of the projection of a 4-hypercube on R
3 (See

Figure 6(c)) is a rhombic dodecahedron. It is well-known that
this polytope can fill the space.

2. By introducing a few additional edges, we can decompose the
dodecahedron into several tetrahedra.

3. A single tetrahedra can be split into four congruent tetrahedra
and one octahedron, as shown in Figure 8(b). Also, an octahe-
dron can be split into eight tetrahedra and six congruent octahe-
dra (See Figure 8(d)).

4. If we keep continuing this process, then we get a semi-regular
space-filling structure called octet-truss (See Figure 9). It is not
difficult to figure out that the simplicial split of the dodecahe-
dron can be embedded in the truss, and thus can provide us the
subdivision of the 3-simplex domain.

5. We store one diagonal inside an octahedron, as shown in Figure
8(c), to keep track of the adjacency of each vertex. In fact, each
octahedron can be considered as a family of four tetrahedra.

3.3. Regular Subdivision Rules

Even though it is possible to figure out the subdivision rules us-
ing the definitions of the box splines, it is more convenient to use
the generating functions of the box splines and their recursive re-
lations. It is known that the coefficients of the generating functions

Figure 9: Octet-truss.

1 6 1 4 4 1 1
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Figure 10: Regular subdivision rules. (a) The 1-simplex rules. (b)
The 2-simplex rules.

can provide us the coefficients for the subdivision rules, as proven
in [WW01]. In general, the generating function SD(z) for the box
spline ND(x) can be expressed as:

SD(z) =
1

2d−k

d

∏
i=1

(1+ zδi), (9)

where d = |D|. Note that the power of z follows the multi-index
notation. For each k, the generating functions of the double (k+1)-
directional box splines are:

• k = 1:

SD(z) =
1
8
(1+ z)4. (10)

• k = 2:

SD(z1,z2) =
1
16

(1+ z1)
2(1+ z2)

2(1+ z1z2)
2. (11)

• k = 3:

SD(z1,z2,z3) =
1
32

(1+ z1)
2(1+ z2)

2(1+ z3)
2(1+ z1z2z3)

2.

(12)

We can find the subdivision rules for the regular simplicial
meshes by assigning the coefficients of the zδi ’s to the vertex with
the coordinates δi. We can summarize the rules as follows:

• Regular k-simplex subdivision rules:

Vertex points (for each vertex xi):

vnew =
1

2k+2

{
(2k+1 +2)xi + ∑

x j∈ρ(xi)
x j

}
. (13)

Edge points (for each edge ei = [xi,xi+1]):

enew =
1

2k+1

{
(2k−1 +1)(xi +xi+1)+ ∑

x j∈ρ(ei)
x j

}
. (14)

Cell points (for each octahedral cell [xi, ...,xi+3,x j,x j+1], with
the diagonal [x j,x j+1]):

cnew =
1
8

{
(xi + · · ·+xi+3)+2(x j +x j+1)

}
. (15)
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Figure 11: Regular 3-simplex subdivision rules. (a) Vertex point,
(b) edge point, and (c) cell point rules.

Here, we use more conventional names for 0-, 1-, 2-, and 3-
simplices, namely, vertices, edges, and cells, respectively. ρ(·) de-
notes the 1-ring of neighboring vertices of a vertex or an edge. In
the regular k-simplicial meshes, |ρ(x)| = 2k+1 − 2, and |ρ(e)| =
2k − 2 for each vertex x or edge e. Note that each k-manifold gen-
erated by the subdivision rules on the regular mesh satisfies Ck

smoothness as mentioned above.

3.4. Extraordinary Subdivision Rules

In practice, a complex C could contain a vertex or an edge, that does
not have a regular number of neighbors |ρ(·)| (or valences for ver-
tices). We call them the extraordinary cases. They require modified
rules to accommodate the lack (or the excessiveness) of neighbors.
Fortunately, the extraordinary cases are isolated over the subdivi-
sion processes. Also, some of the regular rules do not require any
extraordinary rule. For instance, the 1-simplex rules do not have
any extraordinary case. For the 2-simplex rules, there could be only
extraordinary vertices. Likewise, no extraordinary cell point rule is
required for the 3-simplex rules.

The extraordinary vertex rule for a 2-simplex has been well stud-
ied and there is a considerable amount of literature suggesting the
coefficients for the rule that guarantee at least C1 smoothness in
the limit. For instance, the original Loop scheme [Loo87] sug-
gests the coefficients for a vertex with valence m that are derived
from the discrete Fourier analysis and the eigenvalue analysis of
the subdivision matrix. We adopt the values proposed by Warren et
al.[WW01]:

• Modified 2-simplex subdivision rules:

Vertex points (|ρ(xi)| = m):

vnew = (1−mc)xi + c ∑
x j∈ρ(xi)

x j, (16)

where c = 3
16 for m = 3, c = 3

8m , otherwise.

Similar modifications are required for the 3-simplex subdivision
rules:

• Modified 3-simplex subdivision rules:

Vertex points (|ρ(xi)| = m):

vnew =
9

16
xi +

7
16m ∑

x j∈ρ(xi)
x j. (17)

Edge points (|ρ(ei)| = m):

enew =
5
16

(xi +xi+1)+
3

8m ∑
x j∈ρ(ei)

x j. (18)

(a) (b) (c)
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Figure 12: Modified k-simplex subdivision rules.

(a) (b) (c)

Figure 13: Examples of manifolds with boundary. (a) A 1-manifold
with boundary. (b) A 2-manifold with boundary. (b) A 3-manifold
with boundary.

3.5. Manifold with Boundary and Non-manifold Region

The boundaries of k-manifolds cannot be represented by the k-
simplex subdivision rules, because they are defined by the faces
of k -simplices. Instead, we use the (k − 1)-simplex subdivision
rules to represent the boundaries. Since all of the subdivision rules
rely only on the 1-rings of neighbors, this approach causes no addi-
tional trouble between the boundary and the interior simplices. It is,
in fact, a standard approach for most subdivision surface schemes.
Figure 13 demonstrates examples of such boundary cases.

Some regions of the complex require special rules because they
cannot serve as the domain of manifolds. We categorize the cases
into three types, as explained in Section 2.3. In each case, we rely
on user input to determine which rules to apply. If the user has not
provided a choice, we try to find the best possible way to deal with
it. Ying et al.[YZ01] proposed detailed approaches to overcome
non-manifold topology with subdivision surfaces. They involve a
the specially modified Loop’s scheme and a geometric fitting pro-
cess. Since our domain is in R

3 and we have the 3-simplex sub-
division rules that can accept an arbitrary manifold with lower di-
mension, our solutions could be much simpler, as described below.

(a) (b) (c)

Figure 14: Examples of non-manifold cases. (a) A type 1 case by
the 2- and 3-manifold intersection. (b) A type 2 case by a single
1-manifold. (c) The cross-section of the type 2 case.
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(a) (b) (c)

Figure 15: Type 3 non-manifold rules. (a) The initial complex. (b)
The subdivision by Rule G-1. (c) The subdivision by Rule G-2. The
red vertex preserves its position in (b), while it is blended in (c).

Recall that the dimension of a non-manifold simplex is either zero
(a vertex), or one (an edge):

• Type 1 is a region where the manifolds with different dimensions
meet. In this case, we can follow the subdivision rules for one
k-simplex of our choice. The others ignore the region (no rule
applied).

• Type 2 is a region where a multiple manifold of a single di-
mension intersects. This region can be considered as a self-
intersection. One possible solution is to choose one pair of the
simplices on which we apply the subdivision rule. The others
ignore the region (no rule applied).

• Type 3 is a region where the boundaries of multiple manifolds
of a single dimension coincide. There is no specific solution for
this case, except the general rules below.

• Regardless of the type, we can apply one of the general rules as
follows:

Rule G-1 Treat the intersection as a 0-, or 1-singularity.
Rule G-2 Use the 3-simplex subdivision rules with the relief

topology condition (only consider connectivity).

By a subdivision rule with the relief topology condition, we mean
that the rule only considers the connectivity between each vertex
when acquiring the 1-ring of neighbors, regardless of the existence
of a simplex in between. Figure 14 and 15 illustrate examples of
non-manifold cases. In Figure 14(a), a 2-mainfold (the purple area)
intersects with a 3-manifold (the blue area). Therefore, it forms a
type 1 case. For this particular case, a user has decided to follow the
2-manifold rule. Thus, the intersected area follows the 2-manifold
boundary rule, and the 3-manifold is blended into it. Figure 14(b)
and (c) show typical type 2 cases. In Figure 14(b), the 1-manifold
intersects itself at a point (the red vertex). A multiple number of
surfaces intersects at an edge in Figure 14(c). For both cases, we
use Rule G-2 to blend non-manifold parts into the bodies. Figure
15 shows the effects of the different rules. In Figure 15(b), the user
selects the red vertex to be a singularity (Rule G-1). Hence, we only
apply the 0-mask (i.e., the 1×1 identity matrix) on the vertex dur-
ing the subdivision process. Thus, it preserves the position during
the subdivision. However, in Figure 15(c), we follow Rule G-2. As
a result, the vertex has been moved according to the positions of
the 1-ring neighbors because we use the subdivision rules for 3-
simplices. In the end, the final shape is much smoother and all the
boundaries are well blended. We should mention that the suggested
rules do not represent all the possible solutions. Nonetheless, we
can introduce a new rule depending on the requirement of a partic-
ular application.

3.6. Analysis

Smoothness analysis is required only for the extraordinary cases,
since the regular rules are based on the recursive property of the
box splines and the generating functions. The convergence and
smoothness of the regular cases are well-documented in [dBHR93]
and [WW01]. For the 1-simplex rules, there is no extraordinary
case, and thus, no extraordinary analysis is required. The 2-simplex
rules require analysis of the extraordinary vertex case. This analy-
sis, based on the spectral analysis technique, has been proposed
by many researchers. For instance, Micchelli [MP87], Prautzsch
[Pra85, Pra98], Reif [Rei95b, Rei95a], and more recently, Zorin
[ZSS96, Zor00] investigated the sufficient and necessary conditions
of convergence and the C1 smoothness. Given the abundance of the
related literature and in the interest of space, we only sketch the
idea in brief.

Since the subdivision process is a linear combination, in essence,
we can represent the rules locally by the subdivision matrix S,

p�+1 = Sp�, (19)

where p� consists of a vertex x� at the subdivision level � and its
neighbors x� = [x�

1, ...,x
�
m]. We assume that λi’s are the (left) eigen-

values of S in non-increasing order. If the set of the initial ver-
tices p0 is expressed by the corresponding eigenvectors vi in the
eigenspace of the matrix S,

p0 = a0v0 +a1v1 + · · ·+anvn, (20)

the limit process can be expressed as

p� = S�p0 = λ�
0a0v0 +λ�

1a1v1 + · · ·+λ�
nanvn. (21)

Hence, the limit position x∞ of x0 can be expressed by,

x∞ =
λ0x0

1 + · · ·+λmx0
m

λ0 + · · ·+λm
, (22)

under the condition:

λ0 = 1 > λ1 ≥ λ2 > λ3, · · · ,λn. (23)

As shown in Figure 12(a), the matrix S has a cyclic structure due
to its planar symmetry in the 2-simplex case. Therefore, after re-
ordering p0, it is possible to apply the discrete Fourier transform on
S to obtain the closed form of the eigenvalues. Combined with the
condition (23), this leads us to the coefficients of the subdivision
rule (16). Accompanying analysis on the characteristic map sug-
gested by Reif [Rei95b] can guarantee the C1 smoothness around
the vertex.

The same process can be applied to the 3-simplex edge case to
prove C1 smoothness, because it still carries the planar symme-
try in S. However, the subdivision matrix for the 3-simplex vertex
rule does not have any symmetry at all in general. This results in
the failure of the application of the discrete Fourier transform, and
only a numerical process can be employed to acquire the eigenval-
ues. In fact, Bajaj et al.[BSWX02] suggested the condition for C1

smoothness of three dimensional case as:

λ0 = 1 > λ1 ≥ λ2 ≥ λ3 > λ4, · · · ,λn, (24)

through their empirical analysis. Our suggested values are based on
the spatial averaging and the assumption of the even distribution of
the valences of the vertices in the 1-ring planar graph. The eigen-
values for our subdivision matrix have confirmed that the condition
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(24) is satisfied for most of the cases, except very small |ρ(·)| (va-
lence 4, in particular) which hardly occurs in any real applications.
Nonetheless, our experiments show that there are no visible degen-
erations of the 3-manifold even after the very large number of the
subdivision processes. More in-depth analysis on the 3-D cases is
not yet fully explored, and it will be the subject of our future pub-
lication.

4. Singularity and Adaptivity

Even though the subdivision rules that we have presented so far are
ideal for representing smooth objects, it is desirable to have a model
with sharp features, such as cusps, creases, or corners, especially in
real-world applications. Also, we may want to have more details in
some part of the model without subdividing the whole complex. In
the following sections, we discuss the extensions of the framework
that can increase its benefit in practical solid modeling.

4.1. Singularity Representation

Hoppe et al.[HDD∗94] suggested a modification of Loop’s scheme
to represent sharp features within smooth surfaces. Our basic idea
is similar to theirs. However, we generalize the approach to apply
to multi-dimensional models.

A manifold defined by the subdivision rules is C1 smooth over
the complex C except in non-manifold regions. To represent fea-
tures within the manifold: (1) We need to specify the area of the
domain where the features occur; (2) We need to specify the subdi-
vision rules to represent the features in the manifold. Among many
types of features, we only consider “sharp" features, where the
manifold is continuous, but is not differentiable. We call this type
of features a singularity for convenience. We define a k-singular
simplex by:

• k-singular simplex: A k-simplex S ∈ C is a k-singular simplex, if
and only if: (1) There exists no C1 map to l-manifolds defined
over any simplex T ∈ C, where S ⊂ T and k < l. (2) It is pos-
sible to define a differentiable map on the singular simplex to
k-manifolds.

We consider a subcomplex S ⊂C, which is a collection of all singu-
lar simplices in C. Since they are a complex by themselves, all def-
initions and subdivision rules that are applied to the complex C are
also applicable to S. Basically, S generates embedded manifolds
within the original manifolds on C. When applying the subdivision
rules, if a vertex x or an edge e belongs to a maximal simplex in
S, we only follow the subdivision rules that match the dimension
of the simplex, and ignore any other simplices that may contain
the singular simplex. Figure 16 illustrates examples of singularities
which our framework can represent. As shown in Figure 16(a), if a
vertex (a 1-simplex) is assigned to be singular, then the scheme only
applies the 0-mask on the vertex during the subdivision. Therefore,
the vertex does not change its position at each subdivision level.
However, other vertices around it follow the normal rules. As a re-
sult, we can obtain an object which is smooth except at one singular
vertex and in its local area. This singularity is particularly useful to
generate a cusp on the part of a manifold. In Figure 16(b), a user
has assigned one vertex and all edges that go through it as singular.
The 0-mask is applied to the vertex, and each edge follows the 1-
simplex edge rule. It effectively produces a corner and three creases

(a) (b) (c)

Figure 16: Examples of singularities in manifolds. (a) A singular
vertex. (b) A corner and creases. (c) A 2-manifold embedded in the
3-manifold.

(a) (b) (c) (d) (e)

Figure 17: Local refinement rules. (a) Red Rule and (b) Green Rule
for local triangulation. (c) Red Rule, (d) Green-III Rule, and (e)
Green-I Rule for local tetrahedralization.

starting from it. The case shown in Figure 16(c) is more subtle. The
user has introduced a 2-manifold singular region in the middle of
the 3-manifold. As a result, the 3-manifold is split into two parts
along with the singular surface. Both parts are smooth inside and
outside, but the intersection is only smooth along with the tangent
direction of the singularity. These types of singularities are espe-
cially useful if we want to design or fit objects with heterogeneous
material. For instance, we can model a geological image containing
streams and mineral veins (1- and 2-singularities) with ease.

4.2. Local Adaptive Refinement

During the process of modeling an object represented by our frame-
work, a situation can occur, that requires finer simplices than origi-
nally given. For instance, we may want to generate very fine details
on a certain region of the manifold that is defined over one sim-
plex originally. Since the subdivision rules generate a C1 smooth
box spline on a single simplex, it is not possible to achieve high-
level of detail without splitting the simplex itself. One obvious solu-
tion is a global refinement of the entire complex. This surely would
work, but at the expense of the size of the complex and the mem-
ory consumption. If we simply split a single simplex, the integrity
of the complex will be broken, since the neighboring simplices be-
come non-simplicial by the introduction of cracks, or T-junctions.
We follow typical Red-Green split rules to avoid the situation (See
Figure 17). For the 1-simplex case, no special rule is needed. For
the 2-simplex case, only the 1-ring of the adjacent simplices are
affected by Green rule (Figure 17(b)). For 3-simplices, the 1-ring
of the adjacent simplices are split by Green-III rule (Figure 17(d)),
while the 2-ring of the neighboring simplices and the edge-sharing
simplices are modified by Green-I rule (Figure 17(e)). For an octa-
hedral cell, we simply split it into four tetrahedra, without effecting
the neighbors (See Figure 18(a) and (b)). Then we can apply Red-
Green rules as usual.
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5. Implementation

In this section, we discuss detailed issues related to the implemen-
tation of the framework and some of results that are from our ex-
perimental design system.

5.1. Input Data

As an input, the framework takes a combination of the vertex set
V , the complex C, and the singular subcomplex S. However, since
subsimplices can be induced from maximal simplices, we do not
need all the simplices in C. So, in the implementation, we only take
the following data as an input.

• Set of vertices: V = {x | x ∈ R
3}.

• Set of maximal simplices:
max(C) = {S ∈ C | S : maximal}.

• Set of maximal singular simplices:
max(S) = {T ∈ S | T : maximal}.

• Set of combined maximal:
M = max(C)∪max(S).

These are the minimum data that are required to reconstruct the
complex and the other information. Additional input can include
user-specific preferences for each non-manifold cases. Since we
heavily rely on set operations on the complex, an efficient data
structure is necessary.

5.2. Complex Construction

We reconstruct the complex C, the decomposition Ck, the boundary
∂C, and the type 2 non-manifold simplices according to the follow-
ing process:

• Initialize C as empty
• For each k = 0,1,2,3:

1. For each k-simplex S ∈M:
2. Put S in Ck.
3. For each l-subsimplex T ⊂ S with l < k.
4. Put T in Ck.
5. Construct ρ(S) if l = 0, or 1.
6. For each new (k−1)-subsimplex (face) T :
7. If ( T belongs to only one k-simplex),
8. Tag T as boundary.
9. Else if ( T belongs to more than two k-simplex),

10. Tag T as non-manifold type 2.

Once the complex is constructed, we figure out the other types of
non-manifold simplices. This has to be done after the construction,
because we need the boundary and the decomposition information:

• For each k = 0,1:

1. For each k-simplex S ∈ C:
2. If (S ∈ Ck and S ∈ Cl and k �= l),
3. Tag T as non-manifold type 1.
4. Else if (type-three-test(S)==true)
5. Tag T as non-manifold type 3.

Note that, the type 3 test is more complex than the others. It requires
the computation of the adjacency graph of ρ(S) for each 0- or 1-
simplex S, and the component test:

• type-three-test(S) is true if and only if:

(a) (b) (c)

Figure 18: (a) and (b) show a 4 split of an octahedron. (c) The 1-
ring neighborhood of the type 3 non-manifold vertex. It contains 2
components.

1. S has been tagged as boundary.
2. The adjacency graph of ρ(S) contains more than one compo-

nent.

Figure 18(c) shows how this process works. Once the steps are
complete, we are ready to choose the appropriate subdivision rules
for each vertex and edge. Note that the subsimplices induced from
maximal simplices are required only for the neighborhood test and
the boundary/manifold test. It can be safely removed from the
memory once every step is done.

5.3. Subdivision Process

We construct the subdivision matrix and the 1-ring neighbors for
each vertex and edge using the information gathered in the previous
steps. Additional user input is considered to treat the non-manifold
region. Then, we output V ′ and C′ as the next level of the vertices
and the complex:

• For each vertex x in C:

1. Filter ρ(x) to contain only the same type of vertices.
2. Choose the subdivision matrix Sx.
3. Compute the vertex point vnew by filtered ρ(S) and Sx
4. Associate vnew with x.

We follow the exactly same steps for each edge to obtain new edge
points. Once the new vertex and edge points have been computed,
we split each simplex:

• For each k = 0,1,2,3:

1. For each k-simplex S ∈ C:
2. If (k == 0 or 1),
3. Put vnew or enew associated with S in V ′.
4. Else
5. If S is an octahedron cell,
6. Compute the cell point cnew.
7. Put cnew in V ′.
8. Split S by vnew, enew and cnewif required.
9. Put the split simplices in C′.

Finally, we obtain the finer complex C′ with the new vertices V ′.
We may continue the steps from Section 5.2 to achieve more sub-
division level.

5.4. Results

We have implemented a basic design system based on our frame-
work. We present a few examples from the results of our system.
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Figures 19(a-c) show a simple screw model by less than 20 control
points. Four blades consist of surfaces, where the core is a solid ob-
ject. The cross-section shows the inner structure of the core. In Fig-
ures 19(d-f), we use a simple spiral equation to generate the solid
spring part. The valve part comprises a solid cap and a cylinder
which is a surface model. All parts are represented within a single
complex mesh and the non-manifold parts are smoothly blended.
In Figures 19(g-i), we have designed a part of a ship that consists
of the solid bow, a few decks and a part of the hull. Figures 20(a-c)
illustrate a mechanical part with non-trivial topology. The handle is
a 2-manifold surface model, whereas the other parts are all solid.
We use the singularity rules to make the rounded corners, the sharp
corners, the flat surfaces and the circular holes. The framework has
the potential to be a great animation character modeling tool, as
shown in Figures 20(d-f). Oftentimes, animation characters con-
tain manifolds of different dimensions, and our framework can han-
dle them easily. Finally, Figures 20(g-i) show an experiment with
material properties. We assign tension values at the initial level,
and the subdivision rules smoothly blend them into the structure.
In all figures, we use the same color scheme to represent different
manifolds. Blue color represents 2-manifolds or the boundaries of
3-manifolds, while orange color is for the insides of 3-manifolds.
Each vertex and edge are colored according to the subdivision rules
that are applied to them. Red vertices are singular, and green and
blue vertices are the vertices where we apply the 1- and 2-simplex
rules, respectively. The same color scheme is applied for the edges.

6. Conclusion and Future Work

We have presented a new framework for multi-dimensional adap-
tive subdivision objects based on simplicial complexes and subdi-
vision schemes. A simplicial complex as a parametric domain pro-
vides us great flexibility for the topology of models. It can contain
simplices of multiple dimensions simultaneously. Thus, it provides
an excellent control mesh for the subdivision rules of different di-
mensionality. Querying and probing on the complex in our frame-
work offers us information of topological structure of the result-
ing manifold. The subdivision rules based on the box splines are
generalized and modified to generate manifolds of different dimen-
sions in the limit. Unlike the tensor-product schemes, our scheme is
well-defined over a simplicial domain. The subdivision rules natu-
rally result in highly smooth manifolds, except for the extraordinary
cases, where they converge to satisfy C1 smoothness. The general
rules and the user specific rules are selectively applied to the non-
manifold region to model special shapes in practice. The boundary
representation for each manifold is based on the subdivision rules
of one lesser dimension. Therefore, the result is consistent through-
out the framework. Singularities are defined as an embedded sub-
complex of the domain, and the appropriate subdivision rules are
applied only on the subcomplex, so that sharp features can be also
represented as manifolds within manifolds. Furthermore, local re-
finement rules are also illustrated, which affords a user a mecha-
nism for selective detail control on the objects. In the implemen-
tation, the properties of the complex domain are extensively em-
ployed to obtain various topological information. We also briefly
discuss the analysis of the subdivision schemes, which is mostly
based on well-established mathematical and numerical techniques.

Our new framework has great potential for the modeling of very
complex, real-world objects. The subdivision rules can be used to

approximate not only geometric models, but also material attributes
of heterogeneous objects. In particular, if combined with a proper
approximating algorithms, the framework can be applied to recon-
struct and compress large heterogeneous models, like bio-medical
images, or geo-scientific data. We are pursuing this and other direc-
tions such as data fitting, modeling of physical attributes, and model
segmentation. In addition, although we have implemented tools for
the basic modeling purposes, more practical operations would en-
able us to push the framework toward many practical applications
in computer-aided design and manufacturing. These operations in-
clude, but are not limited to, set operations between manifolds, di-
rect sculpting, and material painting.

Finally, the subdivision analysis that has been suggested here are
only a glimpse of the full analysis in 3-D case. We intend to pursue
more complete and general analysis of subdivision schemes on 3-
simplices in the near future.
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