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Abstract
Geodesic Voronoi diagrams (GVDs) defined on triangle meshes with polyline generators are studied in this paper.
We introduce a new concept, called local Voronoi diagram, or LVD, which is a weighted Euclidean Voronoi dia-
gram on a mesh triangle. We show that when restricting on a mesh triangle, the GVD is a subset of the LVD, which
can be computed by using the existing 2D techniques. Moreover, only two types of mesh faces can contain GVD
edges. Guided by our theoretical findings, the geodesic Voronoi diagram with polyline generators can be built in
O(nN logN) time and takes O(nN) space on an n-face mesh with m generators, where N = max{m,n}.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Voronoi diagrams are a fundamental spatial data structure,
which is widely used in various engineering fields, such
as computational geometry, pattern recognition, robot nav-
igation, wireless network, etc. The Voronoi diagram in Eu-
clidean space have been widely studied and understood.
However, Voronoi diagrams defined on triangle meshes
based on geodesic metric (also known as geodesic Voronoi
diagram or GVD) received little attention. Due to the funda-
mental difference between Euclidean and geodesic metrics,
many Euclidean properties do not hold on meshes.

Inspired by the promising results in [LCT11], in this pa-
per, we investigate the GVD in a more general setting, where
the generators are polylines. We show that a typical GVD bi-
sector may contain line segments, hyperbolic segments and
parabolic segments. Since our situations are more compli-
cated than the 2D Voronoi diagrams as well as the GVD
with point sources, we introduce a new concept, called local
Voronoi diagram, or LVD, which is a weighted Euclidean
Voronoi diagram defined on a mesh triangle. We prove that
when restricting on a mesh triangle, the GVD is the subset
of the LVD. Moreover, only two types of mesh faces can
contain GVD edges. Our algorithm can be integrated to the
MMP framework in a seamless manner: once the MMP al-
gorithm terminates, both the geodesic distance and the GVD
are readily available (Figure 1). We show that GVD can be

Figure 1: The geodesic Voronoi diagram (GVD) with poly-
line generators on triangle meshes. The generators, the bi-
sectors and the iso-distance contours are drawn in red, pink
and black, respectively. The background color also indicates
the distance to the generators.

built in O(nN logN) time and takes O(nN) space on an n-
face mesh with m generators, where N = max{m,n}.

2. GVD with Polyline Generators

Let M = (V,E,F) be the triangle mesh, where V , E and F
are the set of vertices, edges and faces, respectively. Given
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points p,q ∈M, we denote by γ(p,q) the geodesic path be-
tween p and q, and d(p,q) the geodesic distance.

Let G = {gi|gi ∈M, i = 1, · · · ,m} be the set of points. The
geodesic Voronoi cell associated with generator gi is defined
as

{x|x ∈M,d(x,gi)≤ d(x,g j),∀g j ∈ G}

The bisectors of 2D Voronoi diagram with point genera-
tors are always line segments. In our setting, a generator can
be either a point or a polyline on the mesh M, which lead-
s to many more complicated situations of bisectors than the
Euclidean plane.

Theorem 2.1 Let g1,g2 ∈ M be two distinct generators on
the mesh M. Bisector β(g1,g2) can contain line segments,
hyperbolic segments, parabola segments and even a 2D re-
gion.

Definition Let w be a window on edge e. The illuminated
region of w, denoted by l(w), is the region lying on the side
which is opposite to s(w). l(w) is bordered by w and the two
rays emanating from s.

Definition Given an edge e and two adjacent windows w1 =
(a,b) ∈ e and w2 = (b,c) ∈ e, their co-illuminated region,
denoted by c(w1,w2), is defined as follows:

1. if s(w1) and s(w2) are on the same side of e, c(w1,w2)
is the intersection of their illuminated regions, i.e.,
c(w1,w2) = l(w1)∩ l(w2).

2. otherwise, assume s(w2) is generator on the other side of
e and w3 is the parent window of w2. Then c(w1,w2) is
the intersection of w1 and w3’s illuminated regions, i.e.,
c(w1,w2) = l(w1)∩ l(w3).

Theorem 2.2 Upon the termination of the MMP algorith-
m, two adjacent windows wi and w j have a non-empty co-
illuminated region. Moreover, bisector β(w1,w2) is in the
co-illuminated region c(w1,w2).

Definition A local Voronoi diagram on a triangle t, denoted
by L(t), is the weighted Euclidean Voronoi diagram restrict-
ed on t with P(t) as generators. The weight of a window w
is the distance from its pseudo-source to the source if w is a
point-source window, and 0 otherwise.

Theorem 2.3 Then each LVD edge bisects two windows,
and it does not intersect their borders.

Denote by G(t) the GVD restricted on triangle t. Obvi-
ously, if the mesh has no saddle vertices, the GVD and LVD
coincides on t, i.e., G(t) = L(t).

Theorem 2.4 The GVD restricted on a triangle t is the subset
of the LVD on t, i.e., G(t)⊆ L(t).

Remark Note that the converse of Theorem 2.4 is not true
in general. For example, consider two point-source win-
dows w1 ∈ e and w2 ∈ e, which share the same generator

(a) (b)
Figure 2: The relationship between GVD and LVD. (a) The
LVD edges consist of hyperbolic segments (green), parabolic
segments (red) and line segments (cyan). (b) The GVD edges
(blue) are the subset of the LVD edges.

Figure 3: One GVD example.

but have different pseudo-sources s(w1) 6= s(w2). Obvious-
ly, β(w1,w2) ∈ L(t) and β(w1,w2) /∈ G(t). Figure 2 shows
an example of the LVD and the GVD on a triangle.

Theorem 2.5 Only two types of triangles, namely, the one
with at least one key point on its side, or the one having a
source inside, can contain GVD edges.

We implement an algorithm using the above theoretical
findings and Figure 3 shows an example.
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