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Figure 1: Sphere breaking through a wall using ten refinement steps. The left half shows the final rendered scene. The right half
presents the underlying, adaptively refined simulation mesh with high-resolution crack surfaces.

Abstract
We present a method for the adaptive simulation of brittle fracture of solid objects based on a novel reversible
tetrahedral mesh refinement scheme. The refinement scheme preserves the quality of the input mesh to a large
extent, it is solely based on topological operations, and does not alter the boundary, i.e. any geometric feature.
Our fracture algorithm successively performs a stress analysis and increases the resolution of the input mesh in
regions of high tensile stress. This results in an accurate location of crack origins without the need of a general
high resolution mesh which would cause high computational costs throughout the whole simulation. A crack is ini-
tiated when the maximum tensile stress exceeds the material strength. The introduced algorithm then proceeds by
iteratively recomputing the changed stress state and creating further cracks. Our approach can generate multiple
cracks from a single impact, but effectively avoids shattering artifacts. Once the tensile stress decreases, the mesh
refinement is reversed to increase the performance of the simulation. We demonstrate that our adaptive method is
robust, scalable and computes highly realistic fracture results.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

Objects made from real world materials fracture when a cer-
tain load is applied. While this seems natural and obvious in
the context of everyday experience, it is a complex physical
phenomenon and an important research topic in computer
animation. Real world materials which exhibit only a negli-
gible amount of deformation before they fracture are referred
to as brittle materials. Examples from this important class of

materials are concrete, glass, stone, and pottery. Many exist-
ing techniques for the simulation of brittle fracture are based
on a finite element stress analysis using tetrahedral elements
and linear shape functions [OH99, MMDJ01, BHTF07]. A
fracture occurs when the maximum tensile stress at a ver-
tex or an element center exceeds the material strength. Con-
sequently, the resolution of the initial finite element mesh
significantly influences where a fracture can possibly oc-
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cur and how it propagates. Since the load of an object is
generally not known a-priori and therefore also the highly
stressed regions in the object, existing methods need a high-
resolution finite element discretization in order to provide
detailed fracture results. However, a high resolution is only
required in regions of high tensile stress where fractures can
occur. This motivates our adaptive brittle fracture simulation
method which refines the finite element mesh only in such
regions using a novel reversible tetrahedral mesh refinement
scheme. The usage of an adaptive mesh allows the gener-
ation of highly detailed fracture surfaces while the compu-
tation time and the memory requirements are significantly
reduced. However, high-resolution meshes in combination
with existing fracture algorithms suffer from shattering ar-
tifacts. In regions experiencing high tensile stress it is very
likely that cracks are initiated in multiple neighboring ele-
ments. To avoid region-wise shattering we introduce a local
non-maximum suppression. Moreover, we propose a stress-
rate based method to avoid time-dependent shattering.

Our method treats objects as rigid bodies in the limit of
infinite stiffness and performs a fracture analysis only in the
case of a collision. This concept was already used in previous
works [MMDJ01, BHTF07, GMD12] to increase the overall
performance of the simulation. The stress analysis employs
a finite element method based on linear shape functions and
tetrahedral elements. In case of a collision, our method suc-
cessively performs a stress analysis and increases the mesh
resolution in regions of high tensile stress. The crack propa-
gation algorithm then iteratively inserts a crack at the posi-
tion of maximum tensile stress and recomputes the changed
stress field. The iteration stops when the maximum tensile
stress drops below the material strength.

Since an object undergoes only negligible deformation be-
fore a crack is initiated, the mesh elements do not degen-
erate or become skinny. We found it therefore sufficient to
split tetrahedra in the initial finite element mesh by the in-
sertion of vertices and to apply a balancing scheme which
works by using simple topological operations. In particular,
our proposed mesh refinement scheme is very fast due to
its conceptual simplicity. We only require to store a small
amount of additional data per tetrahedron. From this infor-
mation the refinement can be reversed and it is guaranteed to
obtain the initial mesh again if every refinement operation is
rolled back. This works independent from the order of oper-
ations and also in the presence of fracture cuts for elements
not too close to the mesh boundary. Our method of mesh
balancing ensures that the quality of the involved tetrahedra
decreases only slightly with each refinement level.

Our Contributions:

• An adaptive brittle fracture algorithm for highly detailed
fracture surfaces.

• A simple yet effective approach to prevent shattering arti-
facts using a non-maximum suppression and a stress-rate
dependent fracture criterion.

• A novel reversible refinement scheme for tetrahedral
meshes which largely maintains the mesh quality and pre-
serves geometric features on the boundary surface.

2. Related Work

Fracture Animation Terzopoulos et al. [TF88] as well as
Norton et al. [NTB∗91] modeled fracture simply by break-
ing the connection between neighboring elements when
the forces exceed a certain threshold. Later O’Brien et al.
presented a method to fracture brittle [OH99] and ductile
[OBH02] materials using a fracture model that relies on a
maximum tensile stress criterion, element splitting accord-
ing to a fracture plane and local remeshing to ensure a con-
forming mesh. Parker et al. [PO09] introduced a simplified
version of this method which is suitable for real-time de-
formation and fracture in a game environment. Müller et
al. [MMDJ01] proposed to treat objects as full rigid bod-
ies in the limit of infinite stiffness for brittle fracture gen-
eration and to apply a quasi-static finite element analysis
to anchored objects only in the case of collisions. Bao et
al. [BHTF07] later improved the plausibility of this approach
by the notion of a time averaged stress and a null-space
elimination which removes the necessity to anchor objects.
Glondu et al. [GMD12] treated objects also as rigid bod-
ies for brittle fracture generation. Their method relies on a
precomputed modal analysis, a contact force model for col-
lisions and on a maximum principle stress criterion for frac-
ture initiation. Unfortunately, recursive fracture generation
is complicated since the costly, precomputed modal analysis
must be recomputed during runtime. Iben et al. [IB06] gen-
erate surface crack patterns by evolving a stress field over a
triangle discretization over time. Smith et al. [SWB01] pro-
posed to model the shattering of brittle materials by con-
straints between material points rather than stiff springs. In
order to address the degradation of mesh quality due to el-
ement splitting, Molino et al. [MBF04] introduced a virtual
node algorithm. Later, Sifakis et al. [SDF07] extended the
algorithm allowing an arbitrary number of cuts per tetra-
hedron. To avoid complex remeshing operations Pauly et
al. [PKA∗05] and Müller et al. [MKN∗04] discretize the
governing equations of continuum mechanics using a mesh-
less approach and use dynamic resampling during crack
propagation for brittle as well as ductile fracture. Wicke
et al. [WRK∗10] proposed a dynamic remeshing algorithm
to address the simulation of purely elastic to highly plas-
tic materials, fracture and large deformations. A hexahedral
multigrid approach to simulate cutting in deformable objects
was presented by Dick et al. [DGW10]. Their method adap-
tively refines a coarse simulation grid at the surface of a cut-
ting tool and separates elements along their faces. Several
methods to simulate two-dimensional solids adaptively have
been proposed in recent publications, e.g. [BD13]. Busaryev
et al. [BDW13] simulate the fracture of multi-layered thin
plates using adaptive triangle meshes. They propose a stress
relaxation method to compute local stress changes after each
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cut. This is achieved by solving an elastostatic problem con-
sisting of the elements incident to the cut. However, a lo-
cal relaxation is not applicable in our case since a single cut
changes the stress state throughout the whole object made
of brittle material. A level set method for the simulation of
ductile fracture was proposed by Hegemann et al. [HJST13]
that handles topological changes implicitly through the level
set and avoids remeshing. Müller et al. [MCK13] focused on
a purely geometry-based approach using approximate con-
vex decompositions for the dynamic destruction of large and
complex objects. As the impact’s magnitude does not affect
the geometry of the shards the physical behavior is less re-
alistic. Later, Schvartzman and Otaduy [SO14] augmented
Voronoi diagram based fracture models where the crack gen-
eration is guided by the deformation field of the object. A
method to simulate realistic fracture of rigid bodies using a
novel collision-centered prescoring algorithm was proposed
by Su et al. [SSF09]. In contrast to the mentioned methods,
our approach is the first approach for tetrahedral meshes that
refines regions experiencing great mechanical stresses be-
fore cracks are generated.

Remeshing Molino et al. [MBTF03] proposed a tetrahedral
mesh generation algorithm producing high quality elements
from a red-green hierarchy defined on a body-centered cu-
bic lattice, a signed distance function representation of a
geometry, and a subsequent compression stage to fit a can-
didate mesh to the geometry boundary. Later, Labelle and
Shewchuck [LS07] presented the isosurface stuffing algo-
rithm, which fills an isosurface with a tetrahedral mesh guar-
anteeing certain bounds on the dihedral angles. Variants of
these approaches have been adopted for the adaptive sim-
ulation of fluids, e.g. [WT08] . While these approaches are
simple and efficient, they cannot preserve sharp edges or cor-
ners, but exactly this characteristic is essential for a realistic
simulation of brittle fractures. In order to obtain a conform-
ing adaptive triangulation red-green refinement [BSW83] is
often used in practice which is based on a bisection of the six
edges of a tetrahedron resulting in four tetrahedra and one
octahedron which needs to be further split in either four or
eight tetrahedra. A conforming mesh then results from the
insertion of green tetrahedra between different refinement
levels. In contrast to red-green refinement, our refinement
method is more fine-grained, i.e. the number of additional
tetrahedra resulting from a refinement operation is smaller,
which is desirable since it allows for a better control of the
mesh resolution. Among the different existing approaches,
the method of Burkhart et al. [BHU10] is most similar to
ours. The most striking differences are that our refinement
method is reversible and is less complex in terms of the re-
quired topological mesh operations. First, our approach does
not employ any vertex smoothing rules, since it turned out
not to be necessary for the considered input meshes. Hence,
it is assumed that the initial mesh is of a sufficient quality
such that the quality of the refined mesh is still acceptable
for a small deformation finite element stress analysis. Con-

sequently, in order to make any refinements reversible, it is
only necessary to keep track of the performed topological
operations and vertex insertions. Second, our approach com-
pletely avoids the complex edge-removal operations. This is
desirable because its inverse operation (multiface-removal)
is not unique and would therefore require to store much
more information in order to achieve a unique reversion. Fur-
thermore, edge-removal operations performed on any border
edges alter the geometry such that geometric features cannot
be preserved. In the case of brittle fracture, this is not ac-
ceptable as it would result in fracture pieces which do not fit
together. Moreover, the exclusive use of simple topological
operations makes the mesh adaption more efficient.

3. Brittle Fracture Simulation

The phenomenon of brittle fracture arises due to large tensile
stresses inside a material. As most brittle materials are de-
forming very slightly before a crack originates, we decided
to model the dynamic behavior using a rigid body simula-
tor. For a general overview on the dynamic simulation of
rigid bodies we refer to the survey of Bender et al. [BET14].
High internal stresses are expected to occur in consequence
of interactions with other objects. Hence, we perform a stress
analysis due to collision events only. This approach is not
new and was used before in [MMDJ01, BHTF07, GMD12].

In the following we give a brief overview of the whole
fracture generation algorithm. Afterwards a detailed descrip-
tion of every single step is given. To provide a rigid body
simulation with robust contact handling we use the open
source library Bullet [Bul]. After a collision has been de-
tected, we first estimate the contact duration. Deformations
and according internal stresses due to the collision force are
determined by the use of a dynamic, linear finite element
analysis within a fixed number of time integration steps. Af-
ter each time step the stresses are inspected for large tensile
components. In an iterative procedure regions experiencing
large tensile stress are refined according to the scheme pre-
sented in Section 4. The stress analysis is repeated until no
further refinement is necessary. To avoid excessive shatter-
ing we locate local maxima in terms of the largest princi-
ple stress while excluding tetrahedral elements with strongly
negative stress-rate such that only a single crack originates
within a stressed region. As the fracture criterion is based
on the Rankine condition [GS11], we assume that a frac-
ture occurs if the tensile stress exceeds a certain threshold
τcrit. If the criterion has been met, mesh parts are separated
by a fracture surface represented by a signed distance func-
tion. Subsequently, we check if stressed regions relax and
coarsen their discretization in order to save valuable com-
putation time in the further process. Finally, the mesh is in-
spected for disjoint parts that will be separated into distinct
meshes. In the following we refer to the term “cells” as an
alternative to “tetrahedral elements”.
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Contact Duration Estimation In case of a collision be-
tween two rigid bodies we first estimate the contact dura-
tion according to the Hertz model of sphere-sphere contacts
as proposed in [Joh87]. There we replace the sphere radius
with the distance between the contact point pcol and the ob-
ject’s center of mass pcom:

td = c

(
m2

E2‖pcom−pcol‖
· 1

vrel

) 1
5

, (1)

where c is a constant scaling the duration that we usually set
to one, m the body’s mass, E the Young’s modulus and vrel
the relative velocity between the contact points in normal
direction.

Finite Element Analysis After estimating the contact dura-
tion we perform a dynamic finite element analysis on the cor-
responding objects to find regions of stress concentrations.
As the rigid body simulator provides impulses I to resolve
collisions, we have to model a force fc acting over the time
td that results in the according collision impulse. We assume
that a constant force fc = (1/td)I acts on the bodies during
the whole collision event. Alternatively, the constant force
could be easily replaced by another function as described
in [GMD12]. However, we found that the simplified assump-
tion leads to convincing results.

A deformation of an elastic solid can be described by a
function φ : Ω→ R3 that maps a point X ∈Ω from material
space Ω⊂R3 to a point x = φ(X) in world space. In the case
of brittle fracture, deformations are small in comparison to
the dimension of the object due to the high material stiffness.
It is therefore feasible to measure the deformation in terms
of linear Cauchy strain ε = 1

2

(
∇uT +∇u

)
, where u(X) =

φ(X)−X is the displacement of a material point X. For the
discretization of Ω, tetrahedral elements with linear shape
functions are employed such that u(X) = Ni(X)ui, where
the matrix Ni(X) ∈ R3×12 interpolates the vertex displace-
ments ui ∈ R12 for the i-th element. The constant strain
in vector notation over the i-th element is given as ε

V
i =

Biui, where the matrix Bi ∈ R6×12 is assembled from the
partial derivatives of the shape functions Ni. For a linear
isotropic material stress and stress-rate over the i-th element
are given as

σi = CBi ui, σ̇i = CBi u̇i, (2)

where the matrix C ∈ R6×6 is the elasticity tensor which
is dependent on Young’s modulus E and Poisson’s ratio ν.
According to the principle of virtual work, this yields the
element stiffness matrices

ki =Vi BT
i CBi, (3)

where Vi is the undeformed volume of the i-th element. Note
that the element stiffness matrices ki defined in Equation (3)
are not constant if an element undergoes large rotations. To
avoid recomputing the ki during every collision we precom-
pute them in the original, unrotated configuration. To keep

the model consistent we transform the collision forces fc us-
ing the rigid body rotation R:

fR
c = RT fc. (4)

The element stiffness matrices ki are assembled to the global
stiffness matrix K ∈ R3n×3n which forms a system of 3n
ordinary differential equations Ku = fext + fR

c for a tetrahe-
dral mesh with n vertices, where the vector u ∈ R3n consists
of vertex displacements from material to world space and
where fext denotes the external nodal forces. For a dynamic
stress analysis inertia and damping terms emerge such that

Mü+Du̇+Ku = fext + fR
c , (5)

where M ∈ R3n×3n is a mass matrix and D ∈ R3n×3n is
a damping matrix. The masses are assumed being lumped
in the vertices yielding a diagonal mass matrix M. The
damping matrix D is determined from the damping model
of Rayleigh D = αM+ βK as a linear combination of the
mass and stiffness matrix according to the mass and stiff-
ness damping parameters α and β. We employ the implicit
Euler method to integrate the system of ordinary differential
equations (5) over the interval [0, td ] in multiple steps. Fur-
ther, we obtain the solution of the linear system of equations
in each time step by a Cholesky decomposition of this sym-
metric, positive definite matrix and a forward and backward
substitution. Finally, the solver matrix remains constant dur-
ing [0, td ]. Hence, the Choleksy decomposition has to be per-
formed just once at the beginning of the FE analysis as long
as the mesh is not modified.

Stress and Stress-Rate Recovery After evaluating the
nodal displacements the stress and stress-rate tensors can
be obtained from Equation (2) for each element. Due to
the employed linear Lagrangian shape functions, the ap-
proximated stress field is constant on each element and ex-
hibits finite jumps between neighboring elements. This is-
sue is a problem in the subsequent stress analysis because it
makes the determination of local stress maxima much less
robust. We therefore recover a continuous stress field σ

∗

by an L2-projection of σ onto the linear Lagrange FE ba-
sis which yields a linear system of equations Aσ

∗
kl = b for

each of the six independent stress components σkl , where
Ai j =

∫
Ω

N̂iN̂ jdv, bi =
∫

Ω
N̂iσkldv and N̂i are the linear La-

grange nodal basis functions. The linear systems of equa-
tions can be avoided by replacing the matrix A with the di-
agonally lumped mass matrix M weighted by the inverse ma-
terial density 1

ρ
which leads to

σ
∗
i ≈

ρ

4mii
∑

c∈I
Vcσc, (6)

where I is the set of tetrahedra incident to node i. Finally,
we perform an eigenvalue analysis on the symmetric, nodal
stress tensors σ

∗
i to determine the greatest tensile stress ac-

cording to the largest eigenvalue τi = max j Σi, j j with σ
∗
i =

ViΣiVT
i .The stress-rate τ̇i is then the corresponding entry
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in Σ̇i = diag([VT
i σ̇
∗
i Vi] j j),where σ̇

∗
i is obtained from σ̇i by

Equation (6).

Refinement Pass We assume that the mesh is given in a
coarse resolution and therefore apply our refinement scheme
locally using a fixed number of refinement steps as described
in Section 4. Particularly, we first determine the highest oc-
curring stress τmax in regions with stresses exceeding the
material strength τcrit according to the Rankine condition
(see Equation (7)). Subsequently, cells incident to a node
i located in the stressed region with stresses τi > γτmax,
0 ≤ γ ≤ 1 are refined, where we set γ to 0.8 in most cases.
Furthermore, Equation (3) has to be evaluated only for the
newly arisen cells. Afterwards, we repeat the stress analysis
to obtain a more detailed stress field in local regions where
stress concentrations are expected.

Non-Maximum Suppression When the refinement itera-
tions terminate, we analyze the stress field in order to de-
termine if cracks arise due to large tensile stresses. If this
is the case, it is very likely that τcrit is exceeded by mul-
tiple nodes. This would lead to an excessive shattering in
the stressed region dependent on the discretization. To avoid
this shattering we assume that only a single crack originates
in the region’s local maximum. Therefore, we use a flood-
fill algorithm to determine the region of interest, where we
flood only vertices experiencing a tensile principle stress
τi > γτmax while remaining vertices are treated as border.
Afterwards we select the node with the maximum stress to
initiate the crack. Then the procedure avoids region-wise
shattering while it still allows simultaneous crack initiation
caused by different stress concentrations. Finally, the proce-
dure yields a relatively small set of crack originating vertices
leading to proper results and to a certain independence from
the discretization.

Fracture Criterion We use the Rankine condition which
states that a brittle material fails if the tensile stress of node
i exceeds the material strength

τi > τcrit. (7)

Using the non-maximum suppression according to the pre-
vious section we avoided shattering due to highly stressed
regions. Furthermore, the stress in the crack’s neighboring
regions needs a certain time to vanish causing a second type
of shattering. Therefore, we extended the criterion in Equa-
tion (7) by a second condition

τ̇i ≥ k, (8)

where k≤ 0 denotes a user-defined constant. Hence, strongly
decreasing stresses are not considered for crack initiation.

Fracture Surface Generation In our fracture remeshing
approach we assume that a fracture surface always originates
in a node and that the surface can be represented by an ar-
bitrary geometry with the corresponding eigenvector of the

greatest eigenvalue as surface normal at the origin. For the
sake of simplicity we assume that the energy causes cracks
to propagate until the crack front reaches the object bound-
ary. A possible way to produce a finite propagation is given
in [GMD12] using an energy-based fracture stopping crite-
rion.

The fracture surface is represented by an implicit func-
tion s(x) = 0, where we presume that s is a signed distance
function. Usually a simple plane is considered for s, but the
fracture geometry can be arbitrarily enriched with any irreg-
ularities, e.g. noise functions (see Figure 2). To separate the
tetrahedral mesh along the surface we mark all intersected
cells in a breadth first fashion and subsequently duplicate
these cells to assign them to the according crack flank. The
duplication of the cells causes overlapping volumes that we
treat as virtual as proposed by Molino et al. [MBF04]. Fi-
nally, we store the signed distance in the vertices of the cut
cells to reconstruct the crack surface as described in the vi-
sualization paragraph. If a cell is intersected more than once,
each vertex stores the signed distance with the minimum ab-
solute value.

Coarsening Pass Since many tetrahedra can be intersected
by the fracture plane, as explained in the previous section,
the duplicated tetrahedra can not be coarsened in terms of
our refinement scheme. Therefore, we mark these elements
as locked. This means that they keep their refinement level.
However, all elements that are not locked or affected by the
locked ones can be coarsened until they reach their original
state. This leads to good transitions from very fine structures
near crack surfaces to a coarse resolution in the remaining
regions (compare Figure 1).

Separation of Disjoint Partitions The mesh is separated
into multiple meshes if topologically disjoint regions exist.
Each disjoint region is identified using a flood-fill algorithm.
The separation is absolutely necessary, since disjoint regions
would be mistakenly treated as a single rigid body in the fur-
ther simulation. Additionally, the separation implicitly de-
composes the system of ordinary differential equations (5)
into smaller equation systems which improves computation
time in further analyses. Finally, we update all quantities that
are necessary for the rigid body simulation such as the ob-
ject’s mass, inertia, center of mass etc.

Visualization To visualize an unfractured object we simply
extract the boundary of the tetrahedral mesh. If cracks arise,
the border triangles from fractured tetrahedra are removed
and we reconstruct the fracture surface using a signed dis-
tance field stored in the vertices of cut cells using a marching
tetrahedra algorithm, since the surface is always enclosed
by the cut tetrahedra. Note that the signed distance field of
multiply cut cells cannot exactly represent the crack surface
such that visual artifacts may arise in form of material loss.
In order to avoid these artifacts, the approach of Sifakis et
al. [SDF07] could be considered.
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Figure 2: A cylinder is fractured on a sharp obstacle using different fracture surfaces. Left: Planar cracks. Center: Planar
cracks enriched using a noise function. Right: Spherical crack geometry.

4. Adaptive Refinement

The basic idea of our novel refinement scheme is that each
tetrahedron traverses a maximum of five states within a full
subdivision cycle. Note that it is not necessary to perform
only full cycles for refinement since all intermediate states
provide a valid, manifold topology which gives enhanced
control over the granularity of the mesh. For further appli-
cation the cycle can be applied repeatedly until the desired
resolution is reached. The transition between two states is
realized by topological operations only such that the scheme
can be broken down into a number of split and flip operations
as well as their inverse operations. In the implementation we
assign a generation index gi to each tetrahedron i in order
to encode the current state and the number of full cycles al-
ready applied. Hence, a cell i is in state (gi mod 5) and in
cycle (gi div 5).

Refinement Rules In this section the steps to perform a full
refinement cycle are explained in detail. Each of the steps A-
E describe the transition between two states (see Figure 3).
Some transitions require that neighboring cells are in a spe-
cific state. If this requirement is not fulfilled, the neighboring
cells are refined until the required state is reached. In order
to provide the proposed reversibility of the refinement, the
explanation of the steps contains a description of the data
that has to be stored per cell. A state transition of one cell
generally results in multiple cells of different states. A short
description of the transition states is always given in braces
according to each step.

Step A (0↔ 1,1,1,1) To refine a tetrahedron in state 0, we
perform a 1-4 split by inserting a vertex at the tetrahe-
dron’s geometric centroid yielding four new elements as-
sociated with state 1 (see Figure 3A). The four child tetra-
hedra are obtained by moving one vertex of the original
tetrahedron to the centroid and generating three new tetra-
hedra. It is important to remember which child is the for-
mer, original tetrahedron to avoid loosing the refinement
information stored in this element. Hence, the child which
was created out of the original tetrahedron is tagged af-

ter the split. Obviously, the inverse operation can be per-
formed by adapting the corresponding vertex at the tagged
tetrahedron and deleting the remaining three tetrahedra.

After finishing step A we have to differentiate between two
cases. Each child contains exactly one face of the parent state
0 tetrahedron. If this inherited face lies in the interior of the
object, we continue with steps B, C and D (see second row of
Figure 3). Otherwise, the face lies on the border and we have
to perform steps B∗, C∗ and D∗ (see third row of Figure 3).

Step B (1,1↔ 2,2,2) If the inherited face lies in the inte-
rior of the object and if both adjacent tetrahedra are in
state 1, the elements are refined by a 2-3-flip. This opera-
tion is performed by inserting a new edge connecting the
two vertices opposite to the inherited face (see Figure 3B).
Then the two original tetrahedra are modified accordingly
and a single new element is created.
To ensure that the inverse operation can be applied cor-
rectly, the new element has to be tagged in order to re-
member which cell has to be deleted. Additionally, the
edge uniquely shared by the resulting three tetrahedra has
to be stored. Note that the inverse operation must guaran-
tee that the untagged cells are not accidentally swapped.

Step C (2↔ 0,3,3) The edge opposite to the one inserted
and stored in step B is trisected regularly (see Figure 3C).
The requirement for this operation is that all tetrahedra
incident to this edge share the same generation index. Af-
ter the trisection one element in state 0 and two elements
in state 3 are generated. We assign state 0 to one tetrahe-
dron since its quality comes very close to the quality of its
original state 0, so no further operations are necessary for
this element. The state 0 element is created by moving the
vertices of the original tetrahedron and it has to be tagged
in order to remember that state 3 and 4 were skipped. For
the other two elements new tetrahedra have to be created.

Step D (3,3↔ 0,4,4) A 2-3-flip is performed to refine two
tetrahedra in state 3 sharing a common face (see Fig-
ure 3D). Both tetrahedra are required to have the same
generation index. The cells are split into three elements
by inserting a new edge connecting the vertices opposite
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Figure 3: Refinement Pipeline.

to the common face. The operation results in one state 0
and two state 4 elements. We generate a new tetrahedron
for the first element and adapt the original two tetrahedra
to obtain the remaining two elements. The first element is
tagged and must be deleted in the inverse operation.

If the inherited face of a tetrahedron in state 1 lies on the
border, steps B and D have to be adapted:

Step B∗ (1↔ 2,2,2) Since the inherited face lies on the
border, there is no adjacent tetrahedron for a 2-3-flip. To
perform a similar refinement step, a vertex is inserted
at the geometric centroid of the inherited face (see Fig-
ure 3B∗). This 1-3-split is implemented by adapting the
original tetrahedron and creating two new elements. Af-
ter the split we mark the modified original tetrahedron in
order to allow a consistent inverse operation.

Step D∗ (3,3↔ 0,4) In the border case two tetrahedra in
state 3 sharing a face are modified by a 2-2-flip (see Fig-
ure 3D∗). Both elements are required to have generation

index 3. Note that in this case two faces of the elements
are coplanar. Therefore, no new elements are generated
in this step. The 2-2-flip combines the two tetrahedra and
splits the geometry into two new ones by a new edge con-
necting the vertices opposite to the common face. The
new elements are in state 0 and 4, respectively, and can
be obtained by adapting the original tetrahedra. The in-
verse operation just requires to reverse the adaption of the
elements. No cells have to be tagged.

The last refinement step can be performed for interior and
border tetrahedra in the same way:

Step E (4,4,4↔ 0,0) After applying the refinement steps
B(∗)-D(∗) to at least three tetrahedra that result from step
A, three state 4 elements are located at each corner of the
initial state 0 tetrahedron (see Figure 3E, left). The three
elements at a corner can be refined by a 3-2-flip. This flip
yields two new tetrahedra in state 0 (see Figure 3E, right).
This refinement step is implemented by adapting two of
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Figure 4: Beam mesh. The center region is refined with ei-
ther one or two refinement cycles.

Input Mesh Cycle 1 Cycle 2
#Vertices 106 488 3862

#Tetrahedra 223 1663 17511
Worst min. angle [◦] 30 11.36 11.36
Avg. min. angle [◦] 43.28 41.54 41.15
Best min. angle [◦] 70.52 70.52 70.52
Avg. vertex valence 8.2 10.2 11.8
Max. vertex valence 13 22 23

Table 1: Statistics of initial beam mesh (see Figure 4) and
after two refinement cycles.

the three state 4 tetrahedra and deleting the last one. Note
that the deleted cell contains no information required to
inverse any operation, since the cell was created in the
previous step without storing anything. Hence, it can be
safely removed. No cells have to be tagged.

Information Storage In each refinement cycle a certain
amount of information has to be stored to enable a reversible
adaption. First, a counter storing the generation index is
needed for each tetrahedron. Second, some refinement steps
require information to allow consistent inverse operations:

• Step A: 1 bit to tag the parent cell
• Step B(∗): 1 bit to tag newly added cell (or parent cell in

case of B∗) + 3 bits to store the index of the common edge
• Step C: 1 bit to tag the parent cell
• Step D(∗): 1 bit to tag the newly added cell
• Step E: 0 bits.

Summarizing, one can say that each cell requires 7 bits to
store the information to roll back the adaption. For example,
using a 32 bit integer up to three full refinement cycles (21
bits) in addition to a generation counter (4 bits) can be en-
coded. Alternatively, a 64 bit integer can encode up to 8 full
refinement cycles (56 bits) with a 6 bit generation counter.

5. Results and Discussion

Refinement Statistics To examine the quality preservation
of our refinement scheme we locally refined a beam mesh
(see Figure 4) using two subdivision cycles. The according
statistics are shown in Table 1. We used the minimum dihe-
dral angle as per tetrahedron quality criterion. The greatest
minimum and therefore the best possible minimum angle is
arctan(2

√
2) ≈ 70.53◦ which is identical to a regular tetra-

hedron. Obviously, the worst possible angle is 0. Especially,

Figure 5: Ball shoots off the limbs of a coarse Stanford Ar-
madillo mesh, providing a high-resolution fracture surface.

Figure 6: 30 tori dropping into a bowl.

we found that the scheme preserves the average minimum
angle very well. Generally, it turned out that the maximum
vertex valence is almost constant after one cycle.

Scenarios We applied our method on several scenarios to
validate the functionality. We chose examples with differ-
ent complexities to show the general applicability to many
kinds of situations. Note that we chose to perform always
five steps of the refinement algorithm at once. This is not
mandatory and we decided to use this strategy because if one
uses less refining steps the computationally expensive matrix
decomposition had to be performed more often, while high-
resolution crack surfaces are desired anyway.

In the first scenario the limbs of the Stanford Armadillo
are fractured by a projectile. While the mesh is very coarse
(approx. 3000 tetrahedra), we achieved a realistic fracture
behavior while providing high-resolution crack surfaces us-
ing two full refinement cycles (see Figure 5). The second
scenario shows a bowl collecting pieces of 30 dropping tori
(see Figure 6) while a rigid sphere breaks 10 walls in the
third scenario (see Figure 1). Both scenes prove the scala-
bility of our algorithm and that our method works correctly
even with many contacts. In a final scene we dropped a series
of letters from a certain height (see Figure 7).
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model total # frac. avg. solver mesh operations ref. steps
[sec] [ms] init. fact. f/b subst. stress ref. coar. frac. gen. part.

Armadillo 22.81 91 250 25% 24% 17% 23% 2% 2% 6% 1% 10
tori 38.27 19636 1.94 20% 32 % 12% 13% 5% 3% 13% 2% 5

walls 76.48 18729 4.08 20% 20 % 15% 17% 2% 2% 22% 2% 5
letters 4.36 632 6.89 21% 24% 15% 15% 3% 2% 16% 4% 5

Table 2: Timings of example scenarios. For each scenario the total time for the pure fracture computations over the whole
domain, the number of fracture algorithm executions and the according average computation time per execution is presented.
The fraction of suboperations are denoted in percentage terms. The solver section summarizes initialization and assembling
of the solver matrix, its factorization, the front and back substitution for solving and the stress computation. The next section
shows the fractions of mesh operations, more precisely the refinement, reverse refinement, fracture generation and separation
of disjoint regions. The last column contains the number of refinement steps applied to the objects.

Figure 7: Scene with letters dropping on a plane.

All results were carried out on an Intel R©CoreTMi7 CPU
860, 2.8 GHz and 8GB RAM. A summary of computation
time performance is given in Table 2. Most of our imple-
mentation is not parallelized yet, except the matrix factor-
ization and stress recovery. The most time consuming parts
of our method are the solver initialization, factorization and
forward/backward substitution consuming about 50%-70%
of computation time, as these steps have to be performed af-
ter each topological change in the mesh. In comparison to
the solver timings, the fraction of the mesh operations are
comparatively small.

Adaptive vs. Uniform High-Resolution To examine the
achieved speed up of the adaptive method we simulated the
same scene multiple times with different approaches yield-
ing comparable visual results. We compared a scene using
our adaptive approach with reverse refinement to one with-
out the rollback. In both cases we applied two full refinement
cycles for adaptivity. Additionally, the results were com-
pared to a scene with an initial high-resolution mesh, but
without the usage of any adaptions. The mesh was generated
by applying two full refinement cycles as explained in Sec-
tion 4. Our approach using the refinement without reversing
it performed up to 15 times faster in comparison to the static,
uniform high-resolution mesh. After additionally switching
on the coarsening we gained a speed-up factor of up to 20.

Discussion Our adaptive approach is able to produce con-
vincing results at moderate cost. The dynamic behavior of

the animated objects is performed using a rigid body sim-
ulation which is very fast and stable in comparison to the
deformable body simulation in [OH99] and [OBH02] where
they depend on very small time steps due to explicit time in-
tegration. The stress analysis does not require any anchoring
of the collided vertices as in [MMDJ01] or additional com-
putations to remove null spaces as in [BHTF07]. In compar-
ison to the approach of Glondu et al. [GMD12] our fracture
algorithm does not depend on a static mesh where a modal
analysis is performed on the stiffness matrix and we are able
to handle recursive fracture occurrences successively while
providing high-resolution crack surfaces independent of the
initial mesh resolution.

Using the proposed refinement algorithm the stress anal-
ysis was successively enhanced. In comparison to red-green
refinement (see e.g. [MBTF03]), we are able to increase the
mesh resolution incrementally while the number of tetrahe-
dra is growing slowly. In particular one refinement step leads
to 3 to 3m new cells, where m is the number of tetrahedra in-
cident to an edge about to be trisected. Furthermore, it is easy
to implement since it is based on simple topological opera-
tions (avoiding edge-removals) and it is reversible in contrast
to the approach of Burkhart et al. [BHU10]. It even preserves
sharp features at the boundary geometry which grid-based
techniques (e.g. [LS07, MBTF03]) tend to smoothen.

It is most beneficial to use our fracture algorithm with a
coarse and equally sized initial mesh in order to gain large
speed-ups. However, at the same time this imposes a strong
restriction on the amount of surface details a fracture object
can have for rendering. In order to serve the different goals
of rendering and fracture simulation it is required to use a
distinct mesh for each task. In case of a hexahedral simu-
lation mesh Müller et al. [MTG04] proposed a method to
fracture embedded surface meshes. We plan to investigate
if this approach is applicable to our method. In our fracture
generation each crack is propagated until it reaches the bor-
der of the object. To achieve a higher realism in future, we
will investigate an energy-based stopping criterion for crack
propagation as proposed in [GMD12].
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6. Conclusion

We presented a novel approach for the adaptive simulation of
brittle fracture. The algorithm is able to process even coarse
meshes while the mesh-dependent stress analysis and frac-
ture surface can be arbitrarily refined using our novel re-
versible, feature-preserving refinement scheme. We robustly
avoid the occurrence of shattering artifacts due to highly
stressed regions and are able to speed up further computa-
tions with the refinement reversion. Using a dynamic stress
analysis we avoid any anchoring of the objects as well as
null space eliminations regarding the stiffness matrix. We
successively handle recursive fractures and provide the user
control over the crack appearance using implicit fracture sur-
face functions. Our results prove that an adaptive refinement
significantly improves the generation of highly detailed frac-
tures at moderate costs and the visual appearance demon-
strates a great physical plausibility.
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