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Abstract

Post-processing large datasets efficiently in parallel requires good load balancing of geometry supplied to the
visualization pipeline. When datasets are not pre-partitioned or cannot be read back from simulation output in
well controlled pieces, it is necessary to perform a partitioning step before certain algorithms may be applied.
Spatially sensitive operations such as resampling, smoothing or certain field advection/stencil algorithms require
datasets/meshes to be contiguous and provide ghost cells so that artefacts do not occur at process boundaries
where discontinuities occur.

This paper presents an integration of the mesh partitioning library Zoltan, into the Visualization Toolkit frame-
work, VTK and the parallel visualization tool ParaView. The implementation allows seamless generation of well
partitioned datasets using a user provided weighting and a selection of ghost cell generation options. The algo-
rithms, and results obtained with the partitioning classes are presented with representative use cases that show
an order of magnitude increase in performance compared to the off-the-shelf partitioning available previously,
improving performance and reducing memory consumption/duplication.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.1]: Parallel Processing—
Computer Graphics [1.3.2]: Distributed/network graphics—Software Engineering [D.2.2]: Software libraries—

1 Introduction and Motivation

The process of generating partitioned meshes in
distributed applications is conceptually straightforward,
though, in practice it can be difficult to do it efficiently and
correctly, and for this reason, a number of dedicated par-
titioning packages exist that are widely used in the scien-
tific community to create suitable data inputs for solvers
[KK97,CP08]. In the field of visualization however, little at-
tention has been paid to the process of efficiently generating
clean, well partitioned meshes from data that has not been
stored or prepared in advance in partitioned form. The two
most widely used off the shelf visualization tools that spe-
cialize in parallel/distributed operation, ParaView [Hen(5]
and Vislt [CBW*12], provide their own utilities for parti-
tioning and/or ghost cell generation, but they do not perform
as well as tools designed and optimized specifically for the
job (as we will show) and they do not provide as rich a set
of options for customization as specialized tools do. In fact,
although ParaView supports partitioning of data at runtime
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with generation of ghost cells, VisIt only supports generation
of ghost cells from data that is loaded in partitioned form al-
ready.

Pipelines of the kind shown in figure 1, where load bal-
ancing is performed more than once, are particularly trou-
blesome — in ParaView they are inefficient (particularly so
with time dependent data on static meshes) and in Vislt they
are not possible at all. One motivating example of a use case
for such a pipeline is the selection of a region from a parti-
cle dataset (leaving data on a subset of processors and others
empty), followed by an operation such as resampling that
requires significant computation. In this case, the secondary
filters will operate only on processors holding data whilst the
empty ones go unused, wasting processing resources. Redis-
tributing data a second time before performing the resam-
pling allows all processors to participate in the calculation.
To further improve load-balancing, we wish to support the
weighting of data according to some user defined field (such
as the mass or volume of particles).
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Although the pipeline represented by figure 1 might seem
uncommon, a second/final partitioning step is in fact added
invisibly and automatically by ParaView when transparent
rendering of geometry is enabled. The reason for this is
that for correct alpha blending of geometry, it is necessary
to sort objects according to their distance from the camera
(the painter’s algorithm [FvDFH90]) and when compositing
scenes in parallel using a sort-last algorithm [MCEF94] one
must ensure that regions from different processors do not in-
tersect to avoid artefacts. A final partitioning step is therefore
performed by the rendering engine to ensure that images are

correct.
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Figure 1: Representation of data and information flow in a
complex pipeline. Extracting a subset such as a VOI or fea-
ture from a dataset may leave some processes empty and fur-
ther operations will not make use of all resources. Enabling
multiple partitioning steps allows on demand selections to
be redistributed for further processing using all available
nodes.

With the work presented in this paper we allow multiple
partitioning steps when desirable, and eliminate them where
possible by ensuring that meshes that have been previously
partitioned by the user are not unnecessarily partitioned a
second time by the rendering pipeline, this is achieved by
adding partitioning metadata to the information passed along
the pipeline. Additionally, we extend the types of dataset that
can be partitioned to reduce data copies made by the visual-
ization software — a dataset consisting of polygonal elements
is transformed into an unstructured grid by ParaView’s redis-
tribution and must be transformed back to polygonal geom-
etry prior to rendering, causing potentially a 2-fold increase
in memory usage for the surface representation. The end of
the fixed-function rendering pipeline is gradually removing
the need to render only polygonal datasets, but for the time
being this restriction remains for the majority of workflows.

The generation of ghost cells to ensure that gaps between
dataset pieces are filled can be a relatively expensive oper-
ation that requires the computation of global node Ids and
communication between processes to identify cells and cell
neighbours. Ghost cell generation algorithms for grids (both
unstructured or structured) work by identifying boundary
cells and their neighbours and flagging them for exchange.
This technique does not work for particle based datasets as
there is no inherent cell connectivity (or neighbour informa-
tion). Data loaded into a visualization tool generally loses

any associated data structures that might have been used
by the solver to accelerate boundary particle identification.
Boundary information may also prove worthless when the
number of nodes used for visualization is different from that
used by the solver.

To address this problem, we have therefore implemented a
ghost particle exchange based purely on the bounding boxes
around process boundaries after the initial partitioning phase
has identified the regions. We extend this algorithm to han-
dle arbitrary cell types for any unstructured grid or polygonal
mesh and thereby make ghost cell generation possible for all
mesh types. Significantly, by making use of the initial parti-
tioning information to identify ghost point and cells, we re-
quire no additional communication phase and ghost cell ex-
change can be performed during the same pass as the main
partitioning step. This improves performance and does not
impact the majority of visualization algorithms — when more
robust ghost cell identification with full neighbour informa-
tion is required the software can fall back to the implemen-
tation provided in VTK as explained later.

The contributions of this work are VTK filters that:

e Improve the efficiency of partitioning by integrating a
dedicated tool into the pipeline.

e Add the ability to provide weighting of nodes to modify
the load balancing step.

e Extend pipeline metadata to bypass unnecessary render
driven partitioning operations.

e Reduce memory usage by handling polygonal dataset
types as well as general unstructured grids.

e Provide simple ghost particle and cell generation for ar-
bitrary cell types using a single pass bounding box tests
only.

e Improve time dependent partitioning of static dataset by
caching MPI send information for subsequent time steps.

2 Related Work

In the VTK library the workhorse of data partitioning is
the vtkDistributedDataFilter (known as the D3 filter,
for distributed data decomposition) which takes datasets of
unstructured type (vtkPolyData or vtkUnstructured-
Grid, see [SMLO98] for further information about VTK
dataset types) and outputs data of type vtkUnstructured-
Grid only. The class performs an MPI distributed Recursive
Coordinate Bisection (RCB) algorithm on the input data and
redistributes points/cells based on the algorithm described
in [BB87], which is also used by the Zoltan [BDH*07,
DBH*02] library itself (with some improvements). The al-
gorithm is a spatial subdivision of the dataset in parallel
with the emphasis being on generating a well balanced tree
that minimizes communication costs. This differs from sin-
gle node spatial decomposition where the emphasis is usu-
ally on producing a structure that enables quick location
of an individual cell such as in [GJ10] or by using stan-
dard BSP or OctTrees. The performance of the D3 filter is
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generally acceptable when no other options exist, but com-
pared to modern well maintained libraries it compares badly
and lacks features that are available in dedicated partition-
ing tools. There are several other widely used partitioning li-
braries available other than Zoltan, most notably, ParMETIS
[KK97] and PT-Scotch [CPO8], these tools are principally
designed for graph/hypergraph partitioning and use a dual-
graph representation of a mesh minimizing the cost of edge
cuts representing communication between nodes. For the
purposes of visualization, it is less important to minimize
communication (between cells across process boundaries)
as the algorithms are different from those in the solvers and
for the most part we are visualizing/analyzing lower order
(polygonal or tetrahedral) cells and the cost function of in-
terest is simply a function of the number of cells/vertices in
the algorithms used during post processing. It is therefore
acceptable to partition the vertices of the mesh directly and
consider the cells as additional properties to be carried along
with data migration.

Zoltan was selected because it provides a geometric RCB
partitioner and an API that is well suited to integration into
toolkits like VTK. Zoltan operates by providing user defined
callbacks to pass in the data to be partitioned, and once the
partitioning is complete, further callbacks to pack individual
elements into buffers so that they can be migrated to their
destination process. This lends itself to the structure of VTK
datasets where points, point fields, cells and cell fields are
all stored in separate structures which must be traversed in
order to pack data for sending. An additional consideration
is that Zoltan provides an interface to both the METIS and
Scotch libraries so that they can be used if the functionality
were ever to be extended to graph partitioning (VTK sup-
ports datasets of type vtkTable and vtkGraph that are not
currently supported, but could be included in some future
implementation).

Ghost cells in VTK can be generated during partition-
ing by the D3 filter, however if a dataset is pre-partitioned
by a reader/source, the filter vtkUnstructuredGrid-
GhostCellsGenerator can be used to perform an extrac-
tion of bounding cells on each process and distribute them
accordingly (but only for unstructured grids). In Vislt, a
much more complex and comprehensive method of repre-
senting AMR, multi-block or multi-piece datasets exists, in
the form of a Subset Inclusion Lattice (SIL) data structure
that encodes the relationships between data blocks/pieces in
the form of a graph/tree structure (see [BP89] for a further
explanation), this allows a dedicated ghost generation filter
to walk the tree of datasets and efficiently extract exactly the
cells necessary for each adjoining dataset block to make up
the missing data it requires for interpolation between blocks,
though this can only be done for datasets that contain the SIL
information (provided usually by the parallel reader).

Recent work in [HWB*15] describes an algorithm for
computing connected components in parallel by using a
union-find algorithm on the cells of interest for each of the
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distributed pieces and then combining this information to
build a final set of connectivities. They describe both par-
titioning and ghost cell generation, but do not provide a gen-
eral purpose implementation that can be reused for other fil-
ters. In their connected components implementation, ghost
cells are used to identify those cells on the edges that abut
other processes so that pieces overlapping boundaries can
be matched up to test for connectivity. It is essential in this
algorithm that cell Ids match across processes (global Ids)
otherwise the same cell on two processes will be flagged as
two different cells and a connected piece will be lost. Other
algorithms (such as resampling operations) are generally in-
different to the presence of global Ids (cell or vertex) and so
it is not always necessary to generate them.

It is worth noting that structured grids are not consid-
ered in this paper; the regular nature of grids makes ghost
cell generation a trivial operation as one can find bound-
ary cells and neighbouring ones by direct lookup. For out of
core generation of structured grid ghost cells during stream-
ing, the reader is referred to [ILC10] and for an excellent
demonstration of the generation and use of ghost cells from
AMR structured grids to generate crack free isosurfaces see
[WCM12].

As previously mentioned, parallel sort-first compositing
(with transparency) requires front to back sorting of data
both locally on a node, and when compositing images from
each renderer. The process is the same as that for traversing
a BSP tree (see [GCI1]) to perform hidden surface removal
and is used by IceT [MKPH11], the engine responsible for
combining images from render-nodes in ParaView. Zoltan
provides a mechanism to query the BSP cuts made during
partitioning and IceT provides a mechanism to pass in the
BSP tree for ordering the compositing operations. We make
use of these facilities to direct ParaView’s rendering: an early
version of the implementation described in this paper was
used in [HBB*13] to compare the performance of transpar-
ent parallel rendering in ParaView with a custom rendering
tool on large neuron datasets of polygonal meshes, however
no treatment of ghost cells was possible (or necessary) and
only a single datatype was handled by the software. Another
use case for large scale transparent rendering comes from
the Astrophysics community where large particle datasets
are rendered using a photorealistic rayrace/splat algorithm
such as found in [JKR*10]. The algorithm used assumes that
gaseous absorption and emission are equal which simplifies
the blending operation to make it associative and therefore
particles may be composited out of order. To correctly model
gaseous absorption (dust clouds etc), particles need to be
sorted, not just on a node, but across nodes. Currently no
large scale renderers correctly implement absorption and it
is a motivating example for future use of this work.

The Zoltan2 library, a rewritten C++ implementation of
Zoltan contains new algorithms such as the Multi-Jagged
(MJ) partitioner that has even better scalability and perfor-
mance (see [DRDC16]) than the RCB algorithm and we
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provide options to select/use this algorithm. Unfortunately,
Zoltan2 does not provide a method (at the time of writing)
to expose the BSP tree cuts and so we cannot use the MJ im-
plementation when compositing transparent renderings and
it has not therefore been included in this paper. An alterna-
tive method for compositing transparent images in parallel
would be a distributed implementation of a fragment sorting
depth peel algorithm such as the one in [LWXWO09], but to
date this has not been attempted as the network traffic would
be prohibitive for complex scenes.

3 Mesh Partitioning with Zoltan

Partitioning using Zoltan is broken into a sequence of op-
erations as follows (ignoring ghost cells for the time being)

1. Passing a description of geometry to Zoltan

2. Executing the domain decomposition/partitioning algo-
rithm by calling _1B_Partition t

3. Migrating data from the source to destination nodes ac-
cording to the information returned by the partitioning
step

where the migration step may be performed by Zoltan auto-
matically and immediately after partitioning, or manually by
the user (by calling _Migrate). It is important to note that
the partitioning (step 2) does not transfer any of the user’s
data between nodes (other than that required for the com-
putation of the domain decomposition itself). Data transfer
only takes place during the migration step using lists of ob-
jects (vertices/cells/other) that are to be exchanged between
processors.

Although VTK consists of many dataset types, we are
concerned here only with polygonal and unstructured grids,
a special case of which is particle data, since it contains only
0 dimensional points and may be held in vtkPolyData or
vtkUnstructuredGrid container datasets. A specialized
vtkParticlePartitionFilter has therefore been cre-
ated to handle data of this kind - the method for particle
partitioning is presented first and then generalized to other
cell types.

3.1 Particle Partitioning

When no ghost particles are required, the steps involved
are as outlined in 1-3 above, with the result of the partition
information coming in the form of a pair of lists (on each
process), one containing the point Ids that need to be ex-
ported from the process, the other being the destination rank
for each of the aforementioned Ids. Given this pair of ex-
port lists {Ids,Ranks}, Zoltan provides a convenience func-
tion _Invert_ Lists, a collective operation that must be

i For brevity, and to reduce repetition, function names such
as Zoltan_LB_Partition have been abbreviated to
_LB_Partition with a single leading underscore in place
of Zoltan_

called by all processes that takes the export list pair from
each process and generates a count of the inverse operation,
how many Ids will be received by each node. On comple-
tion of this call, each rank knows not only how many Ids it
will export but also how many it will import, making it pos-
sible to correctly allocate the right amount of space for the
final set of points on each node, a crucial optimization that
improves performance and memory use.

3.1.1 Ghost Particles

The pair of export lists returned from _LB_Partiton
does not have to be passed to _Invert_Lists directly, or
indeed at all, the user is free to create completely new lists
and use them instead. This provides an opportunity to insert
new steps between steps 2 and 3 to locate ghost particles
and modify the export lists before inverting them and mi-
grating data. Resampling/interpolating particle data to pro-
duce contours as shown in figure 2 requires neighbour lists
that include ghost particles for smooth boundaries between
processors. The thickness of the ghost region may be deter-
mined from some property such as the Kernel size in the
case of Smoothed Particle Hydrodynamics (SPH) data, and
the RCB bounding boxes for each partition are available af-
ter the _LB Partition step completes, so one can easily
add the desired ghost layer thickness to each process bounds
to find the region in which ghost particles must be identified.

The following (straightforward) algorithm is used to iden-
tify ghosts and track ownership of points. An important
point being that each point should be owned by one rank
only and exist as a ghost on any others it intersects the
(bounds + halo) region of.

Algorithm 1 iterates over all points that are on the current
process and tests them against the bounding boxes of other
processes using a BSP locator built from the halo regions of
each process, if they lie inside the halo region of another pro-
cess (or processes) and have not already been marked as be-
longing to the remote process during _LB_Partition, they
must be ghosts for that rank. If they are flagged as ghosts,
but were not previously marked as belonging to this rank,
then they must be added to a list of local points to keep (as
well as send). The total space required for all points is given
by

NFinal = NOriginal + Nlmport - (NUniqueExport - NKeep)e
where NynigueExporr 18 given by the sum of the number of
points designated for export by Zoltan and those flagged as
ghost exports — after duplicate Ids have been removed — since
a point exported as a ghost to multiple processes and/or ex-
ported to be owned by another must only be counted once.
Once the total space required is known, it can be allocated,
then points to keep are copied into their new output locations
and _Migrate can be called using the space offset by the
kept points and using the export list created by combining
the original partition and the new ghost assignments. Before
exchanging data one must ensure that any processes with 0
points have arrays setup for receiving field data, so an extra
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Input: ExportList: List of exports {Ids,Ranks}

Output: GhostList: List of exports ghost {Ids,Ranks}

Output: LocalldsToKeep: List of Ids marked for export,
but also to be kept locally

IdToProcessList < {myRank,myRank,myRank ...}

foreach {Id,Rank } in ExportList do
| IdToProcessList [Id] < Rank

end
foreach Rank #myRank do
| HaloBox < Inflate (PartitionBox,GhostSize)
end
Build BSP tree from Halo Boxes
foreach {Point,Id / do
foreach Rank with Overlaps (Point,HaloBox) do
if IdToProcessList [Id J#Rank then
GhostList < Add {ld,Rank }

if IdToProcessList [Id J=myRank then
| LocalldsToKeep <« Id

end
end

end

end
Algorithm 1: Identifying ghost points and points to keep.
Note that the foreach loop orders can be swapped for better
cache coherency

Figure 2: Resampled and contoured SPH particle dataset
with bounding boxes of process regions shown. Crack free
contours between processes are ensured by setting the ghost
region overlap to the SPH kernel size.

AllGather is performed for this initialization. Field data
array pointers are then cached so that Pack and Unpack op-
erations triggered by the Zoltan callbacks during migration
are efficient.

Figure 3 (c) shows the result of partitioning a uniform dis-
tribution of particles when a user supplied weight array is
specified. This requires no additional logic in the filter, pass-
ing an extra pointer to _LB_Partition is sufficient; the re-
turned export lists and bounding boxes) reflect the weighted
partition and the effects are propagated through automati-
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cally. Providing weights via a user supplied field allows finer
control of load balanacing and can be used to place fewer
large particles and more smaller ones per process (or vice
versa).

Figure 3 (a) and (b) show results of partitioning with and
without ghost particles enabled — blue ghost points around
the centre of 3 (b) must be marked as DUPLICATEPOINT

on all ranks that have copies as a ghost and be unmarked

on the rank that owns it. (Implementation note: points are
marked as ghosts prior to sending (where applicable), and
then unmarked afterwards if they are owned by the send-
ing process). The implementation of algorithm 1 guarantees
that every point will appear once and only once as a non
ghost and N — 1 times as a ghost or duplicate point — pro-
viding points are unique on the input. If duplicated points
are present in the input, they will be passed through (the ex-
cpetion being points already marked as ghosts on the input
which can be dropped).

(b) Ghosts

(a) Simple

(c) Weights

Figure 3: Partitioning point based data (partitions sepa-
rated spatially for illustration). (a) Random points in shells
partitioned onto 4 processes. (b) The same points with a halo
region around each process where ghost points are dupli-
cated. (c) A Cube of uniformly distributed points weighted
towards the upper right corner.

3.2 Cell Partitioning

Partitioning of meshed datasets follows the same basic
outline as for particle data with the major difference being
that after points have been partitioned cells that are made up
from them must be distributed. Cells along process bound-
aries may have their vertices assigned to multiple processes
but must be owned by one and only one and if necessary, du-
plicated as ghosts on other processes. Fortunately, any cell
whose vertices belonging to multiple ranks must be a bound-
ary cell by definition which makes the task of identifying
them straightforward.

A simple classifiction of cells can be made based on the
partition assignments of their points

Local: All cell points remain on the local process
Remote: All points assigned to a single remote process
Split: One (or more) local, rest on remote process(es)
Scattered: All remote, on multiple processes

This classification is used to help decide which process
should own the cell and if it needs to be exported. Cells
of type Local are not exported whilst Remote cells must
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be, with no additional checks for either necessary. Cells that
are Split can either be exported or kept — but if kept, any
points marked for export must be added to a list of points
to keep and if exported any points marked as local must be
marked for export too — otherwise the cell will be incomplete
on the receiving (owning) process. Likewise, cells of type
Scattered must have all points sent to the receiving pro-
cess (not just those already marked for the destination). Note
that points that are unused when a cell is sent to one process
but other points go elsewhere cannot be dropped completely
as they will be part of a neighbouring cell.

Cell ownership produces subtle differences that can nor-
mally be ignored, but might be of interest, particularly if
ghost cells are unwanted for some reason (many existing al-
gorithms in VTK do not correcly handle ghost cells/points
and their presence can affect results). The effects of cell
ownership possibilites can be seen in figure 4 and are:

e rirst: The process that owns the first point
e Most: The process owning the most points
e Centroid: The process overlapping the cell centroid

(a) First (b) Most (c) Centroid

Figure 4: Cell ownership assignment. The choice of mode
produces subtle effects which can usually be ignored, but
might be desirable in certain circumstances.

Usually assigning the cell ownership based on the first point
produces a somewhat random ownership of boundary cells,
but as can be seen in figure 4 (a), when data comes from
a structured source, it can give a good distribution. Assign-
ment based on centroid is the default mode of operation.

Assignment of cells for export from their points is out-
lined in algorithm 2. Using this algorithm, tracking the as-
signment of points and cells in a single pass through the cell
list is possible. This makes it possible to build up the final
allocation of all points and cells in one go prior to migration
— though the algorithm does require a considerable number
of internal flags to note if a cell is being kept/sent or both
and checks to ensure that all points belonging to all cells are
sent where they belong.

3.3 Ghost Cell Generation

Extending algorithm 2 to handle ghost cells varies slightly
depending on the ghost cell mode selected. The types that are
available are:

e None: no ghost cells are generated

e Boundary: cells that are SPLIT or SCATTERED must
straddle a boundary and be copied on all proesses that
share the points.

Input: ExportPoints: List of exports {Ids,Ranks}

Input: BoundaryMode: enum {First, Most, Centroid }

Output: ExportCells: List of exports {Ids,Ranks}

QOutput: LocalPointsToKeep: Points for export, but also
keep

// PointDest is process owning point Id
Setup IdToProcessList as in algorithm 1
foreach Cell do
PointProcessCount <— Count points per process
// cell local/remote/split/scattered
CellType +— Classify (Cell, PointProcessCount)
// which process will own cell
CellDest <— Assign (Cell, BoundaryMode)
Mark cell for export to CellDest
foreach Point in Cell do
if PointDest#CellDest then
Mark point for export to CellDest
if PointDest=LocalRank then
| Mark point for keep
end
if CellType SPLIT or SCATTERED then
foreach Rank in PointProcessCount do
Mark point for export to Rank
Mark cell for export to Rank
if CellDest=LocalRank then
Mark cell for keep
end

end
end
end

end

// for point and cell export/keep lists
Remove duplicates {Id,Rank} from export list
Remove duplicates from keep list

end
Algorithm 2: Algorithm for distributing Cells and their
points from the export lists supplied by partitioning. The
bookkeeping of points to send and keep is rather complex
and simplified here to the main concept: all points for ex-
ported cells must be marked and any shared by cells not
exported must have copies kept

e BoundingBox: The cell is copied to all processes whose
Halo region overlaps the cell.

Note again that like points, cells are owned by one and only
one process and copies are sent to others as ghosts where
they are marked as DUPLICATECELL. When Boundary
mode is selected, only cells of type SPLIT or SCATTERED
need to be flagged as ghosts, but only on the processes that
are not receiving the cell already. Since these cell types are
already handled by algorithm 2 there is just one extra check
to make a copy of the cell on any processes not yet receiving
1t.

For BoundingBox mode, things are more complicated.
For each rank, we inflate the bounds by an amount equal
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to the requested halo size and must then test all cells against
the bounds (since we do not know how large the halos might
be — though usually of the order of the maximum cell size).
To accelerate this process, as before, we use a BSP locator
created from the halo bounds of each rank and then clas-
sify cells as ghosts if they overlap a rank bounds and are
not already destined for that rank (as they might be due for
migration anyway as non ghost cells of type Remote). As
can be seen in figure 5 (a), large halo regions can lead to
the same cells being sent to several processes. All points of
each ghost cell must be flagged for sending (or keeping) to
all overlapping ranks in order to build up the final export list.
However it is possible to do this in a single pass through of
all the cells. The advantage of this approach is that all point
exchanges can be done in one migration step and then all
cells in a second. This is not the case for a true neighbour
based ghost exchange as neighbour cells may originate on
different processes and there is no way of knowing which are
truly neighbours until a first exchange of points or global Ids
has taken place and comparisons made. Figure 5 illustrates a
range of dataset types and ghost cell options that can be han-
dled by the implementation. The algorithm/implementation
guarantess that if the input data has no duplicated cells, then
each cell will appear once and only once in the output as a
normal cell and N — 1 times as a ghost (where N represents
the number of halo regions overlapping the cell). Points may
be duplicated in the output if they come from different ranks
as we make no comparison of global Ids. When this matters,
then the Mesh partition filter may have ghost cells disabled
and the VTK ghost cell generator may be used (see section
5.3).

4 Pipeline Extensions

The pipeline mechanism of VTK allows filters to add
meta-data to the outputs they produce and to request it from
data they consume (see [BGMTO7] for more information).
When the rendering engine composites images from paral-
lel sources, it must sort them from back to front. For struc-
tured grids, the sort order is known and internally, VTK/-
ParaView creates a KdTree object to represent the spatial
arrangement of the pieces. For unstructered data, a distri-
bution phase is used to generate the KdTree on demand,
but if the tree is already known it could be used if the in-
formation was available to the renderer. The particle and
mesh partition filters both inherit from a ZoltanBaseParti-
tionFilter and this adds an information key to the data output
which holds a vtkBoundsExtentTranslator object that
is passed downstream (refer to figure 1). The Bounds trans-
lator holds a reference to the KdTree generated from infor-
mation provided by Zoltan and the translator also provides
a mechanism to compute structured indices from the bound-
ing boxes of each piece of data (this can for example be used
by a resampling filter to compute the correct structured di-
mensions of a piece when each piece is a different size). By
modifying the vtkGeometryRepresentation class (that

(© The Eurographics Association 2016.

q

(b) Trregular Mesh

(a) Bounding Box

(c) Unstructured Grid

(d) Arbitrary PolyData

Figure 5: Partitions of various mesh types and ghost cell
options. In (a) ghost cells are coloured according to the
rank they are owned by. In (b) a compex mesh is partitioned
with regions of denser polygons receiving smaller bounds.
(c) shows Unstructured grid partitioning with only boundary
cells as ghosts and (d) demonstrates a mixture of points/li-
nes/polygons partitioned (without loss of data type).

is responsible for rendering unstructured data) to look for a
Bounds translator, we can detect when data has been parti-
tioned upstream and bypass the domain decomposition step,
passing the KdTree directly to the rendering engine.

4.1 Time Dependent Data

When animating scalar/vector fields on a dataset that has
fixed geometry (such as the neuron circuit described be-
low), the pipeline will update all filters that receive modified
datasets. This includes partitioning filters — both user added
and those from the rendering stage. The abstraction of the
partition filter to make use of zoltan _Migrate for point/-
cell migration steps makes it easy to cache the final export
lists in the partition filter and uses these to resend field arrays
on timesteps without recomputing the main partition. In sec-
tion 5.2 we show the benefits of this and the use of KdTree
information to accelerate rendering.

5 Performance

To test the performance of the new vtkParticle-—
PartitionFilter (PPF) and vtkMeshPartition-—
Filter (MPF), comparisons are made with the D3 filter
from VTK and the vtkUnstructuredGridGhostCells—
Generator (VUGGCG). As we are principally interested in
the raw performance (ignoring multithreading optimizations
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Figure 6: Timing comparison between the Particle Partition Filter and D3 filters on time to partition datasets of different sizes
on different node counts. Note that the D3 filter was unable to produce valid output for smaller datasets on larger node counts,
and larger data on any node counts. Results for the larger datasets are only available on larger node counts due to memory
pressures.

and network effects), all tests have been run as single 512.00 { ;
threaded single rank per node processes (the Zoltan2 4+ 100 (Render/D3) |
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Figure 8: Render time for transparent surface geometry ex-
tracted from a distributed dataset of 100° hexahedra trian-
gulated (per node) and then shrunk to produce 6 x100° dis-
connected tetrahedra. The MPF passes KdTree information
to the renderer and avoids an additional partitioning step.

5.2 Mesh Partitioning and Rendering

A comparison of the D3 and MPF yields results that are
the same as for D3/PPF with the MPF outperforming D3 by
a significant margin. Rather than present a similar graph, we
instead present timings of a render pipeline that is motivated
by the use case illustrated by figure 7. This image shows
a neuron circuit of 5K cells comprising 10° triangles with
a very high depth complexity as the neurons form a dense

Figure 7: 5K neuron circuit of 10° triangles rendered with
transparency on 1024 cores.

(© The Eurographics Association 2016.
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interwoven mesh. Visualizing fields in the centre is made
simpler by controlling the transparecy of uninteresting items
that should be hidden. A pipeline that mimics this workflow
is as follows
Wavelet— Tetrahedralize— Partition—Shrink—Render

with transparency enabled for the final render stage.
The wavelet source generates strucured image data
of arbitrary dimension in parallel, passing this through
Tetrahedralize converts the data to an unstructured grid
(with 6 times as many cells), the Partition filter redis-
tributes the cells in parallel as we would do after reading
a mesh/dataset from file. A shrink filter is added to sepa-
rate the cells so that the final render stage has many surface
polygons to handle. Enabling transparency causes the render
pipeline to redistribute data a second time if necessary. We
can control the number of cells by varying the resolution of
the wavelet source.

Figure 8 shows the time to partition and render the wavelet
using the MPF and D3 filters. The MPF filter partitions the
largets datasets (2048 % 100%) in a few seconds, passes the
KdTree downstream and rendering takes slightly longer. The
D3 filter takes several minutes to perform the same actions —
for 1024 nodes the first partition time is 30 seconds, but after
the shrink filter operates, the second partition takes around 2
minutes. Even though the Shrink filter occurs after partition-
ing, this does not invalidate the decomposition and the ren-
derer could still use the KdTree. We can generalize this by
saying that any filter that does not alter the domain decompo-
sition (i.e. most filters in VTK) can pass the KdTree down-
stream without invalidating the decomposition and trigger-
ing a re-execution of the MPF/PPF filters.

Figure 9 shows the peak memory usage on a node dur-
ing the render benchmark of figure 8. Wherease the MPF
pipeline uses almost constant memory per node as the job
size increases (but data size per node remains constant), the
D3 pipeline memory usage grows quickly as the job size in-
creases. At 1024 nodes the memory use is 4 times larger for
D3 than MPF and at 2048 nodes, the D3 filter is unable to
operate. It is clear that the MPF pipeline not only operates
faster but can handle much larger datasets.

When combining the KdTree information optimization
with caching of export lists for time dependent field data, the
time to animate the neuron models was reduced from over 3
minutes per time step to under 5 seconds as scalar values
change.

5.3 Ghost Generation

In order to benchmark the ghost cell generation a pipeline

of
Wavelet— Tetrahedralize— Partition
with ghost cells enabled using BoundingBox mode in MPF,
and
Wavelet— Tetrahedralize— Partition—+vUGGCG

with ghost cells disabled in MPF, but ghost cells generated
instead by the standard VTK ghost cell generator. We time

(© The Eurographics Association 2016.
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Figure 9: Peak memory use per node during rendering sur-
face geometry desribed in figure 8

the MPF when generating ghosts and again when not gener-
ating them and use the differnce as a reasonable approxima-
tion to the ghost cell time (since the ghost cells are generated
and exchanged during the migration step, separating out the
times exactly is not possible).

The results in figure 10 show that the VTK ghost cell fil-
ter performs extremely well, generating ghosts for 6 + 2048
1003 nodes in seconds and the MPF filter taking roughly half
the time. The VTK ghost cell filter performs point merging
of duplicated points and is therefore expected to take longer.
Importantly, we see here that it is quite possible to mix the
two classes and benefit from both fast partitioning and robust
ghost cells when needed.
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Figure 10: Comparison of ghost exchange times using MPF
BoundingBox method and ParaView’s dedicated Ghost-
CellsFilter on 6*100° tetrahedra per node.

6 Conclusion

The partitioning software presented improves perfor-
mance compared to the existing VTK implementation by
an order of magnitude for all cases of dataset partition-
ing, reduces memory use by preserving polygonal datatypes
as well as unstructured grids and adds support for parti-
cle datasets with ghosts. Time dependent dataset processing
can be significantly accelerated and datasets of large size
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that were not previously possible to visualize with trans-
parency can now be handled with relative ease. The filters
described in this work may be integrated with any existing
packages that make use of parallel VTK and enable better
load-balancing for arbitrary pipelines. A fast ghost cell gen-
eration algorithm has been presented that handles all un-
structured cell types and the partitioning can interoperate
with the more robust existing ghost cell implementations
when required. The software developed is made freely avail-
able under a permissive Open Source license.

Software

The software described in this paper is available
for download from https://github.com/biddisco/
pv-zoltan.
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