
Eurographics Symposium on Parallel Graphics and Visualization (2014)
M. Amor and M. Hadwiger (Editors)

A Study of Parallel Data Compression
Using Proper Orthogonal Decomposition on the K Computer

Chongke Bi1 and Kenji Ono1 and Kwan-Liu Ma2 and Haiyuan Wu3 and Toshiyuki Imamura1

1Advanced Institute for Computational Science, RIKEN, Japan
2University of California, Davis, USA

3Wakayama University, Japan

Abstract
The growing power of supercomputers continues to improve scientists’ ability to model larger, more sophisticated
problems in science with higher accuracy. An equally important ability is to make full use of the data output
from the simulations to help clarify the modeled phenomena and facilitate the discovery of new phenomena.
However, along with the scale of computation, the size of the resulting data has exploded; it becomes infeasible
to output most of the data, which defeats the purpose of conducting large-scale simulations. In order to address
this issue so that more data may be archived and studied, we have developed a scalable parallel data compression
solution to reduce the size of large-scale data with low computational cost and minimal error. We use the proper
orthogonal decomposition (POD) method to compress data because this method can effectively extract the main
features from the data, and the resulting compressed data can be decompressed in linear time. Our implementation
achieves high parallel efficiency with a binary load-distributed approach, which is similar to the binary-swap
image composition method. This approach allows us to effectively use all of the processors and to reduce the
interprocessor communication cost throughout the parallel compression calculations. The results of tests using
the K computer indicate the superior performance of our design and implementation.

Categories and Subject Descriptors (according to ACM CCS): Compression [I.4.2]: Approximate methods—; Modes
of Computation [F.1.2]: Parallelism and concurrency—

1. Introduction

One major challenge presented by extreme-scale scientific
computing is the huge amount of data that the simulation is
capable of generating. Since each run of a state-of-the-art
simulation can output data at the petascale, storing all of the
data is no longer an option. Aside from simply dropping se-
lected time steps, as has been the practice, additional data
reduction methods must be considered in order to meet data
movement and storage requirements, while maintaining the
accuracy and integrity of the data. This is particularly impor-
tant as scientific supercomputing moves toward exascale.

In order to address the pressing need for further data re-
duction, we have chosen to develop a scalable data compres-
sion solution that will be usable for in situ simulation. Our
parallel compression method achieves high compression ra-
tios and is at least as scalable as the simulation on the super-
computer. Furthermore, we have chosen lossy compression
in order to benefit scientists who require compression ratios

of smaller than the 50 to 70% achieved by state-of-the-art
lossless methods [FM12]. Note that the following function
is used to define the compression ratio in this paper:

c = sizecompressed/sizeoriginal ⇥100%, (1)

where sizecompressed and sizeoriginal are the sizes of the com-
pressed dataset and the original dataset, respectively.

In employing lossy compression methods, the following
two issues must be considered:

• We must find a balance between the compression ratio and
the errors introduced in the context of the data analysis
and visualization tasks. Under the premise that important
features can be fully retained, large-scale datasets should
be compressed as much as possible. Lossy compression
methods that can preserve the main features of the data
are the most desirable for our purposes.

• In order to address interactive visualization of time-
varying datasets, we should be able to decompress the

c� The Eurographics Association 2014.

DOI: 10.2312/pgv.20141078

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/pgv.20141078


Chongke Bi & Kenji Ono & Kwan-Liu Ma & Haiyuan Wu & Toshiyuki Imamura / Parallel Data Compression Using POD

Large-Scale Dataset 

( ! " # " $ " %&'()%(*) )

Data Partition

S ••••••S S S S

Parallel POD Compression 

with a Binary Load-Distributed Approach

Coefficients POD Bases

Save Finish

Cannot be 

compressed 

Compression Restoration

Coefficients

in Different Layers

A Binary Tree

Coefficients POD Bases

Restored Dataset

! "

# $ % $ & $ '()*+'*,+

-

Next 

layer

Figure 1: Flow chart of the parallel data compression and
decompression system.

data quickly. For this requirement, decompression meth-
ods in linear time are the best choice.

The proper orthogonal decomposition (POD) method ad-
dresses the two issues noted above. The POD method can
greatly reduce the size of large-scale datasets [CWJ10] with
a small error. The error is analyzed in [HUT06]. However,
the high computational cost and the large memory require-
ments for resolving eigenvalues and eigenvectors of huge
matrices arising from large-scale datasets limit the use of
traditional POD methods.

In this paper, a novel POD-based parallel compression ap-
proach is presented. Our approach fully utilizes the merits
of the POD method and also resolves the drawbacks noted
above. An overview of our approach is shown in Figure 1.
On the left side of the illustration, our parallel compres-
sion approach is shown. The linear decompression method
is shown on the right side of Figure 1.

As a first step, we address memory size issues by divid-
ing the large-scale datasets into spatial and temporal compo-
nents. The optimal partition size is determined by analyzing
the computational cost of the POD algorithm. Our POD data
compression process is carried out in parallel on all of these
small blocks. POD bases can be obtained in all small par-
titions. However, the size of these POD bases remains too
large, and they must be compressed again.

Next, we set all of the POD bases as new datasets that
are to be compressed again by reapplying the parallel POD
scheme. The compressed POD bases have the same proper-
ties as the corresponding original datasets. Therefore, if the
original datasets can be compressed, the resulting POD bases
can also be compressed. For example, we compress a dataset
with eight time steps using the POD method. If only one pro-
cessor is used serially for this compression, the dataset can
be compressed into one POD basis. On the other hand, if
we use two processors in parallel to compress this dataset,
two POD bases will be obtained (one for each processor).
In this case, according to the results of serial compression,
these two bases can be compressed again by using the POD
algorithm one more time. Therefore, this compression pro-

Eigenvalues and Eigenvectors of 

Coefficients and Orthogonal Bases of POD

Figure 2: The POD data compression in serial. P0_ j repre-
sents the dataset in the j-th time step. m is the size of the
dataset in one time step, and n is the number of time steps.

cess is carried out recursively until the dataset cannot be
compressed further. For this process of recursive compres-
sion, our implementation achieves high parallel efficiency
with a binary load-distributed approach. This is similar to
the binary-swap image composition method used in parallel
volume rendering [MPHK94, YWM08]. This approach al-
lows us to effectively use all of the processors and reduce
the interprocessor communication cost throughout the par-
allel compression calculations. Furthermore, a minimization
function is set in order to further reduce errors. Finally, a
binary-tree is constructed in order to calculate the coeffi-
cients for decompression.

We have tested our design and implementation on the K
computer and achieved both good compression ratios and
scalable performance. In particular, we show that the inter-
processor communication cost decreases as more processors
are used, which is key to scalable parallel computing.

2. Related Work

Compression is an effective tool for analyzing and visual-
ize massive scale datasets with small throughput on current
hardware devices.

Lossless compression methods are frequently used for
datasets that do not allow degradation after compression,
such as [LI06, FM12]. Lossy compression methods have
been applied to situations where throughput limitations de-
mand high compression ratios and some introduced error
is allowable. Abrardo [Abr10] presented a low-complexity
lossy compression scheme based on prediction, quantiza-
tion, and rate-distortion optimization. Lukin et al. [LZPK10]
introduced a lossy compression method in which distortions
in the compressed data were invisible and provided poten-
tial applications of their method. In general, the most signif-
icant advantage of lossy compression methods involves their
compression speed. Lakshminarasimhan et al. [LSE⇤11]
presented an effective method for in-situ sort-and-B-spline
error-bounded lossy abatement (ISABELA) of scientific
data that is widely regarded as being effectively incompress-
ible in terms of runtime. Iverson et al. [IKK12] addressed
this advantage with a fast and effective lossy compression

c� The Eurographics Association 2014.

2



Chongke Bi & Kenji Ono & Kwan-Liu Ma & Haiyuan Wu & Toshiyuki Imamura / Parallel Data Compression Using POD

POD POD POD

POD

!
!_#

!
!_$

!
!_%

!
!_&'%

!
!_&'$

!
!_&'#

!
!_!

!
#_!

!
#_(

!
#_)#

!
*_!

!
*_)$

Figure 3: The POD compression in parallel. The obtained
POD bases are recursively compressed until the users’ re-
quirements are satisfied. ri is the number of POD bases.

method that can be used for scientific simulation data com-
puted on structured and unstructured grids. In addition, error
control is of key importance in lossy compression methods.
García-Vílchez et al. [GVMMZ⇤11] developed a method for
evaluating the error impact for different compression ratios.

Following the prior research, we have developed a lossy
compression method using the POD algorithm in parallel
with high parallel efficiency, low computational cost, small
compression ratio, and minimized error. Readers can find
more information about POD in [Rao11].

3. Parallel Data Compression Using the POD Algorithm

In this section, we describe the details of our parallel POD
data compression method. First, a basic POD algorithm in
serial will be explained with the reasons that it is unsuit-
able for use in large-scale dataset compression. We then par-
allelize the POD algorithm to achieve low computational
cost and high parallel efficiency. This is achieved by using
an optimal partition method and a binary load-distributed
approach. The partition method will be introduced in Sec-
tion 3.2, and the binary load-distributed approach will be de-
scribed in Section 4. Finally, an error minimization scheme
is used to minimize the error of the parallel POD algorithm.
This error minimization function can further reduce the size
of compressed data by replacing the mean value vector of
the original POD algorithm.

3.1. The POD Algorithm in Serial

The POD method is usually used to analyze the main com-
ponents of scalar data and cannot be used directly for large-
scale scientific datasets, such as simulation data, which are
often four-dimensional time-varying datasets. In order to use
the POD method for compression of such types of multidi-
mensional simulation datasets, we should first transform the
dataset in each time step into a vector PPPi_ j. Note that PPPi_ j
represents the dataset of layer i and timestep j, where i = 0
represents the original dataset (Figure 2), and i > 0 repre-
sents the corresponding POD bases in layer i, as shown in
Figure 3. Then, the data for all of the time steps are trans-
formed into two-dimensional datasets, which can be repre-
sented as a matrix PPP 2 RRRm⇥n, where m = x ⇥ y ⇥ z is the

POD POD POD POD

Process 0 Process 1 Process 2 Process 3

POD POD

Process 0 Process 1

POD POD POD POD

Process 0 Process 1 Process 2 Process 3

POD POD POD POD

Process 0 Process 1 Process 2 Process 3

(a) (b)

Figure 4: Utilization rate of processors in parallel, where
the binary load-distributed approach is (b) used and (a) not
used. In the case of (a), Processor 2 and 3 are idle in the
second compression layer.

number of data points in one time step, and n is the number
of time steps of the dataset.

Then, the orthogonal bases and corresponding coefficients
of POD are obtained. This can be achieved by calculating the
eigenvalues l j and eigenvectors eee j of matrix PPPT PPP, where j 2
(0,1, ...,n�1). For example, the orthogonal bases of POD in
layer 1 PPP1_ j can be obtained using Eq. (2).

PPP1_ j = PPPeee j/
q

l j. (2)

However, matrix PPP is usually much larger than the mem-
ory size. Furthermore, the computational cost of large-scale
matrix calculation is significantly high. Therefore, the se-
rial POD method cannot be directly used for large-scale data
compression. We introduce a parallel POD method to over-
come these drawbacks.

Note that, in general, not all of the eigenvalues of the POD
method are save. These eigenvalues are usually ordered from
large to small initially, and then several larger ones will be
selected as the final result. In our parallel POD compression
method, only the largest one is saved.

3.2. Efficient Parallel POD Data Compression

In order to parallelize the POD algorithm, two issues are
very important. The first one is that the compressed data
should be small. That is, the number of POD bases from the
parallel algorithm is larger than that from the serial algo-
rithm. For example, we compress a dataset with eight time
steps using the POD algorithm. If only one processor is used
for this compression in serial mode, then the dataset can
be compressed into one POD basis. On the other hand, if
two processors are used to compress the dataset, at least two
POD bases will be obtained (one for each processor). The
second issue is to decide an optimal partition size to reduce
computational cost.

c� The Eurographics Association 2014.

3



Chongke Bi & Kenji Ono & Kwan-Liu Ma & Haiyuan Wu & Toshiyuki Imamura / Parallel Data Compression Using POD

In order to address the first issue, we use a recursive al-
gorithm in our approach. As shown in Figure 3, the original
datasets PPP0_ j is first compressed using POD in parallel. Then
we compress the obtained POD bases again, applying the
same parallel POD algorithm. The POD bases have the same
properties as the corresponding original datasets. Therefore,
if the original datasets can be compressed, the resulting POD
bases can also be compressed. This process is performed re-
cursively until the users’ requirements are satisfied. Here,
the users’ requirements include a better compression ratio
and minimal error. The balance of these two factors is very
important. If the number of layers of recursive compression
is increased by one, then the compression ratio is decreased
but the error is increased. Actually, this is a useful mecha-
nism by which users can easily control the balance between
compression ratio and error.

With respect to the second issue, the total computational
cost of the parallel POD algorithm depends on the product
of the matrix computational cost and the recursive layers, as
shown in Eq. (3). Temporal partitioning can greatly reduce
the matrix computational cost, while increasing the recur-
sive layers. For example, a dataset with eight time steps is
compressed using POD in parallel. If we divide the eight
time steps into four groups, the number of layers of recur-
sive compression becomes three. If we divide the eight time
steps into two groups, the number of layers of recursive com-
pression becomes two. In order to obtain the optimal com-
putational efficiency, we analyze the computational cost of
Eq. (3) to decide the optimal partition size. Note that we de-
fine the matrix of the divided small group of the original
dataset as PPPs 2 RRRms⇥ns , where ms and ns are the space size
and time steps of small group datasets.

cost = O((msn2
s +n3

s +msnsr)⇥ logn
ns
). (3)

Here, logn
ns

denotes the recursive layers, and msn2
s + n3

s +
msnsr is the computational cost of one small group, as de-
scribed in Section 3.1. In other words, msn2

s , n3
s , and msnsr

correspond to the computational costs of PPPT
s PPPs, the eigen-

values and eigenvectors of PPPT
s PPPs, and the bases of POD in

Eq. (2), respectively. Here, r is the numbers of bases. In or-
der to minimize the computational cost shown in Eq. (3), the
parameters should be determined as follows: 1) ms should
be as small as possible based on the memory size and 2) ms
should also be as small as possible, therefore ns is set as 2.
As shown in Figure 4(a).

However, Figure 4(a) reveals another problem. In the sec-
ond recursive layer of POD calculation, only half of the pro-
cessors are used, whereas the remaining processors are idle.
In order to resolve this problem, we have developed a binary
load-distributed approach, which is introduced in Section 4.

3.3. Error Minimization

The POD method is used for analyzing the principle compo-
nent of the dataset. The POD method allows the most impor-

POD

POD POD POD POD

Process 0 Process 1 Process 2 Process3

POD POD POD POD

POD POD POD

Basis0 Basis1 Basis2 Basis3

Layer 0

Layer 1

Layer 2

Layer 3

POD

POD POD POD POD

Process 0 Process 1 Process 2 Process 3

POD POD POD POD

POD POD POD

Basis0 Basis1 Basis2 Basis3

Layer 0

Layer 1

Layer 2

Layer 3

(a) (b)

Figure 5: Example of a binary load-distributed approach.
(a) The green and black regions divide the dataset for the
binary load-distributed approach. The black arrows in the
green and black dashed boxes indicate the directions of the
distribution of the divided datasets for full use of all proces-
sors. (b) Decompression of the dataset of time step 3 P0_3.
The blue arrow indicates the process of decompression.

tant bases analyzed from the dataset to be kept, while the re-
maining unimportant bases are ignored. These ignored bases
introduce error into the results, although the error is usually
very small. In this section, we minimize the error of the POD
method without increasing the compressed data size.

Assume that the original dataset of timestep i is PPP0_i =
[v0,v1, ...,vms ]

T , while the corresponding compressed data is
PPP0_i

0 = [v0
0,v1

0, ...,vms
0]T . Now, we introduce x to the com-

pressed data PPP0_i
0 = [v0

0 + x,v1
0 + x, ...,vms

0 + x]T to mini-
mize the error. This can be achieved by minimizing the func-
tion f (x) in Eq. (4). The optimal value of x can be obtained
as Eq. (5).

f (x) =
ms

Â
j=0

((v j
0+ x)� v j)2

v2
j

. (4)

x = (
ms

Â
j=0

v j
0 � v j

v2
j

)/(
ms

Â
j=0

1
v2

j
). (5)

4. Binary Load-Distributed Approach

In this section, we describe a binary load-distributed ap-
proach, which enables us to achieve high parallel efficiency.

4.1. Improvement of Computing Efficiency

Figure 4(a) shows parallel data compression without the bi-
nary load-distributed approach. In the second recursive pro-
cess, only Processor 0 and Processor 1 are working, and the

c� The Eurographics Association 2014.

4



Chongke Bi & Kenji Ono & Kwan-Liu Ma & Haiyuan Wu & Toshiyuki Imamura / Parallel Data Compression Using POD

Definition

!
!_#

!
!$%_#%

!
!$%_#&

!"#$%&'(%))'

(a) (b) (c)

!"#$%&

'(

'(

(d)

Figure 6: Construction of a binary-tree for obtaining all
coefficients to decompress compressed datasets. (a) Several
definitions. (b) Relationship between a father processor and
two son processors. (c) Binary tree constructed for the coef-
ficients for decompressing the third timestep in Figure 5 (b).
(d) Algorithm for computing two son processors. Note that
ai_ j is the coefficient of the i-th layer and the j-th time step.

other two processors are idle. As the number of recursive
layers increases by one, half of the remaining processors be-
come idle. A binary load-distributed approach can resolve
this problem. In the green dashed box of Figure 4(b), we
halve the POD bases in one time step and exchange half of
the data of each processor with half of the data of another
processor. Therefore, the computational cost can be greatly
reduced because the size of the dataset matrix is halved. As
the number of recursive layers increases, the burden of each
processor is reduced by half again. If the cost of compress-
ing the datasets for two time steps is s, then the total cost
of compressing the eight time steps without using the binary
load-distributed approach in Figure 4(a) is s+ s+ s = 3s. On
the other hand, the computing cost of Figure 4(b) is only
approximately s+ s/2+ s/4 = 7s/4.

4.2. Improvement of Communication Efficiency

Using the binary load-distributed approach for the POD data
compression method requires data exchange among different
processors. There are two important rules for data exchange,
and these rules are also used in the process of decompress-
ing the compressed datasets in Section 5. We will explain in
detail the data exchange rules using a simple example.

First, we preset the two rules for data exchange.

• The spatial region of the datasets to be compressed in each
processor must be the same. In Figure 5 (a), only the space
with the same filler can be compressed together.

• In the layer i, the data exchange should be conducted
between processor k and processor k + 2i�1, where k 2
{0,1⇥ (2i�1 +1),2⇥ (2i�1 +1)...}.

As shown in Figure 5 (a), in layer 0, the original eight-
time-step dataset has been compressed into four POD bases
of layer 1 (indicated by the green dashed box). The green
line divides the four POD bases in half, where the upper half
is indicated by the slash marks. According to the first data
exchange rule, the regions with the slash marks should be
exchanged within the same processors. According to the sec-
ond rule, the data should be exchanged as {processor 0 $
processor 1}, {processor 2 $ processor 3}. In the same
manner, in layer 2 of the black dashed box, the datasets with
the same filler should be exchanged with each other. The
data should be exchanged as {processor 0 $ processor 2},
{processor 1 $ processor 3}. Finally, for the deepest layer
(the layer 3 of Figure 5 (a)), it is not necessary to divide the
datasets again. Note that the length of the four bases in the
deepest layer of Figure 5 (a) is ms/4. In the process of de-
compression, they are used to decompress four parts in the
space of one time step.

As described above, the data transfer cost is also greatly
reduced. In Figure 5 (a), the transfer costs with and with-
out binary load-distributed approach of are ms/2+ms/4 =
3ms/4 and ms +ms = 2ms, respectively.

The binary load-distributed approach can reduce both the
computational cost and the communication cost.

5. Decompressing the Compressed Datasets

In this section, a linear decompression method is introduced.
This method allows users to interactively analyze and visu-
alize the compressed dataset. The basic idea is to linearly de-
compress the different parts of the datasets in one time step.
These parts constitute the entire time step. In this process, it
is not necessary to decompress the POD bases in all layers,
and only the corresponding coefficients need to be obtained.
This is achieved through constructing a binary tree.

5.1. Linear Decompression

Figure 5 (b) shows an example how to decompress the
dataset time step 3 P0_3 using the linear method. In this pro-
cess, the dataset will be decompressed as four parts from top
to bottom. This is determined by the compression process.
Figure 5 (b) indicates the four parts. In the green dashed box,
the compressed green POD bases are divided into two small
green POD bases for the binary load-distributed approach.
In the same manner, two divided green POD bases are com-
pressed into two black POD bases, which are divided into
four POD bases again for further compression. Finally, four
red POD bases are generated. The size of each POD basis
is just 1/4 that of the original dataset. Therefore, the four
parts of the original dataset can be decompressed by using
the four red POD bases with the corresponding coefficients.

c� The Eurographics Association 2014.

5



Chongke Bi & Kenji Ono & Kwan-Liu Ma & Haiyuan Wu & Toshiyuki Imamura / Parallel Data Compression Using POD

5.2. Constructing the Coefficient Binary Tree

Figure 6(c) shows the constructed binary tree for decom-
pressing the dataset of time step 3, which is represented by
PPP0_3 in the figure. As described above, the subscript indi-
cates the layer 0 and time step 3. Two parameters must be
determined in order to construct such a binary tree. The first
parameter is time step j in coefficients ai_ j. The second one
is the subscript k of the POD basis BBBaaasssiiisssk.

First, we will introduce the second parameter, because this
parameter can be easily defined. Suppose that the coefficient
of the deepest layer is al_t . Then, the subscript should be
k = t/2. For example, in Figure 6(c), a2_4 ⇥BBBaaasssiiisss2.

We then describe how to construct the coefficient binary
tree. The basic concept is to define the two child coefficients
ai+1_ j1 and ai+1_ j2 of coefficient ai_ j recursively, as shown
in Figure 6(b). As in the second exchange rule defined in
Section 4.2, we need only recover the two exchanged pro-
cessors for constructing the binary tree. Suppose that the cur-
rent processor is timestep_processor, which should be half
of time step j in coefficient ai_ j . Therefore, as shown in the
definition of Figure 6(a), timstep_processor = b j/2c. Sup-
pose the exchanged processor is timestep_change, which
may be defined in two ways depending on whether the
timstep_processor is that on the left (timstep_processor ,
timestep_change) or that on the right (timestep_change ,
timstep_processor). The second exchange rule of Sec-
tion 4.2 specifies, as shown in the definition of Figure 6(a),
the interval between them is interval = 2i�1. According to
the two possible positions of timstep_processor, there are
two definitions of the subscript, i.e., j1 and j2, as shown in
the left- and right-hand sides of Figure 6(d). Now, we can
use the coefficients and POD bases to easily and efficiently
decompress the compressed dataset.

6. Results and Discussions

This section demonstrates the effectiveness of our approach
by compressing three sets of dataset of practical simula-
tion results on the K computer. The results will be evaluated
based on computational cost, communication cost, compres-
sion ratio, error, and standard deviation of the error.

The prototype system is implemented on the K computer
at RIKEN, Japan. The K computer has 88,128 nodes and
a six-dimensional mesh torus interconnect TOFUnetwork,
each node has eight cores, 16 GB of memory, and achieves
128 GFLOPS. The theoretical peak performance of the en-
tire system is 11.28 PFLOPS. The source code has been writ-
ten in C++. In addition, we used the LAPACK library for the
eigenvalue and eigenvector calculation.

The first experiment compares the visualization results
between the original dataset and the compressed dataset, as
shown in Figure 7. The data is a sneeze flow simulation by
volume rendering of the magnitude of the velocity. Figure 7

(a) (b)

Figure 7: Result of compressing the time-varying dataset of
a sneeze flow simulation by volume rendering of the magni-
tude of velocity. The size of the dataset is 121⇥361⇥181⇥
11. (a) Original dataset. (b) Compressed dataset.

(a) and (b) show the velocity fields of the original and com-
pressed datasets, respectively. The error of the time step is
1.1%. It can be seen that the two visualisation results are
almost the same.

The second experiment is to compress a large-scale time-
varying dataset of the flow simulation in the air jet mixer of a
machinery. The size of the dataset is 300⇥200⇥200⇥128
[xsize ⇥ysize ⇥ zsize ⇥ timesteps]. Figure 8 (a) shows the visu-
alization result for one time step in the dataset. Figure 8 (b)
shows the computational cost and the interprocessor com-
munication cost when the datasets are compressed with the
largest compression ratio, 0.78%. The results fully validate
the high efficiency of our parallel compression algorithm. As
the number of processors increased, the computational cost
and the communication cost decrease. This demonstrates the
effectiveness of the binary load-distributed approach. Fig-
ure 8 (c) shows the tested compression ratio using differ-
ent numbers of POD bases. Here, the compression ratio is
calculated according to Eq. (1) and is also shown in Fig-
ure 8 (c). The compression ratio is 0.78% with one POD
basis. In other words, we achieve a size reduction of approx-
imately 99.22%. Moreover, the compression ratios with two
POD bases and four POD bases are 1.56% and 3.12%, re-
spectively. Figure 8 (d), (e), and (f) demonstrate the corre-
sponding errors, while the standard deviations of the errors
are shown in Figure 8 (g), (h), and (i). As the compression
ratio increases, the error and the standard deviation of error
become smaller. Here, Figure 8 (d) and (g) show the error
and the standard deviation of error using 1,600 processors.
Figure 8 (e) and (h) show the error and the standard deviation
of error using 4,800 processors, and Figure 8 (f) and (i) show
the error and the standard deviation of error using 9,600 pro-
cessors. Note that, several waveforms are observed in the re-
sults, proving the validity of our implementation. In other

c� The Eurographics Association 2014.

6



Chongke Bi & Kenji Ono & Kwan-Liu Ma & Haiyuan Wu & Toshiyuki Imamura / Parallel Data Compression Using POD

words, one waveform indicates that only one POD basis is
retained. Moreover, the error is larger than that for the results
with two and four waveforms, whereas the compression ra-
tio is lower. Here, the number of compression layers for one
waveform is one greater than that for two waveforms and
two greater than that for four waveforms. Therefore, users
can control the balance of error and compression ratio by
changing the deepest compression layer.

The third experiment involves compressing a large-scale
time-varying dataset of the flow simulation around a car.
The size of the dataset is 1,000⇥ 400⇥ 250⇥ 128. Based
on the visualization results shown in Figure 9(a), this flow
simulation contains much more turbulence. The data size is
greater than that of the first dataset for the air jet. As in the
first experiment, the computational cost and the interproces-
sor communication cost shown in Figure 9(b) are for the
largest compression ratio, 0.78%. The compression ratios
with one, two, and four POD basis are 0.78%, 1.56%, and
3.12%, respectively. The high efficiency of our parallel com-
pression algorithm and the effectiveness of the binary load-
distributed approach are thus demonstrated. In this experi-
ment, much higher numbers of processors are used to com-
press the dataset in order to test the effectiveness and validity
of the parallel compression method. Here, 3,200 processors,
8,000 processors, and 16,000 processors are used, respec-
tively. As the number of calculation processors increases,
especially at 16,000 processors, the error decreases. Further-
more, the standard deviation of the error fluctuates signifi-
cantly due to the strong turbulence in the dataset. However,
the largest error is still small. Therefore, the result of com-
pressing a dataset with significant turbulence further demon-
strates the high efficiency and effectiveness of the parallel
data compression method.

7. Conclusion

We have experimentally studied our parallel data compres-
sion design and implementation on the K computer and
proved it a scalable data reduction solution with low compu-
tational cost and minimized error. The scalable performance
is achieved by ensuring the communication cost decreases
as additional processors are used. In the future, we intend
to integrate this technology with several simulation codes in
order to achieve and evaluate in situ data reduction. We also
intend to investigate what compression ratios are acceptable
for subsequent data analysis and visualization tasks and may
incorporate domain knowledge when setting the compres-
sion level. Furthermore, instead of simply using LAPACK
to resolve all the eigenvalues and the eigenvectors, we plan
to use the parallel matrix library EigenK for the K Com-
puter [IYM12] to test the performance of our framework.

Acknowledgements

Part of the results were obtained by using the K computer at
the RIKEN Advanced Institute for Computational Science.

This work has been partially supported by JSPS under KAK-
ENHI(Series of single-year grants) No. 26120534.

References
[Abr10] ABRARDO A.: Low-complexity lossy compression of

hyperspectral images via informed quantization. In Proceedings
of IEEE International Conference on Image Processing (2010),
pp. 505–508. 2

[CWJ10] CHEN F., WEN F., JIA H.: Algorithm of data com-
pression based on multiple principal component analysis over the
wsn. In The 6th International Conference on Wireless Commu-
nications Networking and Mobile Computing (WiCOM) (2010),
pp. 1–4. 2

[FM12] FOUT N., MA K.-L.: An adaptive prediction-based ap-
proach to lossless compression of floating-point volume data.
IEEE Transactions on Visualization and Computer Graphics 18,
12 (2012), 2295–2304. 1, 2

[GVMMZ⇤11] GARCÍA-VÍLCHEZ F., MUÑOZ-MARÍ J.,
ZORTEA M., BLANES I., GONZÁLEZ-RUIZ V., CAMPS-VALLS
G., PLAZA A., SERRA-SAGRISTA J.: On the impact of
lossy compression on hyperspectral image classification and
unmixing. Geoscience and Remote Sensing Letters 8, 2 (2011),
253–257. 3

[HUT06] HUTH R.: The effect of various methodological op-
tions on the detection of leading modes of sea level pressure vari-
ability. Tellus A 58, 1 (2006), 121–130. 2

[IKK12] IVERSON J., KAMATH C., KARYPIS G.: Fast and ef-
fective lossy compression algorithms for scientific datasets. In
Euro-Par 2012 Parallel Processing, vol. 7484 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2012, pp. 843–
856. 2

[IYM12] IMAMURA T., YAMADA S., MACHIDA M.: Eigen-k:
high performance eigenvalue solver for symmetric matrices de-
veloped for K computer. In The 7th International Workshop on
Parallel Matrix Algorithms and Applications (2012). 7

[LI06] LINDSTROM P., ISENBURG M.: Fast and efficient com-
pression of floating-point data. IEEE Transactions on Visualiza-
tion and Computer Graphics 12, 5 (2006), 1245–1250. 2

[LSE⇤11] LAKSHMINARASIMHAN S., SHAH N., ETHIER S.,
KLASKY S., LATHAM R., ROSS R., SAMATOVA N.: Compress-
ing the incompressible with isabela: In-situ reduction of spatio-
temporal data. In Euro-Par 2011 Parallel Processing, vol. 6852
of Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2011, pp. 366–379. 2

[LZPK10] LUKIN V. V., ZRIAKHOW M., PONOMARENKO N.,
KRIVENKO S.: Lossy compression of images without visible
distortions and its application. In Proceedings of IEEE 10th Inter-
national Conference on Single Processing (2010), pp. 698–701.
2

[MPHK94] MA K.-L., PAINTER J. S., HANSEN C. D., KROGH
M. F.: Parallel volume rendering using binary-swap composit-
ing. IEEE Comput. Graph. Appl. 14, 4 (July 1994), 59–68. 2

[Rao11] RAO R. V.: Advanced Modeling and Optimization of
Manufacturing Processes. Springer Series in Advanced Manu-
facturing, 2011. 3

[YWM08] YU H., WANG C., MA K.-L.: Massively parallel
volume rendering using 2-3 swap image compositing. In Pro-
ceedings of the 2008 ACM/IEEE conference on Supercomputing
(2008), pp. 1–11. 2

c� The Eurographics Association 2014.

7



Chongke Bi & Kenji Ono & Kwan-Liu Ma & Haiyuan Wu & Toshiyuki Imamura / Parallel Data Compression Using POD

!"!#

!"!$

!"!%

!"&%

!"'(

!"$)

!

!"%

!"*

!"$

!"'

!"+

!")

!"&

!"#

%)!! '#!! ()!!

!
"
#
$
%
&
'
&
(
"
)
'
*
+,
"
-
&
+.
-
/ ,-./0.-123451267

,366042/-123451267

!"#$%##

#"%&$&#

'"()#!&

'

'"%

#

#"%

$

$"%

!

!"%

*+' *+# *+$

!
"
#
$
%
&
'
'
(
"
)
*%
+
,
(
"
*-
.
/

!"#$!%&'()**+%, (-.+%

!" #

$%&'
!"#$%&''&(

$%&'
"%)*)+,-

( 100%

(a) (b) (c)

!

"

#

$

%

&

'

! "

!
#

$
$

$
%

&
'

(
&

#
)

#
*

'
(

*
!

*
"

"
#

%
$

%
%

!
)
'

!
!
&

!
$
)

!
$
*

!
"
"
#
"
$%
&
'

()!

()"

()#

!

"

#

$

%

&

'

! "

!
#

$
$

$
%

&
'

(
&

#
)

#
*

'
(

*
!

*
"

"
#

%
$

%
%

!
)
'

!
!
&

!
$
)

!
$
*

!
"
"
#
"
$%
&
'

()!

()"

()#

!

"

#

$

%

&

'

! "

!
#

$
$

$
%

&
'

(
&

#
)

#
*

'
(

*
!

*
"

"
#

%
$

%
%

!
)
'

!
!
&

!
$
)

!
$
*

!
"
"
#
"
$%
&
'

()!

()"

()#

(d) 1,600 processors (e) 4,800 processors (f) 9,600 processors

!

!"!!#

!"!$

!"!$#

!"!%

!"!%#

!"!&

!"!&#

! "

!
#

$
$

$
%

&
'

(
&

#
)

#
*

'
(

*
!

*
"

"
#

%
$

%
%

!
)
'

!
!
&

!
$
)

!
$
*

!
"
#
$
%
#
&
%
'%
(
)
*
#
"
*
+
$

'(!

'($

'(%

!

!"!!#

!"!$

!"!$#

!"!%

!"!%#

!"!&

!"!&#

! "

!
#

$
$

$
%

&
'

(
&

#
)

#
*

'
(

*
!

*
"

"
#

%
$

%
%

!
)
'

!
!
&

!
$
)

!
$
*

!
"
#
$
%
#
&
%
'%
(
)
*
#
"
*
+
$

'(!

'($

'(%

!

!"!!#

!"!$

!"!$#

!"!%

!"!%#

!"!&

!"!&#

! "

!
#

$
$

$
%

&
'

(
&

#
)

#
*

'
(

*
!

*
"

"
#

%
$

%
%

!
)
'

!
!
&

!
$
)

!
$
*

!
"
#
$
%
#
&
%
'%
(
)
*
#
"
*
+
$

'(!

'($

'(%

(g) 1,600 processors (h) 4,800 processors (i) 9,600 processors

Figure 8: Results of compressing the data obtained in a flow simulation in an air jet mixer.

!"#$

!"$%

!"!&

$"$&

!"'%

!"%(

!

!"%

!"'

!")

!"*

$

$"%

$"'

#%!! *!!! $)!!!

!
"
#
$
%
&
'
&
(
"
)
'
*
+,
"
-
&
+.
-
/ +,-./-,012340156

+255/31.,012340156

!"#$%&'

#"%'!$'

("&)$(#

(

("%

#

#"%

$

$"%

!

!"%

*+( *+# *+$

!
"
#
$
%
&
'
'
(
"
)
*%
+
,
(
"
*-
.
/

!"#$!%&'()**+%, (-.+%

!" #

$%&'
!"#$%&''&(

$%&'
"%)*)+,-

( 100%

(a) (b) (c)

!

!"#

$

$"#

%

%"#

&

&"#

'

! "

!
#

$
$

$
%

&
'

(
&

#
)

#
*

'
(

*
!

*
"

"
#

%
$

%
%

!
)
'

!
!
&

!
$
)

!
$
*

!
"
"
#
"
$%
&
'

()!

()$

()%

!

!"#

$

$"#

%

%"#

&

&"#

'

! "

!
#

$
$

$
%

&
'

(
&

#
)

#
*

'
(

*
!

*
"

"
#

%
$

%
%

!
)
'

!
!
&

!
$
)

!
$
*

!
"
"
#
"
$%
&
'

()!

()$

()%

!

!"#

$

$"#

%

%"#

&

&"#

'

! "

!
#

$
$

$
%

&
'

(
&

#
)

#
*

'
(

*
!

*
"

"
#

%
$

%
%

!
)
'

!
!
&

!
$
)

!
$
*

!
"
"
#
"
$%
&
'

()!

()$

()%

(d) 3,200 processors (e) 8,000 processors (f) 16,000 processors

!

!"!#

!"$

!"$#

!"%

!"%#

!"&

! "

!
#

$
$

$
%

&
'

(
&

#
)

#
*

'
(

*
!

*
"

"
#

%
$

%
%

!
)
'

!
!
&

!
$
)

!
$
*

!
"
#
$
%
#
&
%
'%
(
)
*
#
"
*
+
$

'(!

'($

'(%

!

!"!#

!"$

!"$#

!"%

!"%#

!"&

! "

!
#

$
$

$
%

&
'

(
&

#
)

#
*

'
(

*
!

*
"

"
#

%
$

%
%

!
)
'

!
!
&

!
$
)

!
$
*

!
"
#
$
%
#
&
%
'%
(
)
*
#
"
*
+
$

'(!

'($

'(%

!

!"!#

!"$

!"$#

!"%

!"%#

!"&

! "

!
#

$
$

$
%

&
'

(
&

#
)

#
*

'
(

*
!

*
"

"
#

%
$

%
%

!
)
'

!
!
&

!
$
)

!
$
*

!
"
#
$
%
#
&
%
'%
(
)
*
#
"
*
+
$

'(!

'($

'(%

(g) 3,200 processors (h) 8,000 processors (i) 16,000 processors

Figure 9: Results of compressing the data obtained in a flow simulation around a car.

c� The Eurographics Association 2014.

8


