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Figure 1: Sky Browser: example of the sky search, as well as the application of switching the sky backdrop using different sky
maps. The names given to the sliders are for artistic purposes, where GLCM correlation, entropy of the Laplacian, intensity,

and spherical harmonics red/blue maps to "fine smoothness", "coarse detail", "intensity", and "blue -> red" respectively.

Abstract

In a visual effects studio for movie production, sky maps play an important role for acting as a sky backdrop to
a scene. The backdrop to a scene is often represented using a high-resolution sky map. This motivates the need
for a large collection of sky maps to match various moods and lighting conditions. A comprehensive collection
of images is not useful however, without a method of searching for desired images within that database. In this
paper we define a feature space that supports an interactive search function for HDR sky maps, allowing users to
find ideal images based on its appearance. The set of features are automatically extracted from the sky maps in an
offline pre-processing step, and are queried in real time for progressive browsing. The system uses unsupervised
learning techniques, discarding the need for labelling a large set of existing sky maps.

Categories and Subject Descriptors (according to ACM CCS): 1.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Shading; 1.3.4 [Computer Graphics]: Graphics Utilities—Picture description languages
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1. Introduction

Skies are a well established and long-standing research
area in computer graphics. Significant and ongoing re-
search has addressed topics in simulation, rendering, and
identification of sky images ( [NSTN93, DNKY97, TYS09,
YIC*10, DIO*12] and others). High-resolution HDR sky
maps (HSMs) are frequently used in visual effects studio
production for live action movies, where the HSM is used
to provide either a backdrop to the scene, or lighting for syn-
thetic objects to be composited into the scene. In our case,
we are focusing on the former purpose. Two of the common
scenarios in which HSMs are needed are:

Scenes filmed on set: most scenes in a live action movie
are recorded on a stage, rather than in a pre-existing natural
environment. In these scenes, only the actors and foreground
objects will remain in the final image. Distant objects are
generated with computer graphics, physical models, or matte
paintings, and the sky may be obtained from a HSM. VFX
artists must find sky images that have various desired quali-
ties as requested by the artistic supervisor.

Scenes filmed in nature: in this case, the video images al-
ready have distant landscapes and sky. Nevertheless, it is of-
ten necessary to replace the sky, for various purposes. For ex-
ample, it may be necessary to provide continuity with a dif-
ferent scene that was shot at the same location. Frequently,
the supervisor may request a sky with a different appearance.

Given this desire for alternate HSMs, a large database is
needed for providing a wide range of images that differ in
appearance. The problem arises when the number of HSMs
in the database is overwhelming, it then becomes highly un-
likely that the ideal image is ever seen, thus rendering the
database of images redundant. Previous work in this domain
typically uses non-spherical low dynamic range (LDR) im-
ages of skies and classifies them using labelled data. We fo-
cus our work on defining a set of features without labelled
data, as well as including features suitable for HDR images.

We propose a system that allows the artist to intuitively
navigate the space of images, assisting in finding the ideal
image. This includes the ability to use a given image as a
query to find another image in the database. The search func-
tion finds certain qualities of an image, for example, a clear
sky with occasional fluffy clouds, or an overcast sky with
large, dark clouds. The search function can also take an in-
put HSM, and search the database for images that range in
resemblance from very similar to completely different.

The criteria is difficult for a human to verbalise, and sim-
ilar images are probably rated differently by different peo-
ple. For example, the supervisor may request clouds that
are "ominous" or "peaceful". How these words relate to im-
ages is subjective. For this reason, it is not effective to man-
ually tag various images in the sky database with descrip-
tive words such as "wispy, fluffy, peaceful, angry". This also
means that we are not able to apply supervised learning

methods to the search problem - the labels in a training set
would be both subjective and hard to define.

For these reasons we formulate our problem as one of
providing a feature space in which distance reflects the vi-
sual similarity of the images. The chosen features are low-
level image and textural features. This side-steps the issue
of defining what various descriptive words mean for differ-
ent people. Instead, the artist simply navigates across images
in the feature space. Our system, Sky Browser, is now in use
at a visual effects facility.

2. Related Work

The sky is a common component of many images, and se-
lecting the right sky is important to suggest the time of
day, weather and mood. Since Klassen [Kla87] presented
his work on sky visualisation, skies have been an important
subject in computer graphics with many associated research
publications [NSTN93,DNKY97]. Research in these areas is
ongoing, and we refer to [YIC* 10, DIO*12] for an entrance
to this literature, and refer to [STW*06, Deb98] on methods
for capturing HDR environment maps.

Given an outdoor scene, changing the background with a
better sky image is a common task in 2D image processing
as well as visual effects for live action movies. The main
task is to search for alternate images using an appropriate
query. Generic content-based image retrieval (CBIR) meth-
ods can be used, but these systems rely on features (shape
descriptors and interest points) that are not appropriate for
clouds [DJLWOS]. As well, many of these systems require
supervised learning. Therefore, we only focus our survey on
papers which are highly related to our main topic, the sky.

Proper labelling of an image or a part of it can
guide searching in many applications [JGJJ*06, LHE*07,
LRT*14]. However, verbalising the criteria is difficult for a
human due to inconsistent meaning of subjective terms such
as "peaceful” or "smooth". With this in mind, we formulate
our problem as feature extraction and searching the feature
space, where relative distance reflects the similarity of the
images. Other methods to get around subjective labelling in-
clude crowdsourcing, as found in [LRT* 14].

The general method of the search function investigates
machine learning and texture classification to define feature
extraction techniques. Haralick et al. [HSD73] describes eas-
ily computable textural features based on grey tone spatial
dependencies. This is often referred to as the grey level co-
occurrence matrix (GLCM). Gu et al. [GDR*89] compares
techniques for measuring cloud textures. They use GLCM
features to measure spatial properties, where they found that
entropy based features gave good results for frequency prop-
erties. Chethan et al. [CRK09] consider textural features
based on the Gabor transform to classify clouds, as well
as using a support vector machine (SVM) as their method
of classification. Mazzoni et al. [MHG"05] label parts of
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images as a clear sky, or a type of cloud. They use the
Multi-angle Imaging Spectro Radiometer (MISR), an instru-
ment used by NASA, to study clouds and aerosols. Heinle et
al. [HMS10] classifies skies into seven different categories.
They used the k-nearest neighbour method for classification,
and the colour and tonal variation of an image as features.

Recently, Tao et al. [TYS09] developed an interactive
search system for finding sky photographs using supervised
learning techniques. Their method allows for offline compu-
tation as well as an interactive user interface. Most similar to
our work is [ODY 11], which extracts four features to char-
acterise the images in the database. Other recent works in-
clude [MF12, LRT*14]. Our method fundamentally differs
from these papers on four points: We focus on HSMs (an
industry standard image category), we remove the ambigu-
ity and manual labour of labelling data required for super-
vised learning, we explicitly define two textural properties
for more artistic control over clouds, and we use the spher-
ical harmonics as a novel tonal feature. These four compo-
nents target a specific and important area of computer graph-
ics and the movie industry.

3. Searching

The search is based on observable but subjective image prop-
erties. For example, such properties may include how blue
the sky is, or how patchy the clouds are. There are tonal
properties such as the contrast or brightness of an image,
and there are textural properties, such as the bumpiness of a
cloud. Further, skies tend to have strong properties relating
to how blue, white or red the sky is, such as clear blue skies,
large bright white clouds, or a red sunset.

Clouds come in a wide variety of forms that can differ de-
pending on the atmosphere and temperature. We considered
the possibility of using the scientific names of clouds as their
class labels, and attempted to find features that could cate-
gorise them so. For our application, a major disadvantage of
supervised learning is the requirement of labelled data. Hu-
man labelling of the sky images is not only expensive but
conceptually difficult as well. It is difficult to identify a set
of labels (such as “wispy”, “romantic”, etc.) that are useful
and consistently interpreted. Further, in our experience the
desired labelling is simply not done in some cases.

Instead, we define a search space that does not require a
labelled dataset, but that can be visually traversed with no
prior training. This requires a set of features that capture
perceptually relevant information while ignoring informa-
tion that is not important or even imperceptible. In addition,
we require a minimal set of features, in order to avoid the
curse of dimensionality.

Unfortunately the number of possible features is large (it
is some fraction of the number of possible programs that take
an image patch and output a number), and choosing a best
subset is not feasible due to the combinatorics. Choosing a
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small set of features therefore requires intuition and experi-
ence with the problem. We discarded keypoint features such
as SIFT [Low] because skies are more appropriately con-
sidered as random textures than as images of objects with
common and reproducable parts. Instead we explored fea-
tures such as GLCMs that have proven successful for texture
modeling and classification.

After several months of experimentation on actual
datasets, we chose the following four-dimensional feature
space: GLCM correlation, the entropy of the Laplacian (EL),
aratio between red and blue spherical harmonic coefficients,
and the mean intensity. The result is a small set of features
that define a visually searchable space.

There are numerous advantages to this approach: Firstly,
it does not require manually labelling data (or finding a read-
ily available labelled dataset). Secondly, the classification
method is not defined by scientific labels that would have
to be learned. Instead the search space simply relies on vi-
sual perception of the images. Finally, images often fall be-
tween scientific labels (such as a single sky having two cloud
types), so removing scientific labelled data gives more artis-
tic freedom for defining a continuous feature space for skies.
For example, the ability to move from “very patchy” clouds
to “somewhat patchy”, to “not patchy at all”, while main-
taining other key features, for example, “a very blue sky” in
conjunction with the varying levels of patchy clouds.

3.1. Features

The followings are the set of features we use to define our
search space. The HDR images are in a linear colour space.
In a pre-processing step, we scale the images to a standard
resolution of 360x160. For the spherical harmonics feature,
we reduced the input image to 512x256.

GLCM Correlation: The GLCM is a commonly used tech-
nique in texture classification [HSD73]. The method in-
volves finding a co-occurrence histogram of an image, and
running various formulas across the histogram. The his-
togram counts how often two intensity values in a greyscale
image co-occur with some spatial relation (dx,dy), for ex-
ample, the number of times that a pixel with value 5 is to the
right of a pixel with value 20.

The GLCM histogram is a lot of information — potentially
much more than that image itself, depending on how many
spatial relations are considered. For this reason, various sum-
mary statistics are often used [Alb08]. After experimenting
with several GLCM summary statistics, we selected correla-
tion since it is minimially correlated with a second textural
feature (described in the next section). For a particular spa-
tial relation, the correlation is
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Figure 2: Textural feature space examples.

where i, j are indices of the GLCM corresponding to pixel
values on an 8-bit scale, u is the mean, © is the variance, and
P; j is the GLCM histogram normalised to serve as a proba-
bility. The correlation characterises an approximate smooth-
ness or correlatedness in a particular spatial direction. We
used the eight nearest-neighbour directions as the spatial re-
lations. The computation is accelerated restricting the com-
putation to a number of windows evenly placed across the
sky area in the HSM. 27 windows are selected by our exper-
imental tests on images with a resolution of 2048x1024. The
windows are uniformly placed across the image (9x3).

Entropy of the Laplacian (EL): While the GLCM corre-
lation captures a type of roughness or smoothness, it does
not say anything about the distribution of changes. To ac-
count for this, we introduce the EL. The Laplacian V2 is
an approximate scalar curvature measure. We form the his-
togram of the Laplacian values at all pixels. The entropy of
the normalised histogram distinguishes whether the curva-
ture is concentrated in a few values (low entropy) or takes
on many possible values. The feature is computed as

N
- Y P(inP)
i=0

where P; are values of the normalised histogram of Lapla-
cian values. The latter are computed by a standard finite dif-
ference stencil.

The GLCM correlation measure in combination with the
EL can differentiate between clouds with difficult to describe
textural qualities. Figure 2 shows an example of images dis-
tributed in the feature space. The images in row 3 are all
coherent images in a sense, as described by their low EL
measure. Yet the GLCM correlation measure separates the
images; the image in row 3, column 3 is very smooth, and
the image in row 3, column 1 has a lumpy texture.

Spherical Harmonics Ratio of Red and Blue: The two fea-
tures defined above capture tonal and textural properties of
an image. An artist also looks for images with certain colour
properties. Red and blue values are salient among skies, for
example, it is often the case we find vibrant blue skies or red
tainted clouds.

As a starting point, we consider the ratio of the amount
of red and blue in the sky image. As discussed in [HMS10],

the ratio of red and blue defines how much cloud is in the
sky, so this ratio has the additional effect of defining cloud
cover. Artists can increase the amount of red to find more
clouds in the image, as well as increasing it further to find red
skies or clouds. We found that green is correlated with the
red coefficient in sky images, thus it did not add any useful
information in the search function. Furthermore, the ratio is
independent of intensity, a desirable property. We can see the
distribution in Figure 4.

Figure 3: The spherical harmonics expansion. Above the
expansion is the input image, and below is the approximation
of the input. To the right of each band is the corresponding
approximation of the input image.

Entropy of Laplacian
5

81 0z 03 04 05 05 07 08 08 10 L AU N
GLCH correlation Ratio of Rea and Blue

Figure 4: Feature space distribution, where each point rep-
resents an image. Left: the textural feature space. Right-
top: the red and blue spherical harmonic. Right-bottom: the
colour of the sky in one dimension by taking the ratio of the
red and blue value.

The redness of an image is somewhat subjective however,
as redness can be interpreted for the entire image, or the
sun itself. To handle this choice, we consider the problem
in the spherical harmonic frequency domain (Figure 3). The
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first band of spherical harmonics coefficients reflects the im-
age mean, so the red/blue (R/B) ratio can be computed from
these. There is no reason to restrict ourselves to just the first
band however. The contribution of the sun appears in higher
bands, since the sun (when visible) is a nearly a delta func-
tion. This is due to the relative values in the HDR image: the
sun may have a value much higher than 1, whereas clouds are
below one. As our final feature space, we use the R/B ratio of
the spectral energy (sum-square of coefficients) [KFR03] in
the first three bands. A weighted mixture of the ratios of the
first three bands gives the artist control over whether they are
seeking the colour of the overall sky, or the colour of bright
sky adjacent to the sun.

Mean Intensity: We use the mean intensity of the image
as a fourth feature. These four features (correlation, entropy,
red/blue ratio, mean intensity) define the space that is navi-
gated by artists.

3.2. Feature Correlation

Pearson’s Correlation Coefficient shows that our features all
have low correlation with one another (Table 1). GLCM
Correlation and the EL act as our textural measures, which
allows the user to define the variation of cloud types. We
observe from Figure 2, 4 and Table 1 that there is weak-
negative relationship with the two features, as the lower end
of the GLCM correlation measure defines a lack of smooth-
ness, which can be interpreted similarly as a high EL value.
Given that the correlation is weak, the combination of these
features is useful, as shown in Figure 2.

Table 1: Feature Correlation

GLCM Entropy Intensity = SH
GLCM 1.00 - - -

Entropy  -0.36 1.00 - -
Intensity  -0.24 0.17 1.00 -
SH -0.05 0.11 -0.22 1.00

>0.0 >0.1 >0.3 >0.5

4. Results

Figure 5 shows the exploration results of Sky Browser on a
database of 1300 environment maps. It demonstrates a user
searching through the feature space using the sliders. The
user can begin the search by using an image as a query
which has properties that are similar to what they’re look-
ing for, as shown in Figure 5 (1st column), where the user
has used an image to define the starting slider values of the
features. Following from this, the user can adjust parameters
to move towards their ideal images. For example, in Fig-
ure 5, the 2nd and 3rd columns show intensity and colour
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changes respectively, while maintaining the textural prop-
erties. The 4th column moves towards patchy images, where
as the 5th column maintains edges (EL feature) but increases
the smoothness (correlation feature), returning large and ap-
parent clouds. The 6th column maintains the smoothness,
and removes edges, thus producing clearer skies. Figure 5
shows just one example of finding clouds. There are many
other possibilities, for example moving towards blue in col-
umn 5’s state can bring in smooth blue skies and smaller
distinct clouds, instead of large smooth clouds.

Sky Browser searches HSMs in feature space without la-
belled images. Therefore, it is difficult to evaluate the result
quantitatively. Instead, we conducted a subjective test with
11 professional visual effects studio artists. They were asked
to use Sky Browser to find suitable images, both by using
an existing image as a query and by interactively brows-
ing. Following this test, they were asked following ques-
tion: "Given the input, did the Sky Browser return similar
results?", where their input would involve searching with an
image as well setting the features manually. They answered
with a score between 1 and 5, where 1 is very dissimilar, 2
is dissimilar, 3 is uncertain, 4 is similar and 5 is very sim-
ilar. The mean score of the qualitative evaluation by these
professional artists is 4.0.

5. Conclusion

The focus of this paper is on defining a minimal set of fea-
tures capable of unsupervised classification. The set of fea-
tures describe the appearance properties to make up the Sky
Browser application. The features are minimally correlated
and thus define a search space that is intuitively navigated
by the artist. To navigate the search space, the artist has con-
trol over the features as parameters. These parameters are
useful to describe images based on tonal and textural prop-
erties. We can search the space using a nearest-neighbour ap-
proach, and the current system runs at interactive rates with a
database of 1300 HSMs. The search function is scalable us-
ing parallel processing [ML14]. A weakness of the present
system is that larger slider movement is needed to navigate
in areas that are sparsely populated with data. Future work
may investigate user interface issues such as this. Our feature
space for Sky Browser is defined based on the evaluation by
professional visual effects artists, and additional features can
be applied for particular purposes.
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