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Abstract

Image-based 3D structured model reconstruction enables the network to learn the missing information between the dimensions
and understand the structure of the 3D model. In this paper, SM-NET is proposed in order to reconstruct 3D structured mesh
model based on single real-world image. First, it considers the model as a sequence of parts and designs a shape autoencoder
to autoencode 3D model. Second, the network extracts 2.5D information from the real-world image and maps it to the latent
space of the shape autoencoder. Finally, both are connected to complete the reconstruction task. Besides, a more reasonable
3D structured model dataset is built to enhance the effect of reconstruction. The experimental results show that we achieve the
reconstruction of 3D structured mesh model based on single real-world image, outperforming other approaches.

CCS Concepts

» Computing methodologies — Reconstruction; Mesh models; Neural networks;

1. Introduction

Image based 3D model reconstruction is an important subject in the
fields of computer graphics, computer vision and machine learn-
ing. The biggest difficulty lies in how to complete 3D information
missing in 2D. Some approaches use multi-view information and
simultaneously solve the projection relationship equation to solve
this problem [FPO7] [Rob63]. But it is subject to many limitations,
such as camera calibration and computational complexity. There-
fore, the study of single-view based 3D model reconstruction is
widespreadly concerned. Besides, many different 3D shape repre-
sentations are raised constantly, such as voxel, point cloud, triangu-
lar mesh. And with the rapid development of deep neural networks
and being widely used in various fields, the research on 3D model
reconstruction has also been promoted.

Single-view based 3D reconstruction is of great significance in
many fields. For example, it can help 3D modelers perform 3D
modeling quickly and easily, and can judge and recognize objects
based on images. It plays an important role in many applications,
such as industrial manufacturing, intelligent control, virtual reality,
etc. Many existing methods of 3D reconstruction only simply ap-
proximate the model appearances, but 3D model reconstruction of
object is a process of structured understanding. Simply fitting the
model cannot adapt to the environment flexibly, and the structural
details will be missing during reconstruction. Besides, 3D struc-
tured model is easier to modify and design and it is more applica-
ble. Therefore, it is important to infer the structure of object and
reconstruct 3D structured model.

In this paper, SM-NET is proposed to reconstruct the 3D struc-
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tured mesh model from single real-world image. Inspired by PQ-
Net [WZX*20], our network regards the entire model as a part se-
quence and learns to code each part instead of the entire model. It
design a part mesh autoencoder to learn to reconstruct model parts
and a part sequence autoencoder to place the parts to reconstruct
the entire model. First, a shape autoencoder is designed, which en-
codes various parts of the model through an autoencoder. Further,
it encodes the part sequence through a Seq2Seq structure to ob-
tain the latent space of the entire model. Then the decoder decodes
the vector from the latent space into a sequence of parts, mapping
back to each part and assembling model in order to obtain a sub-
component structured model. Second, we learn the mapping from
image to the latent space of autoencoder and further mapping to
the model to complete the task of single real-world image based
3D structured mesh model reconstruction.

The input of the proposed network is only a real-world image
with complex background. The real-world image has more inter-
ference information, and the model reconstruction is more difficult
and more challenging. For complex real-world image, the 2.5D
generator proposed in MarrNet [WWX*17] is used to extract the
2.5D information in the image, and learn its mapping relationship
to the latent space to realize the model reconstruction.

In terms of dataset, the proposal of a large-scale 3D model
dataset like ShapeNet [CFG™15] also brings the possibility of deep
neural network processing. However, the model used for supervi-
sion in this dataset only has the information of the overall shape.
Therefore, the method proposed based on ShapeNet can only ob-
tain the overall approximation of the model shape, but cannot re-
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construct the structural details. Although PQ-Net [WZX*20] uses
the PartNet dataset suitable for part splitting in ShapeNet to recon-
struct 3D structured model, it is still unreasonable. Based on these
experiences, the Part-SM dataset is proposed through improving
the PartNet dataset, which reasonably splits the model at an appro-
priate level and can be well adapted to the task of 3D structured
model reconstruction.

Based on this, extensive qualitative and quantitative experiments
are conducted on the Part-SM, Pix3D, PASCAL 3D+ datasets to
prove that our network can reconstruct higher quality 3D structured
mesh models. In summary, our major contributions include: 1) an
end-to-end 3D structured model shape autoencoder is proposed; 2)
an end-to-end reconstruction from single real-world image to 3D
structured mesh model with clear structure is proposed; 3) by im-
proving the Part-Net dataset, a more reasonable Part-SM dataset is
established to adapt to the task of 3D structured model reconstruc-
tion.

2. Related Work

3D reconstruction based on single real-world image. Modeling
the 3D model from 2D image is often limited to the lack of di-
mensional information, while deep learning method realizes the
cross-modal task of model reconstruction by learning the map-
ping function between the dimensions. MarrNet [WWX*17] and
ShapeHD [WZZ*18] used the method of transition information
to reconstruct voxel model of the object from the image. Mesh-
RCNN [GMIJ19] reconstructed the voxel model of the identified
object according to the corresponding angle and then meshed it.
TM-Net [PHC*19] was based on the sphere deformation method
proposed in AtlasNet [GFK* 18], in which the topology of mesh
model can be changed by designing topology modify network to
remove inappropriate patches.

3D structured model reconstruction. Just achieving an approx-
imation of the overall shape of the model can neither allow the
network to understand the structure of model, nor restore the de-
tails at the structural level. Therefore, how to achieve 3D structured
model reconstruction is of great value. GRASS [LXC*17] used a
tree structure to recursively obtain the structure of each part of the
object, and took the model structure spliced by the 3D bounding
box as the output. Im2Struct [NLX18] was based on the GRASS
method to decode on the tree structure to realize the generation of
single-view 3D structure. A similar work is 3D-PRNN [ZYY*17],
which based on depth map generated a series of cuboid shape prim-
itives as parts to spell out the structure of the corresponding model.
SAGNet [WWL*19] used a dual-channel variational autoencoder
to encode the voxel and the simple structure information of the
model, and then it used GRU to fuse the shape features and sim-
ple structure features to further realize structured model genera-
tion. PQ-Net [WZX*20] used sub-component structure to recon-
struct the model, which encoded and decoded the part sequences to
reconstruct the structure of the model by a Seq2Seq structure. Our
method draws on this idea and achieves better 3D structured mesh
model reconstruction.
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Figure 1: Network structure of shape autoencoder.

3. Method

In this section, SM-NET is introduced which learns the mapping
from the single image to the latent space of the encoder to real-
ize 3D structured mesh model reconstruction. Given a real-world
image, it first trains a network that can autoencode the shape of
3D structured mesh model. Through this process, the network can
learn a potential latent space. After that, let the network learn the
mapping from images to this latent space, and then the model re-
construction from image is completed.

3.1. Shape Autoencoder Structure

The shape autoencoder is a combination of part mesh autoencoder
and part sequence autoencoder. The network structure is depicted
in Figure 1. The encoder part of the part mesh autoencoder encodes
each part mesh to get a vector sequence. The part sequence encoder
encodes this vector sequence into a single vector representing the
entire model. Then the part sequence decoder decodes this vector
back to a vector sequence, and each vector in it restores the mesh
model corresponding to this part through the decoder of the part
mesh autoencoder. Finally, these part mesh models are assembled
together to obtain an overall 3D structured mesh model. The part
mesh autoencoder and part sequence autoencoder are respectively
introduced below.
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3.1.1. Part Mesh Autoencoder

The part mesh autoencoder is a typical encoder-decoder structure.
For each part g; represented by mesh, record its surface sampling
point as p(g;). Since it is difficult to encode the mesh structure and
what we need when decoding is only the shape of the mesh sur-
face, this surface sampling point can replace the mesh for encod-
ing to represent the overall shape of the mesh surface. The Point-
Net [QSMG17] based encoder E is responsible for encoding p(g;)
into a 1024-dimensional feature vector x;:

xi=E(p(gi)) (¢Y)

To decode the part mesh from the feature vector x; representing
the surface shape of the part, a template grid deformation method
is used. The decoder D design is similar to the deformed network
in PointNet [QSMG17], which is a four-layer MLP. The feature
vector x; and the vertex of the initial template grid will be input to
the decoder. The decoding process is the process of deforming the
mesh by moving the vertex coordinates.

3.1.2. Part Sequence Autoencoder

The part sequence autoencoder is an encoder-decoder structure
based on the Seq2Seq structure. Both the encoder and decoder in
this structure are implemented using RNN.

The encoder part is a bidirectional stacked RNN [SP97] E'r,
which is composed of two RNNs Er; and Er,. Each RNN uses
GRU as the basic unit. The vector sequence X = [x1,x2,. ..,Xs] Ob-
tained by the part mesh encoder represents all parts, where # is the
number of parts. Then, the 6-dimensional bounding box informa-
tion b; of each part (position and size are each 3-dimensional) and
the one-hot vector identifying the total number of parts will be sup-
plemented to obtain the final vector sequence S = [s1,52,. .. ,a)-
This sequence and its reverse sequence S’ = [SnsSn—1,-..,51] are
sent to Er; and Erp respectively and encoded to h; and hy. The
two parts together constitute the model feature vector A:

h=[h1,hy) = Er(S,S") = [Er(S),Ery(S)] )

The decoder part is a stacked RNN Dr that can output multiple
vectors within each time step. The final feature vector 4 obtained
by the encoder Er is inputed to Dr, and then Dr will output a shape
feature x/, a bounding box information b} and a stop identifier stop}
at each time step i. The value of the stop identifier stop! used to
determine whether the sequence should stop is between O and 1.
When the identifier is greater than 0.5, the number of parts can be
considered sufficient, and the decoding iteration process stops:

Dr(h) = [x],x5,...:b],b5, .. .;stop],stoph,. . .] 3)

The shape feature x; decoded here will be partially restored to a
mesh model by the decoder part of the part mesh autoencoder. At
the same time, it is used to determine whether the bounding box
information b/ is used to adjust its position.

3.2. Single Real-world Image Reconstruction Network
Structure

To realize the reconstruction from a single real-world image to the

3D model, it is necessary to adjust the network structure for further
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Figure 2: Network structure for single real-world image recon-
struction.

learning. 2.5D information is data such as normal, depth, contour,
etc., which can effectively link 2D and 3D. To map 2D image to
3D model, the 2.5D generator proposed in MarrNet [WWX*17] is
used. Baesd on the shape autoencoder in 3.1, the encoding part is
replaced with the encoding of the real-world image, and an encoder
is constructed to encode 2.5D information, as shown in Figure 2.
In this structure, the 2.5D generator obtains a four-channel output
O from the real-world image /, and this output O is encoded into
a feature vector i’ by changing to a four-channel input ResNet-
18 [HZRS16] structure Eo:

H = E,(0) )

This feature vector /' is then decoded by the part sequence decoder
into a vector sequence representing the shape feature of the part. Fi-
nally, the part mesh decoder is used to decode the structured mesh
model composed of parts through the method of template grid de-
formation.

3.3. Loss Function

Chamfer distance(CD) loss. Chamfering distance loss is used to
supervise the reconstruction of the part mesh models. Given two
point sets, the chamfer distance will measure their nearest neighbor
distance:
. 2 . 2
Lg=Y min|lx—ylz+} minfx—yl2  ©
rEM YES = SXGM

where x € M and y € S are the point sets sampled from the gener-
ated mesh surface M and the real mesh surface S respectively.

Shape feature loss. Shape feature loss is used to determine the
restoration results of shape features in the part sequence autoen-
coder. For the shape feature x; encoded by encoder and the shape
feature x,’- decoded by decoder in the part mesh autoencoder, the
loss function calculates the mean square error between the two as:

l n
Lo=-Y llxi—xil (6)
i=1

Bounding box loss. Similar to shape feature loss, bounding box
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loss is used to determine the restoration results of bounding box
information. This loss calculates the mean square error between
the correct bounding box b; and the bounding box b} decoded by
the part sequence decoder as:

1 n
ﬁb:;ZH bi—bi |2 @)
i=1

Stop loss. Stop loss is used to encourage the decoding process of
the part sequence autoencoder to stop in time, so that the number
of reconstructed parts is consistent with the input. Stop loss uses
binary cross entropy to calculate the difference between stop; and
the correct stop;. At the i-th time step, if the sequence should stop,
the value of stop; is 1, otherwise it is 0:

l n
£stop = ; Z[_Stopi IOgSl‘Opf - (1 —stopi)log(l _sn)pl/')] ®)
i=1

Image coding loss. Image coding loss used for 2.5D information
can be correctly mapped to the feature space learned in the shape
self-coding process. In order to achieve the mapping from 2.5D in-
formation to the latent space correctly, L2 loss is used to supervise
the ResNet-18 [HZRS16] encoder:

ﬁimage :H h_h/ ||2 )

where h is the actual encoding of model in the latent space, and /' is
the output obtained by ResNet-18 encoding the input information.

Each of the above losses will be respectively applied to the ap-
propriate part of the above network, and its weight can be set using
hyperparameters.

4. Experiments
4.1. Part-SM Dataset

Like PQ-Net [WZX*20], the PartNet dataset in ShapeNet is used.
But there are some problems with PartNet, such as the chair cat-
egory model. At the finer level, the splitting method is excessive
splitting, such as excessively splitting a chair leg into multiple sec-
tions. At the coarser level, although the dataset reasonably splits
the chair back, chair surface, and armrests, it lacks more specific
splits for the chair legs. That means no matter how many legs there
are in a model, they will be regarded as the same part. For example,
the four legs of a four-legged chair belong to the same component
and it is difficult for the network to use a template mesh to recon-
struct the four legs in a separated state. Thus, it should be improved
and Part-SM dataset is constructed. It keeps the coarsest-grained
split of the PartNet dataset except for the chair legs and splits the
chair legs by clustering the vertices of the triangle mesh based on
a specific threshold t. After constant adjustment of thresholds and
screening, more than 7,000 sets of data without problems and more
than 1,000 sets of data with problems in quantity that need to be
further processed are obtained.

For 1000 sets of data that need further processing, we find that
about 800 groups of four-legged chairs were split into more legs
in this batch of data. Therefore, the splitting method of the model
is kept which the number of chair legs is 4 in PartNet at the finest
level. So the split of this part of the data become reasonable. Finally,
more than 8,000 groups of structured models are obtained.

Table 1: Dataset check result table.

Category Quantity | Proportion
Check data 420 100%
Not completely split 18 4.29%
Split error 4 0.95%

In order to check the rationality of the constructed Part-SM
dataset, a sampling check was carried out on the dataset, and the
results are shown in Table 1. It can be seen that there are still less
than 5% of the problem of incomplete separation, mainly because
some parts are relatively close, or PartNet separates some separate
screws and other structures that are not connected to the chair legs
together with the chair legs. Although these parts are not strictly
connected, they can be regarded as the same connected part, which
has little effect on subsequent work and cannot be regarded as an
error. However, the actual proportion of false splitting problems
that are indeed to be regarded as errors is very small, less than 1%,
and will not have much impact on the whole. So far, the Part-SM
dataset is constructed. It improves the PartNet dataset to make it
more reasonable.

The experiments are performed on the Part-SM, Pix3D, and
PASCAL 3D+ datasets, and demonstrated qualitative and quantita-
tive effects. Pix3D and PASCAL 3D+ are datasets with real-world
images and 3D models.

4.2. Training Details

The 2.5D generator was trained with L2 loss for 120 epochs, and
the learning rate was 0.001. The part mesh autoencoder was trained
for 120 epochs using CD loss. The part sequence autoencoder was
trained with shape feature loss, bounding box loss, and stop loss for
2000 epochs on the chair category and 1000 epochs on the lamp
category. ResNet, which maps 2.5D information to latent space,
was trained for 300 epochs using image coding loss.

4.3. Shape Autoencoder Experiments

To test the quality of the reconstructed structured model in the
shape autoencoder, the model reconstructed by SM-Net and PQ-
Net [WZX*20] is compared qualitatively and quantitatively on the
Part-SM dataset.

Figure 3 shows the results of the qualitative comparison. Dif-
ferent parts in the model are marked with different colors, and the
color of the same part in different work should be kept as consistent
as possible. As a reconstruction from model to model itself, both of
them can get good results on the whole. However, it can be seen
that the result of PQ-Net meshing voxels will have obvious voxel
traces, and the particles on the surface are obvious. In addition, due
to the limitation of voxel resolution in many thin parts, the results
obtained by PQ-Net will be thicker than the correct results. This
can be observed in the legs of the chair everywhere. The most ob-
vious is in the first row on the right, where PQ-Net has not even
reconstructed the connecting rod between the two legs because of
its thinness. Further, the second row on the left side can be seen that
the PQ-Net generated chair leg voxels intermediate disconnected,
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Figure 3: Visual comparisons for shape autoencoder.

Table 2: Quantitative evaluation for shape autoencoder:

Category | PQ-Net Ours
Chair 0.00230 | 0.00114
Lamp 0.00537 | 0.00249

which is the possible problems of voxel method. The surface ob-
tained by our method is relatively smooth, and a finer structure can
also be obtained.

To evaluate the reconstruction model quantitatively, CD will be
used as our evaluation indicator. It normalizes the real model and
the reconstructed model into a unit cube, then samples the entire
surface of the reconstructed model at 10,000 points and calculates
the CD. Table 2 shows the results of the quantitative comparison.
It can be seen that the results we obtained are better than PQ-Net
in both categories, which may be due to the granular surface and
coarser structure of the voxel.

4.4. Reconstruction Experiments Based on Single Real-world
Image

We conducted experiments on the reconstruction of 3D structured
mesh model based on single real-world images on the Part-SM,
Pix3D, and PASCAL 3D+ datasets. Figure 4 respectively shows the
qualitative results on the three datasets. It can be seen that even with
background images, we can still generate good structured models
and the visual effects are better than others. However, each part
only uses a single template mesh to deform, there may still be situ-
ations that cannot be fully processed. For example, the void in the
middle of the chair legs cannot be obtained in the first row of Figure
4 (a), but the overall structure of the model is still relatively accu-
rate. It is worth mentioning that the void between the armrest and
the back of the chair in the second row of Figure 4 (b) still exists
after reconstruction. This is the detail between the structures that
are easily lost in the integrated model.

Table 3 shows the results of quantitative comparison with CD as
the evaluation standard. Like other methods, Pix3D is divided into
all set and unobstructed subset to more directly verify the model re-
construction effect. It can be seen that our method is slightly worse
than TM-Net [PHC*19] on the Part-SM dataset, but is significantly
better than ShapeHD [WZZ™ 18]. This is because the original TM-
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Net benefits from the similarity between the training set and the test
set. Even if there is no background and other information, TM-Net
will also get relatively good results. Besides, the quantitative effects
of our method are better than Mesh-RCNN [GMJ19], TM-Net and
ShapeHD on Pix3D, and perform well on PASCAL 3D+.

4.5. Applications

Based on the generated 3D structured mesh model, our approach
can support the modification and design of the 3D model. This al-
lows us to construct and design the required 3D model more conve-
niently and quickly. If you want to simply adjust a part in the model,
you can remove the corresponding parts in the generated model and
process separately. It is disability of the generated model by directly
fitting. The model also supports replaceable parts that can be part
assembled for different generation models. For example, as shown
in Figure 5, you can remove the chair leg parts of the model gener-
ated by left image, take the rotating leg part of the model generated
by right image and spliced them to the current model. Whether to
build a common model directly or to design a unique model that is
spliced from different models, our method can achieve them easily
and quickly.

5. Conclusion

This paper proposes an end-to-end reconstruction of 3D structured
mesh model from single real-world image. It constructs the autoen-
coder of part mesh and part sequence to get a shape autoencoder,
and learns the latent space corresponding to 3D structured mesh
model. Later, by learning the mapping from the real-world image
to this latent space, the 3D structured mesh model reconstruction
from single real-world image is further realized. To achieve the
above-mentioned tasks, we also constructed the Part-SM dataset.
It is a more reasonable structured mesh model dataset to support
our work, and it also has certain application value in some other
related work. A large number of qualitative and quantitative results
show that our network can complete the reconstruction of the 3D
mesh model well and the effect is better.
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