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Abstract
3D scene understanding is difficult due to the natural hierarchical structures and complicated contextual relationships in the 3d
scenes. In this paper, a progressive 3D scene understanding method is proposed. The scene understanding task is decomposed
into several different but related tasks, and semantic objects are progressively separated from coarse to fine. It is achieved by
stacking multiple segmentation networks. The former network segments the 3D scene at a coarser level and passes the result
as context to the latter one for a finer-grained segmentation. For the network training, we build a connection graph (vertices
indicating objects and edges’ weights indicating contact area between objects), and calculate a maximum spanning tree to
generate coarse-to-fine labels. Then we train the stacked network by hierarchical supervision based on the generated coarse-
to-fine labels. Finally, using the trained model, we can not only obtain better segmentation accuracy at the finest-grained than
directly using the segmentation network, but also obtain a hierarchical understanding result of the 3d scene as a bonus.

CCS Concepts
•Computing methodologies → Scene understanding; Neural networks; Shape representations;

1. Introduction

3D scene understanding is an important issue in computer vision
and plays a fundamental role in many applications, such as robotics,
augmented reality, autopilot, etc. [NL13]. 3D scene understanding
is usually achieved through semantic segmentation, with the objec-
tive of segmenting and labeling the 3d scene into several semantic
objects.

In recent years, due to the excellent generalization ability of neu-
ral networks, 3D scene segmentation method based on neural net-
works [LLZ∗17, QLJ∗17, TCA∗17, QSMG16, QYSG17] has grad-
ually become the mainstream. The basic structure of these methods
is composed of a convolution or convolution-like module for ex-
tracting point or voxel features and a prediction module for point
or voxel classification. However, there are complex contextual re-
lationships among objects, and complex hierarchical structures in
the scene, making it difficult for these methods to understand 3D
scenes accurately. For the better use of context, we use prior knowl-
edge of semantic parts as additional input [LZ17,ZSQ∗17]. For the
better use of hierarchy, we stack neural networks, and use hierar-
chical supervision to ensure that the model learns the hierarchical
structure [ZYY∗16]. An alternative strategy can be introduced to
understand 3D scene progressively with refined semantic classes to
incorporate object context. Before the final fine-grained segmenta-
tion, a scene is first segmented coarsely discarding the small objects
to provide coarse-grained context. This can be achieved by stack-
ing several segmentation networks with the former one segmenting
coarsely and the latter one segmenting finely, while the former re-
sult is transmitted to the latter network as additional context prior.

In this paper, a progressive 3D scene understanding method by
stacking neural networks is proposed. The 3D scene understanding
task is decomposed into several different but related tasks, and se-
mantic objects are progressively separated from coarse to fine in
accordance with the contact relationship between objects. In order
to achieve this progressive 3D scene understanding, we stack mul-
tiple segmentation networks. The result of the former network is
passed to the latter one as context information. For the network
training, we build a connection graph (vertices indicating objects
and edges’ weights indicating contact areas between objects), and
calculate a maximum spanning tree to generate coarse-to-fine la-
bels. Then we train the stacked network by hierarchical supervi-
sion based on the generated coarse-to-fine labels. Finally, using the
trained model, we can not only obtain better segmentation accuracy
at the finest-grained than directly using the segmentation network,
but also obtain a hierarchical understanding results of the 3d scene
as a bonus.

The main contributions of our work are as follows:

• We propose a stacking framework for progressive 3D scene un-
derstanding. Three base networks for 3D scene segmentation are
stacked one after another, with the output of the former network
combined with the raw input feeding to the latter one as addi-
tional context prior.

• We propose to generate hierarchical labels by applying a max-
imum spanning tree algorithm on the object connection graph,
and train the stacked network by hierarchical supervision based
on the generated coarse-to-fine labels.
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Figure 1: Network architecture. PointNet++ [QYSG17] is used as
our base network, it takes point cloud as input and outputs point-
wise labels as segmentation result. Three base networks with are
stacked one after anther to form the stacked network. They take
point cloud as inputs and output segmentation results at different
levels from coarse to fine. Cross-layer skip links (red arrows) con-
catenate the coarser-grained network output to the finer-grained
network input to provide context prior.

2. Stacked networks for scene understanding

According to the principle of totality in the gestalt psychology, hu-
mans usually pay attention to the overall layout before focusing
on the specific objects when observing an unfamiliar environment.
Inspired by this coarse-to-fine understanding process, we can use
several networks to segment 3D scene progressively with refined
semantic classes for 3D scene understanding task.

2.1. Base network

The base network is a segmentation network handling 3D point
clouds or voxels. In order to simplify the expression, we call a point
or a voxel an ‘element’. The base network can be formulated as
follows:

y = FB(x), (1)

where FB(·) represents the base network, x is the input and y is
the output. To meet the requirements of being stacked, x should be
element-wise properties (including position, color, normal or other
element features), and y should be one-hot encoded element-wise
labels. For example, for a point cloud input with n points and po-
sition property only, x and y should be two matrixes with size of
n× 3 and n× l respectively where l denotes number of segmen-
tation categories. In this way, the output of one base network can
concatenate to another’s input as additional context prior. Theoret-
ically, any segmentation network that meets this restriction can be
used as the base network. However, the base network should not
be too complicated, because the overall complexity, model size and
memory consumption will multiply as the base network is being
stacked.

In our case, we use PointNet++ [QYSG17] as our base network.
It handles point clouds and completely meets the requirements of

being a basic network. It takes variable amount of point-wise prop-
erties as input and outputs point-wise semantic labels as segmenta-
tion result.

2.2. Stacking framework

We propose to stack the base network for multiple times for pro-
gressive 3D scene understanding, with the result of the former net-
work passed to the latter one as additional contextual information.

The stacking framework is simple, as shown in Figure 1, the out-
put of each base network is concatenated to the raw input and fed
to the next base network. We call a stacked network with i base
networks Fi(·), and obviously we have:

y1 = F1(x) = FB(x), (2)

which means stacking the base network for one time is the base
network itself. And for i > 1, we can define our stacked network
recursively:

yi = Fi(x) = FB(x⊕Fi−1(x)), (3)

where x is the raw input, FB(·) represents the base network, Fi(·)
represents the stacked network with i base networks, yi is the output
of the i-th base network, and ⊕ indicates element-wise concatena-
tion. Suppose our final architecture is stacked by n base networks,
we can get a hierarchical segmentation for the input 3D scene in
the form of {y1,y2, ...,yi, ...,yn}, where yn is the finest-grained seg-
mentation result.

For the network training, a hierarchical supervision correspond-
ing to the stacked architecture is required. Specifically, we need
hierarchical ground truth labels in the form of {l1, l2, ..., li, ..., ln}
for each scene in the training set, where li indicates the ground truth
segmentation result of the i-th base network in the stacked architec-
ture. The method of acquiring this kind of ground truth is described
in Section 2.3, here we discuss the loss functions for training. We
compute cross-entropy loss for each base network separately, and
train them together with their weighted sum as the overall loss:

Li = H(yi, li), (4)

Loverall = ∑
i

λiLi, (5)

where yi and li denote the output and ground truth of the i-th base
network respectively, H(·) is the cross-entropy function, Li and λi
represent the loss and weight of the i-th base network, and Loverall
is the overall loss value.

In theory, the base network can be stacked any number of times
as long as the corresponding hierarchical labels can be obtained.
However in practice, most 3D scenes don’t have that much ob-
jects to organize a very deep hierarchical structure. Moreover, the
computational complexity and memory consumption of the entire
model must be considered in the implementation. These facts re-
strict the maximum number of base networks that can be stacked.
In our case, we stack the base network for 3 times, and their loss
weights are set to 0.25, 0.25 and 0.5. The last network is more
weighted because we want the finest-grained segmentation results
to be better, while the former networks bias toward providing con-
text prior rather than accurate coarse-grained segmentation results.

c⃝ 2018 The Author(s)
Eurographics Proceedings c⃝ 2018 The Eurographics Association.

58



Y. Song & Z. Sun / Progressive 3D Scene Understanding with Stacked Neural Networks

2.3. Hierarchical supervision

A hierarchical supervision is required for training the stacked net-
work. In this paper, we generate hierarchical labels based on the
contact relationships between objects. It is known that there is nat-
ural hierarchy in tree structure. Inspired by this, we generate hi-
erarchical labels by merging objects based on a tree structure that
describes the contact relationships between objects. The tree meets
the following requirements: (1)Each node represents an object ex-
cept the root node which is a virtual node introduced for ease of
understanding; (2)An edge represents that the child object is at-
tached to its parent object with a contact relationship; (3)The root
node has no other child nodes except those with label ‘ceiling’,
‘wall’ or ‘floor’, because the room is composed of these three kind
of objects, and all other objects are attached to them directly or
indirectly. To construct such a tree structure meeting these require-
ments, we first build a connection graph. The graph represents a
3D scene, with each node represents an object and the weight of
each edge represents the contact area between the bounding boxes
of two objects. A root node is added to the graph and connected to
the ‘ceiling’, ‘wall’ and ‘floor’ nodes with edges of infinite weight
to ensure that the generated tree satisfies the above requirements.
After this, a maximum spanning tree algorithm is employed to gen-
erate the tree structure.

With the tree that describes the contact relationships between ob-
jects, we can specify a merging depth d to obtain the segmentation
result of the corresponding hierarchical level. For each node whose
depth equals d, all its descendants are merged into it by assigning
its label to these nodes. The labels of those nodes whose depth are
smaller than d remain unchanged. The larger d is, the finer the seg-
mentation result will be. In particular, setting d to 1 produces the
coarsest-grained labels that segment the scene into 3 categories:
‘floor’, ‘wall’ and ‘ceiling’, which indicate objects on the ground,
objects on the wall and objects on the ceiling respectively.

3. Experiments

We evaluate our method on the indoor fully reconstructed dataset:
Stanford Large-Scale 3D Indoor Spaces(S3DIS) [ASZ∗16]. This
dataset contains 3D scans from Matterport scanners in 6 areas in-
cluding 271 rooms with a total of 6020 square meters. The 6 areas
are located at 3 buildings: Building 1 (Area 1, Area 3, Area 6),
Building 2 (Area 2, Area 4), Building 3 (Area 5). This dataset is
fully annotated for 12 semantic elements which pertain in the cat-
egories of structural building elements (ceiling, floor, wall, beam,
column, window and door) and commonly found furniture (table,
chair, sofa, bookcase and board). A clutter class exists as well for
all other elements. We follow the official dataset split of training on
2 of the buildings and testing on the 3rd one.

3.1. The effectiveness of proposed method

We evaluate the effectiveness of the proposed method. For compar-
ison, we try different strategies for stacking framework and hierar-
chical supervision. For the stacking framework, we stack the base
network for 2 times as a comparison. For the hierarchical super-
vision, we generate the middle level labels by merging labels as a
comparison. Note that the labels in S3DIS dose not support to form

a 3-level hierarchical labels, so we generate 2-level hierarchical la-
bels to compare with our strategy of merging objects.

Table 1: Global accuracy of different stacking strategies

Acc
Coarse
grained

Medium
grained

Fine
grained

Base network
(PointNet++)

- - 70.41

Stack 2 times
(merging labels)

80.27 - 71.66

Stack 2 times
(merging objects)

84.61 - 72.80

Stack 3 times
(merging objects)

84.80 71.02 75.03

The results are shown in Table 1 and Figure 2. It can be seen that
the performance of base network can be enhanced with or with-
out any additional strategies. Stacking for 3 times can get a bet-
ter accuracy at the finest-grained level than stacking for 2 times.
This is a matter of course, because stacking for 3 times has more
network parameters to learn additional context prior. The merg-
ing objects strategy can also improve the result because the merg-
ing labels strategy may produce wrong coarse-grained labels. In
terms of common sense, the finer-grained segmentation should be
more difficult than the coarser-grained segmentation. However, the
medium-grained accuracy of stacking for 3 times is worse than the
fine-grained result. This is because: (1)the weight of loss for fine-
grained output is larger than the weight of loss for medium-grained
output, because we wish the finest-grained segmentation results to
be better, while the former networks bias toward providing con-
text prior rather than accurate coarse-grained segmentation results;
(2)In our settings, only a few objects in the fine-grained segmenta-
tion are separated from the medium-grained segmentation, which
means the gap between these two layers is not large while the fine-
grained network has a more detailed prior than the medium-grain
network.

3.2. Compared with other methods

In this section, we compare our method with PointNet [QSMG16],
SEGCloud [TCA∗17] and 3DCNN-DQN-RNN [LLZ∗17].This
section is for reference only, because: (1)Our goal is not beating
state-of-the-art. We propose a strategy to improve a segmentation
network, instead of a state-of-the-art framework; (2)The results of
the mentioned methods are not provided by us, and some of them
did not follow the official train/test split. But the results in Table 2
shows our approach is quite competitive with other methods. The
results of PointNet and SEGCloud are from [TCA∗17]. The Point-
Net is trained on 5 Areas and tested on the 6th Area. The SEG-
Cloud, baseline and ours follow the official split of training on 2
of the buildings and testing on the 3rd one. The result of 3DCNN-
DQN-RNN is from [LLZ∗17], it removes the ‘clutter’ category and
is trained on 70% rooms in every area while tested on the rest.
The accuracy of 3DCNN-DQN-RNN on the category ‘beam’ is ex-
tremely high because of its train/test split. Almost all the ‘beam’
objects are located at Area 1 and Area 6 (both in Building 1), re-
sulting in the ‘beam’ objects being either in the training set or in
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Figure 2: Experimental results. We show a group of results including raw input, hierarchical groundtruths, hierarchical results produced by
our stacked network and the result produced by the base network. The sequence of results is shown in the lower right corner.

Table 2: Comparison with other methods

Method ceiling floor wall beam column window door chair table bookcase sofa board clutter mAcc Acc
PointNet 88.80 97.33 69.80 0.05 3.92 46.26 10.76 52.61 58.93 40.28 5.85 26.38 33.22 48.98 -

SEGCloud 90.06 96.05 69.86 0.00 18.37 38.35 23.12 75.89 70.40 58.42 40.88 12.96 41.60 57.35 -
3DCNN-

DQN-RNN
89.64 95.02 60.08 78.55 89.36 75.29 33.41 58.14 70.48 84.97 76.98 37.21 - 70.76 -

PointNet++
(baseline)

71.32 76.42 81.47 0.00 20.55 30.38 73.54 86.02 58.30 64.44 21.30 33.05 53.60 51.57 70.41

Stacked
network

77.87 83.25 84.39 0.00 22.23 32.39 74.89 87.70 75.88 64.82 43.83 46.56 56.29 57.70 75.03

the testing set for other methods splitting by areas or buildings.
Our method is fully superior than the baseline, which means our
stacking framework can improve the base network.

4. Conclusions

In this paper, we propose a coarse-to-fine 3D scene understanding
framework to understand 3D scene progressively with refined se-
mantic classes by stacking off-the-shelf 3D scene segmentation net-
works. The former segmentation network understands 3D scenes
at a coarser level and passes the result to the following network
to provide effective contextual clues for the finer-grained under-
standing. We propose to generate hierarchical labels by applying a
maximum spanning tree algorithm on the object connection graph,
and train the stacked network with these hierarchical supervision
end-to-end. Finally, using the trained model, we can not only ob-
tain better segmentation accuracy at the finest-grained than directly
using the segmentation network, but also obtain a hierarchical un-
derstanding results of the 3d scene as a bonus.
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