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Abstract

Material reflectance properties play a central role in photorealistic rendering. Bidirectional texture functions (BTFs) can faith-
Sully represent these complex properties, but their inherent high dimensionality (texture coordinates, color channels, view and
illumination spatial directions) requires many coefficients to encode. Numerous algorithms based on tensor decomposition have
been proposed for efficient compression of multidimensional BTF arrays, however, these prior methods still grow exponentially
in size with the number of dimensions. We tackle the BTF compression problem with a different model, the tensor train (77)
decomposition. The main difference is that TT compression scales linearly with the input dimensionality and is thus much better
suited for high-dimensional data tensors. Furthermore, it allows faster random-access texel reconstruction than the previous
Tucker-based approaches. We demonstrate the performance benefits of the TT decomposition in terms of accuracy and visual

appearance, compression rate and reconstruction speed.

1. Introduction

Bidirectional reflectance distribution functions (BRDFs), bidi-
rectional texture functions (BTFs) and time-varying light fields
(TVLFs), among others, are used to accurately simulate material
reflectance properties for realistic rendering. One way to represent
such functions is to model them analytically, which is very space-
efficient but relies on assumptions and prior knowledge of the mate-
rial’s physical properties. Data-driven rendering techniques, on the
other hand, prioritize realism over storage requirements by making
use of precomputed multidimensional tables. During rendering, the
appropriate reflectance at each texel is read and interpolated from
the table to produce high-quality results. Such tables are populated
empirically: physical conditions (e.g. camera and light positions)
are varied in a laboratory in order to measure each entry. The re-
sulting data sets are typically very redundant and large in size, due
to their high intrinsic dimensionality and often high sampling den-
sity. The need to cope with this challenge has sparked numerous
preprocessing algorithms that rely on compressing the input down
to a reduced representation while preserving main texture details.
The processing pipeline is highly asymmetric: compression can be
done in a slow offline step, whereas an efficient online decompres-
sion stage is critical. Attention must be paid to a) small resulting
sizes, which allow for in-core solutions; and b) fast decompression.

Tensor decomposition constitutes a family of successful ap-
proaches for light field and BTF compression. Upon acquisition,
the full precomputed data table is treated as an N-dimensional ten-
sor (i.e. a scalar field discretized as a multiarray) and compressed
by a multidimensional generalization of the singular value decom-
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position (SVD). Several such generalizations exist and have been
proven viable for real-time photorealistic rendering, as summarized
in the following section. In this paper we solve this problem for the
first time with the tensor train (TT), a more recent decomposition
that was specifically developed for spaces with a high number of
dimensions. As opposed to other models, TT has not received atten-
tion from the graphics community yet and in particular has not been
applied to data-driven rendering. We investigate the performance of
TT-based BTF compression and its advantages with respect to its
prior state-of-the-art counterparts.

2. Related Work

N-SVD compression The N-mode singular value decomposition
(N-SVD), also known as Tucker decomposition, relies on multilin-
ear projections: a set of separable orthogonal basis functions is de-
fined onto which the input is projected. The higher-order orthogo-
nal iteration (HOOI) is an algorithm to generate an N-SVD decom-
position by successively computing the leading left singular vectors
along each mode [dLdMVO00]. This yields a dense core of size RY
(where R is the number of tensor ranks) and an orthonormal basis
in the form of N factor matrices. The discrete cosine and Fourier
transforms, as well as the separable orthogonal wavelet transforms,
can be viewed as particular cases of N-SVD that use predefined
factors [BRP15]. N-SVD is often used as a reference algorithm for
comparison against other tensor-based methods.

Tensor-based data-driven rendering Several compression ap-
proaches that pursue more structured multilinear projections (such

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/pg.20161329

20 R. Ballester-Ripoll and R. Pajarola / Compressing Bidirectional Texture Functions via Tensor Train Decomposition

as sparse or clustered representations) have been described in
the literature, often based on PCA and the N-SVD, with early
works including [VT04], [HWLO05] and [WWS*05]. Ruiters and
Klein [RK09] propose a sparse multilinear decomposition achieved
through a sequence of K-SVD dictionary learning steps that yields
better compression than both N-SVD and clustered principal com-
ponents analysis (PCA). Wu et al. [WXC*08] define a hierarchi-
cal Tucker decomposition by recursive approximation of the resid-
uals; their method compares favorably against wavelets and N-
SVD for BTF compression. Bilgili et al. [BOK11] and Ruiters
et al. [RSK12] tackle BRDF compression using N-SVD and
the CANDECOMP/PARAFAC model (CP) respectively. Tsai and
Shih [TS12] construct a K-clustered tensor approximation (K-
CTA): the tensor is split along a mode and each part is assigned to
a cluster; clusters are then compressed independently via N-SVD.
This yields a better compression rate and reconstruction speed com-
pared to the raw N-SVD. The most recent contribution in this direc-
tion, MK-CTA, is due to Tsai [Tsal5] and is a multiway clustering
extension of K-CTA. By taking into account all modes for defin-
ing clusters (instead of only one), this version leads to substan-
tial improvements over K-CTA, also when handling time-varying
light fields. Although clustering strategies can significantly en-
hance BTF compression rates, N-mode projections still suffer from
the curse of dimensionality in the sense that the resulting cores are
dense and still keep the same number of dimensions. This motivates
using a different decomposition type as we argue next.

3. Tensor Train BTF Decomposition

The tensor train (TT) representation was proposed by Os-
eledets [Osel1] to better overcome the curse of dimensionality. Its
number of coefficients, O(NIR?), increases linearly with respect to
the number of dimensions N (where [ is the data tensor size along
each dimension). This is in contrast with previously used models;
for example, the pure N-SVD requires O(RN + NIR) coefficients.
For visual data and N > 4, TT quickly outperforms it in terms of
compression accuracy. TT has an additional, particularly important
advantage in the context of this paper. In rendering applications,
typically only a small percentage of the total BTF tensor elements
need to be reconstructed at each frame via random accesses. With
an N-SVD decomposition one must always traverse all RV core el-
ements, no matter if the whole tensor or a single value are being
reconstructed. On the other hand, subspace reconstructions in the
TT format operate only on one or a few slices per core and are thus
comparatively inexpensive (Fig. 1, see also [Osell]). In particu-
lar, retrieving color components from a single random-access texel
needs only O(NR?) operations (see also Sec. 3.2).

Computing the TT Decomposition The Frobenius norm of a ten-
sor ||<7||F, that we denote just as ||.<7||, is the norm of its vec-
torized representation: /Y ;< (i)2. To measure the quality of an
approximated tensor o with respect to the original .7 we use the
relative error, defined as HJ — 4 ||/||</||. Given a prescribed tol-
erable error €max and a tensor <7, the so-called T7-SVD algorithm
computes its TT decomposition by successive tensor unfoldings in-
terleaved with SVD low-rank truncation steps. TT ranks are deter-
mined adaptively and are equal to these SVD ranks; the algorithm
guarantees that the resulting € will not exceed the target €nmax, and

in fact it is usually lower. One key feature of TT-SVD (compared
to N-SVD decomposition procedures) is that dimensions are sepa-
rated one at a time and the SVD truncations are performed on in-
creasingly smaller matrices. For a detailed description of TT-SVD
and its theoretical error bounds we refer the reader to [Osel1].

3.1. BTF Compression

Since view and light coordinates each lie on a 2D manifold, a BTF
can be regarded as a 7-dimensional tensor: texture coordinates are
given by (x,y), color channel by ¢, view direction by (vy,v,) and
light direction by (I, ly) (alternatively, one may use angular coordi-
nates). In the data sets used in our experiments, however, view and
light coordinates were not sampled following a 2D parameteriza-
tion and are given in a sequential order. In other words, the dimen-
sions (vy,vy) are given as a single dimension v, and equivalently
for (Iy,l,) into . We do not separate v and / back into 2D, as this
would require resampling and introduce additional inaccuracies.

Dimension ordering The TT format is dimensionally asymmetric:
the initial ordering of dimensions can affect the number of ranks
that are needed to achieve the user-defined accuracy. This property
is distinct to N-SVD, whose accuracy is invariant to mode permu-
tation. Since TT ranks tend to be larger around central dimensions
(see Tab. 1), and each core ¥, has size R, X I, X R;,11, it is generally
best to place large dimensions in the middle in order to minimize
the final size. Our experiments indicate that the ordering (x,y,c,v,[)
generally performs well for BTF compression.

3.2. BTF Decompression

Notation-wise we assume that 1 <x < X, 1 <y <Y, C=31is
the number of color channels, and 1 <v <V, 1 <[ < L. To re-
construct one element from a TT decomposition it is sufficient to
perform a sequence of matrix-matrix multiplications. The first and
last matrices are a row and a column vector, and the product is
thus a scalar in the end. This also means that only vector-matrix
products have to be computed throughout the whole sequence, for
a total of Z?zl (Ri — 1)R;4 and Z?zl RiR; . floating-point sums
and products, respectively, per reconstructed element. The symbols
Ry, ...,R5 denote TT ranks and are different in general. The formula
to retrieve all color channels for one texel is:

Y Gl a)%(o,y )% (00, 05)% (05, v, 04) %5 (0w, 1)
A1,00,03,04

where 1 < oy, < I,. The tensor cores ¥; are illustrated in Fig. 1.
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Figure 1: TT compression of a 5D BTF, with the smaller color
channel dimension C = 3 in the center. The vectors and matrices
shadowed in gray are used to reconstruct a texture element (x,y)
from view v and light /.
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4. Results

We have tested the proposed TT-based compression for BTFs on
the UBO2003 data set [SSK03], which comprises 6 different mate-
rials. Each of them is organized as a 5-dimensional tensor consist-
ing of 256 x 256 texels acquired over 81 view and 81 light condi-
tions. They are 8-bit RGB and amount to 1.2GB each. Our bench-
mark tests were written in MATLAB, and use:

e the Tensor Toolbox [BK*15] for the N-SVD compression. It im-
plements the popular HOOI algorithm, that we use for the de-
composition stage;

e the TT-Toolbox [O*] for TT, which provides an implementation
of the TT-SVD compression algorithm as well as reconstruction
procedures for arbitrary subspaces of TT tensors.

Tab. 1 shows the numerical results of the proposed method com-
pared to N-SVD, which is often used as a simple baseline algo-
rithm to compare to. TT is tested twice: (1) aiming for the same
accuracy as with N-SVD, and (2) aiming for the same compres-
sion rate. For the N-SVD decomposition we found that 3 itera-
tions of the HOOI were sufficient to converge and we initialized
its factor matrices via the higher-order singular value decompo-
sition (HOSVD) [dLdAMVO00]. All coefficients of both methods
were stored as 16-bit floating point numbers as in [Tsal5]. The
number of operations for all methods (second-to-last column) was
computed accounting for both sums and products. Example recon-
structed slices 2/(:,:,:,V /2,L/2) are shown in Fig. 2 for visual
comparison between both algorithms over all BTF data sets. The
images correspond to the results from TT (2) in Tab. 1.

We can make a relative analysis of our (TT) method as
it compares to the most recent state-of-the-art algorithm MK-
CTA [Tsal5] by relating both to the N-SVD baseline. For MK-
CTA, a similar or moderately higher quality compared to N-SVD
was reported when compression rates are set equal for both meth-
ods. In terms of speed, MK-CTA takes longer to decompose than
N-SVD (as TT does), but is faster than N-SVD for reconstruction
by a factor up to 1:5 [Tsal5]. In our experiments, the TT approach
achieves similarly better quality compared to N-SVD for the same
compression rates (by up to 5db PSNR), as shown for TT (2) in
Tab. 1. Furthermore, TT’s major advantage is its reconstruction
time, with speed-up factors that reach up to 1:25, which is signif-
icantly higher than the relative reported speed-up of 1:5 of MK-
CTA. Our measurements are consistent with the expected number
of operations. The advantage stems from the fact that, even though
TT often requires more ranks than N-SVD, only a few slices of the
compressed BTF need to be accessed for a random-access decom-
pression (as argued in Sec. 3.2).

5. Conclusions

We have studied and demonstrated the performance of BTF com-
pression using the TT decomposition, a model not exploited in
computer graphics as of yet. It offers a competitive compression
quality and is simple to implement: decomposition is a straight-
forward application of the TT-SVD algorithm (paying attention to
the dimension ordering), while random-access texture reconstruc-
tion follows from plain vector-matrix products. Another significant
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advantage is its reconstruction time, which we both estimated the-
oretically (asymptotic complexity and number of operations) and
measured experimentally. As with other tensor decompositions,
parallel and GPU solutions are possible for the TT reconstruc-
tion stage since only basic linear algebra operations are performed.
Even though we only tested 5D compression in this paper, larger
advantages may be expected for higher-dimensional tensors, e.g.
time-varying data, reflectance fields, or BTFs whose view and light
directions are parameterized into 2-dimensions.

References

[BK*15] BADER B. W., KoLpA T. G., ET AL. MAT-
LAB Tensor Toolbox version 2.6. Available  online,
http://www.sandia.gov/~tgkolda/TensorToolbox/,  February  2015.
3

[BOK11] BILGILI A., OZTURK A., KURT M.: A general BRDF repre-
sentation based on tensor decomposition. Computer Graphics Forum 30,
8 (December 2011), 2427-2439. 2

[BRP15] BALLESTER-RIPOLL R., PAJAROLA R.: Lossy volume com-
pression using Tucker truncation and thresholding. The Visual Computer
(2015), 1-14. 1

[dLAMVO00] DE LATHAUWER L., DE MOOR B., VANDEWALLE J.: On
the best rank-1 and rank-(Ry,R3,...,Ry) approximation of higher-order
tensors. SIAM Journal of Matrix Analysis and Applications 21, 4 (2000),
1324-1342. 1,3

[HWL05] Ho P.-M., WONG T.-T., LEUNG C.-S.: Compressing the
illumination-adjustable images with principal component analysis. I[EEE
Transactions on Circuits and Systems for Video Technology 15,3 (2005),
355-364. 2

[O*] OSELEDETS I. V., ET AL.: Tensor Train Toolbox. Github repository,
https://github.com/oseledets/TT-Toolbox/. 3

[Osell] OSELEDETS I. V.: Tensor-train decomposition. SIAM Journal
on Scientific Computing 33,5 (2011), 2295-2317. 2

[RK09] RUITERS R., KLEIN R.: BTF compression via sparse tensor
decomposition. Computer Graphics Forum 28, 4 (July 2009), 1181-
1188. 2

[RSK12] RUITERS R., SCHWARTZ C., KLEIN R.: Data driven surface
reflectance from sparse and irregular samples. Computer Graphics Fo-
rum 31,2 (May 2012), 315-324. 2

[SSK03] SATTLER M., SARLETTE R., KLEIN R.: Efficient and real-
istic visualization of cloth. In Proceedings Eurographics Workshop on
Rendering (Jun 2003), pp. 167-177. 3

[TS12] TSAI Y.-T., SHIH Z.-C.: K-clustered tensor approximation: A
sparse multilinear model for real-time rendering. ACM Transactions on
Graphics 31,3 (June 2012), 1-17. 2

[Tsal5] TsAI Y.-T.: Multiway K-clustered tensor approximation: To-
ward high-performance photorealistic data-driven rendering. ACM
Transactions on Graphics 34, 5 (October 2015), 157:1-15. 2,3

[VT04] VASILESCU M. A. O., TERZOPOULOS D.: TensorTextures: mul-
tilinear image-based rendering. ACM Transactions on Graphics 23, 3
(2004), 336-342. 2

[WWS*05] WANG H., Wu Q., SHIL., YU Y., AHUJA N.: Out-of-core
tensor approximation of multi-dimensional matrices of visual data. ACM
Transactions on Graphics 24, 3 (July 2005), 527-535. 2

[WXC*08] Wu Q., XIA T., CHEN C., LIN H.-Y. S., WANG H., YU
Y.: Hierarchical tensor approximation of multidimensional visual data.
IEEE Transactions on Visualization and Computer Graphics 14, 1 (Jan-
uary/February 2008), 186-199. 2



22

R. Ballester-Ripoll and R. Pajarola / Compressing Bidirectional Texture Functions via Tensor Train Decomposition

| BTF name | Algorithm | Space (MB) | Tensorranks | T7p(s) | Tz (ms) | Operations | PSNR (dB) |
N-SVD 47.6 96, 96, 3, 30, 30 224.3291 6.8820 50028537 27.6246
Corduroy TT (1) 15.4 61, 488, 131, 23 419.1781 0.1195 450467 27.7397
TT (2) 49.0 76, 1173, 441, 36 936.6653 0.2519 3318798 29.7186
N-SVD 14.0 71,71,3,22,22 166.9500 2.0003 14743781 23.4342
Impalla TT (1) 1.0 41,44, 19, 38 196.6988 0.0580 10281 23.6490
TT (2) 14.6 76, 345, 143, 67 894.1605 0.1282 369260 28.9794
N-SVD 44.6 93, 93, 3, 30, 30 207.5554 4.9417 46958637 26.3326
Proposte TT (1) 5.1 55,177, 62,28 379.7756 0.1097 89468 26.5019
TT (2) 43.4 89, 867, 427, 54 947.7406 0.2092 2426798 30.9604
N-SVD 86.5 111,111, 3, 35, 35 258.0855 9.2653 90971227 27.2433
Pulli TT (1) 15.0 51, 535, 266, 21 357.2561 0.1662 922782 27.4470
TT (2) 85.9 84, 1690, 1004, 44 940.3235 1.1698 10565189 31.8687
N-SVD 16.7 74,74, 3, 23,23 159.1643 2.4571 17500030 28.0912
Wallpaper TT (1) 1.1 60, 36, 13,27 402.9035 0.0542 7967 28.2279
TT (2) 17.2 124, 269, 79, 57 1004.0195 0.1092 204052 32.2044
N-SVD 21.8 78,78, 3, 25,25 183.0543 2.7699 22963322 27.6590
‘Wool TT (1) 14.9 62,466, 141, 18 503.2596 0.1218 458595 27.7264
TT (2) 21.7 67,618, 205, 23 652.5150 0.1362 854625 28.3385

Table 1: Experimental results comparing N-SVD with the proposed TT-based BTF compression, tested over all 6 BTFs from the UBO2003
database. For the rows labeled TT (1) we set the PSNR to be approximately that of N-SVD; for the rows labeled TT (2) we set the com-
pression rate to be that of N-SVD’s instead. Decomposition time is denoted by 7p. To compute T (reconstruction time) we averaged the

decompression time of 1000 elements (each with 3 color channels) at random positions in the tensor.
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Figure 2: Visual results corresponding to Tab. 1: in each case, the slice lying at v="V /2 and [ = L/2 is shown.
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