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Abstract

In this paper, we present a Voronoi based algorithm for closed curve reconstruction and medial axis approximation

from planar points. In principle, the algorithm estimates one of the poles (farthest Voronoi vertices of a Voronoi

cell) and hence the normals at each sample point by drawing an analogy between a residential water distribution

system and Voronoi diagram of input samples. The algorithm then labels Voronoi vertices as either inner or outer

with respect to the original curve and subsequently construct a piece-wise linear approximation to the boundary

and the interior medial axis of the original curve for a class of curves having bi-tangent neighborhood convergence

(BNC). The proposed algorithm has been evaluated for its usefulness using various test data. Results indicate that,

even sparsely and non-uniformly sampled curves with sharp corners, outliers or collection of curves are faithfully

reconstructed by the proposed algorithm.

1. Introduction

Given a finite set of points S ⊆ R
2, sampled from a smooth

curve ∑, the task of constructing a polygonal chain from S

faithful to ∑ is referred to as curve reconstruction problem.

It is a fundamental yet challenging problem in areas such as

computer graphics, computer vision, computational geom-

etry and reverse engineering [Lee00, Wan14]. Curve recon-

struction from an arbitrary data, insufficiently sampled from

an unknown original curve, is almost infeasible [ABE98].

Hence, a few conditions on the sampling are needed to guar-

antee a faithful reconstruction of the original curve. Under

uniform sampling, where the adjacent points are sampled at

a distance less than a threshold value, many algorithms such

as α-shape [EKS83] and r-regular shapes [Att98] are known

to work with reasonable accuracy. However, uniform sam-

pling condition leads to dense sampling all over the curve,

including the areas where a sparse sampling is sufficient and

hence represents a restrictive case of sampling to evaluate

reconstruction algorithms.

To capture the local level of details, Amenta, Bern

and Eppstein [ABE98] introduced a non-uniform sampling

model called ε-sampling, where the sampling density varies

with the local feature size on the curve. Under ε-sampling

model, crust [ABE98] and its variants such as nearest neigh-

bor crust [DK99] and a locally defined crust [Gol99] guar-

antee to construct a piece-wise linear approximation to Σ,

for certain value of ε. Later, conservative crust [DMR00],

that reconstructs a collection of open and closed smooth

curves was described. It also showed better resistance to-

wards noises and outliers at the expense of a parameter tun-

ing.

Crust and its variants found to fail, both in theory and

practice, for curves with sharp corners [DW02]. Aimed at

curing this limitation, Dey and Wenger [DW01] described a

heuristic called gathan that handles corners and endpoints

in practice and subsequently, in [DW02], they extended

’gathan’ to reconstruct a collection of piece-wise smooth

closed curves with provable guarantee. In [FR01], Funke

and Ramos proposed an algorithm based on empty β-balls to

handle a collection of curves with corners and end points. A

few notable work on curve reconstruction based on travelling

salesman problem (TSP) can be found in [Gie99, AM01].

Most of the Delaunay-based approaches are parameter-

based, which is not straight forward to identify for an opti-

mal shape. Voronoi-based ones are application specific such

as handling sharp corners, smooth curves, outliers etc. In this

paper, the approach is based on a water distribution model

(Section 3.1) that is non-parametric and not feature-specific.

2. Preliminaries

Let ∑ be a smooth closed and simple curve (1-manifold) em-

bedded in R
2. Let S be a set of n points sampled from ∑ and

Conv(∑) denotes the convex hull of ∑. Further, d(p,q) =
‖p− q‖, denotes the Euclidean distance between two points

p, q ∈ S.
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DEFINITION 1 Voronoi cell (Vp):

A Voronoi cell of p ∈ S is the set of all points in the plane

that are closer or at least equidistant to p than any other point

in S: Vp={x ∈ R
2 | d(p,x)≤ d(q,x), where p 6= q, ∀q ∈ S}.

Voronoi diagram (VD) of S, denoted by Vor(S) is the sub

division of the plane into Voronoi cells with one cell Vp for

each point p ∈ S. Vor(S) consists of Voronoi bisectors also

called as Voronoi edges (VE), as well as Voronoi vertices

(VV). A cell Vp is unbounded if the sample p lies on the

convex hull of S. Unbounded Voronoi cells induce what is

called as infinite edges, whose one vertex lies at infinity. All

Voronoi vertices except the vertex at infinity are finite. The

straight line dual graph of Vor(S) results in a planar triangu-

lation called as Delaunay triangulation of S, Del(S).

(a) Extended-concavity (b) Smooth and BNC

Figure 1: Illustration of different types of concavities of

closed simple curves in 2D. In Figure 1(b), extended-

concave portions between blue and green points represent

the bi-tangent neighborhood convergent (BNC) portions.

A medial ball B(c, r), centered at c ∈ medial axis (MA) of

∑ with radius r, is a maximal ball whose interior contains no

points of ∑ [ABE98]. Let E be the set of all open connected

regions of Conv(∑) \∑. Each region given by the closure

E, is defined as an extended concave region (CR) of ∑. The

portion of ∑ in each CR is called extended concavity, denoted

by C (Figure 1(a)). The edges of Conv(∑) in each extended

concave region are called convex hull bi-tangents (BTcvx).

Every extended-concavity is capped by exactly one convex

hull bi-tangent.

The medial balls of an extended-concavity, C tend to in-

crease or decrease as it traverses through the outer MA lying

in CR. The region in CR, where the medial ball monotoni-

cally increases or decreases is defined as a rolling interval of

the medial ball.

DEFINITION 2 Bi-tangent neighborhood convergence

(BNC):

Bi-tangent neighborhoods of an extended-concavity, C is

said to be convergent, if the radius of the medial ball de-

creases monotonically in the first rolling interval, as it rolls

along the outer medial axis of C from the convex hull bi-

tangent end to its interior.

A curve is said to be bi-tangent neighborhood convergent,

if all its extended-concavities are bi-tangent neighborhood

convergent (Figure 1(b)). This characterisation of curves can

be considered to be a generalisation of [PM15], where only

closed curves called divergent concavity have been con-

sidered. Moreover. the algorithm based on water-flow and

Voronoi diagram approach proposed in this paper is substan-

tially different from the sculpting approach in [PM15].

Like in [ABE98], we restrict our attention to sufficiently

smooth curves which are twice differentiable and under

this assumption, we can establish that all smooth, concave

and closed planar curves are bi-tangent neighborhood con-

vergent. Also, Using ε-sampling model by Amenta et al.

[ABE98], it can be shown that Vor(S), where S is densely

sampled (ε-sample) from a BNC concave and closed pla-

nar curve ∑, has at least one finite Voronoi vertex outside

Conv(S).

3. Algorithm

In this section, we introduce the concept of water flow

based curve reconstruction and MA extraction. Similar

to other curve reconstruction methods [ABE98, Gol99,

DMR00, DK99], we call our water distribution model based

algorithm as WDM_CRUST and the corresponding interior

MA as WDM_MAT.

3.1. Water Distribution Model (WDM) [WHM03]

Consider a water distribution system (a modified version

of [WHM03]) in a residential area as shown in the Figure

2. It consists of a water tank erected at a considerable alti-

tude, the main distribution pipes (MDP) which carry water

to the residential area (red lines in the Figure 2(a)) and the

branch pipe lines (BPL) that carry water to the different parts

of the area (green lines in the Figure 2(a)). The houses get

water either from MDP or BPL through the dedicated pipe

lines (DPL), the dark brown lines in Figure 2(a). There exist

few back up pipe lines (cyan lines in Figure 2(a)) which get

activated only when the main distribution network fails.

MDP
BPL
DPL
BACKUP

ACTIVATED

DEACTIVATED

(a) (b)

Figure 2: Water distribution model: (a) water distribution

system (b) corresponding VD illustrating different Voronoi

vertices (VV) and the VE.
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To draw an analogy between the VD and the water dis-

tribution system, we consider each point in S, a house and

each cell of Vor(S), the land owned by the corresponding

householder. The Voronoi edges represent the water distri-

bution lines and each Voronoi vertex is a branching point of

WDM. Further, we assume that the infinite edges of each

unbounded Voronoi cell meet at an infinite point called root

Voronoi vertex (RVV) (black squares in Figure 2(b)). RVV

represents the water tank in WDM through which sufficient

water may be pumped into the adjacent water distribution

lines. It has openings to all the unbounded Voronoi cells.

Similarly, each branching Voronoi vertex has openings to its

adjacent Voronoi cells.

The finite Voronoi vertex of an infinite VE is referred to

as farthest VV (FVV). If a farthest VV lies inside Conv(S)
(intuitively, conv(S) represents the outer boundary of the res-

idential colony), then it gets deactivated (red points in Figure

2(b)) due to the following reasons. First, most of these ver-

tices lie inside the residential area and therefore, do not play

a role in bringing water from the external sources. Second,

the houses/points in the unbounded cells directly receive wa-

ter through the corresponding DPL (refer to Figure 2(a)).

Further, these act as back up lines and gets activated only

when the main and branch lines fail. All other Voronoi ver-

tices are activated at the start of water pumping (illustrated

using green and blue points in Figure 2(b)).

3.2. State Transition of a Voronoi Vertex

Few Voronoi vertices (blue points in Figure 2(b)) are ac-

tivated at the beginning of the water pumping and subse-

quently changed to the deactivated state during the process.

The condition that triggers such a transition is based on the

normal estimation technique proposed in [AB98]. Amenta

and Bern [AB98] observed that Voronoi cells of S, where S

is ε-sampled from a curve, ∑, tend to elongate in the direc-

tion of normal at each point. They define poles, which are

two farthest Voronoi vertices of Vp, for each sample point

p. In the case of curves, why the line passing through p and

any of the two poles estimates the normal at p is explained

in [DW01].

B

B4

3

Bp

L
90

p

B
B1

2

H (p)1

H (p)2

Figure 3: A bounded Voronoi cell with the dedicated line

(red line with arrow) and its perpendicular (green colored

dashed line), activated (green points), Source VV (Bp) and

deactivated (red points) VVs.

In our model, each farthest Voronoi vertex (FVV) has ex-

actly two unbounded Voronoi cells due to the infinite edge

and one bounded Voronoi cell adjacent to it. During a pump-

ing session, water flows into the FVVs from RVV. Please

recall that a few of the farthest Voronoi vertices which lie

inside Conv(S) are deactivated at the start and hence block

the flow of water. The remaining FVVs pass water to the ad-

jacent VEs and to the dedicated lines of their corresponding

adjacent bounded Voronoi cells. For a Voronoi cell Vp of a

sample point, the activated Voronoi vertex from which it re-

ceives water represents its source VV (SVV). Each sample p

in S has its own Voronoi cell Vp and hence one of the vertices

of Vp subjected to a few other conditions, is guaranteed to be

the SVV of p.

Consider a bounded Voronoi cell Vp and its source

Voronoi vertex (represented as Bp) along with its owner

point p as shown in Figure 3. The water flow in Vp assumes a

direction of the vector
−−→
Bp, p. The line L, orthogonal to

−−→
Bp, p

divides the plane into two half planes designated as H1(p)
and H2(p).

The water flow starts from the root vertex which is placed

at infinity and advances towards ∑. Hence, it is obvious that

the water reaches the SVVs of Vp before it reaches other

Voronoi vertices of Vp. Otherwise, it would not have been

the SVV of Vp. Consequently, SVV (Bp) is one of the far-

thest Voronoi vertices of Vp (refer to Figure 3) and hence

represents one of its poles. Therefore, −
−−→
Bp, p and L esti-

mate the normal and the tangent at p respectively. Taking

this idea forward, we present the state transition rule for a

Voronoi vertex in our model in Definition 3.

DEFINITION 3 State transition rule:

Let Bi be an activated Voronoi vertex of a Voronoi cell Vp of

a sample point p and Bp be the source Voronoi vertex of Vp,

Bi is deactivated if Bp and Bi lie on either side of L

All the Voronoi vertices of Vp beyond p when viewed

from Bp gets deactivated. The justification is that the

Voronoi vertices that lie beyond p tend to lie inside the origi-

nal curve (correspondingly, interior to the residential colony)

and hence can be deactivated.

3.3. Classification of Voronoi Vertices and Edges

Next stage in our approach is to classify the Voronoi vertices

and edges based on their location and functionality. From

Figure 2(b), we can observe that all the deactivated and ac-

tivated Voronoi vertices lie interior and exterior to the origi-

nal curve, respectively. This is an interesting outcome of the

water flow based approach, which can essentially be used to

classify the vertices as inner and outer with respect to the

original curve. Based on the observation, we classify all the

Voronoi vertices in the deactivated state into inner class and

all the Voronoi vertices in activated state into outer class. A

similar labelling approach that depends on a locally defined

crust [Gol99], has been adopted in [GMP07], to compute
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the MA of the union of inner Voronoi balls, where as our

approach is based on the water flow model. Hence, in addi-

tion to the MA approximation, our method is also capable of

reconstructing the boundary of the input sample.

VEs are classified as carrier, branch and neutral edges

(see Figure 2(b)) according to their functionality. Carrier

edges with ACTIVATED (outer) vertices as end points rep-

resent the branch pipe line of the water distribution model.

The back up lines (cyan lines in Figure 2(a)) of the water

distribution system is represented by two classes of Voronoi

edges. One class consists of neutral edges having both its

Voronoi vertices labelled as DEACTIVATED (inner) and the

other class consists of branch edges with an ACTIVATED

(inner) and a DEACTIVATED (outer) end points. Please

note that root Voronoi vertex is an activated vertex and there-

fore, all the infinite edges which has RVV and a deactivated

vertex as its end points are branch edges.

Algorithm 1: Water_Flow(Bp)

Input: Branch Voronoi vertex, Bp

1 Apply state transition rule (Definition 3) to Bp;

2 if there are no adjacent ACTIVATED and UNVISITED

vertices for Bp then

3 return;

4 end

5 else if there is one adjacent ACTIVATED and

UNVISITED vertex for Bp then

6 Let Bpnew be the ACTIVATED adjacent vertex of

Bp;

7 Water_Flow(Bpnew);

8 end

9 else

10 Let Bpnew1 and Bpnew2 be the ACTIVATED

adjacent vertices of Bp;

11 Water_Flow(Bpnew1);

12 Water_Flow(Bpnew2);

13 end

3.4. WDM_CRUST Extraction

To efficiently extract WDM_CRUST and WDM_MAT, we

transform the water flow model into an algorithm based on

efficient data structures and optimized geometric predicates.

The backbone of the WDM_CRUST() algorithm is a recur-

sive procedure called, Water_Flow() presented in Algorithm

1 which deactivates the required Voronoi vertices when the

water flows t hrough the branch pipe lines. Each branch pipe

line starts with a farthest VV denoted by Bp and hence con-

stitutes the input parameter to the Water_Flow() procedure.

We assume that no four points are co-circular and hence

each finite Voronoi vertex has a degree of 3. Each Voronoi

vertex structure is equipped with state and visited fields to

keep track of the current state and visited status during the

Water_Flow() process. Water_Flow() procedure starts by ap-

plying state transition rule (Definition 3) on Bp to deactivate

the eligible vertices of the Voronoi cell to which Bp is a SVV.

The procedure continues till there are no adjacent unvisited

vertices which are in active state for Bp.

Algorithm 2: WDM_CRUST(S)

Input: Point set S

Output: wdm_crust of S

1 Construct Vor(S) and its dual Del(S);
2 Initialize all the vertices of Vor(S) including the

INFINITE vertex to ACTIVATED state;

3 Construct a global list LF containing FVV s from

Vor(S), sorted in the descending order of their circum

radii of the dual Delaunay triangles;

4 Deactivate and delete from LF , all FVVs which lie

inside Conv(S);
5 while LF not empty do

6 Bp=First(LF );

7 Water_Flow(Bp);

8 end

9 Extract the graph, W DM_CRUST(S) = {e | edge

e ∈ Del(S) and Dual(e) is a branch edge};

10 Extract the graph, W DM_MAT (S) = {e | edge

e ∈ Del(S) and Dual(e) is a neutral edge};

11 return WDM_CRUST(S) & WDM_MAT(S)

A pseudo code for WDM_CRUST is provided in Algo-

rithm 2, which uses Algorithm 1. Key ideas include sorting

of FVVs are sorted in the descending order of the circum-

radii of the corresponding dual Delaunay triangles and all

the FVV lying interior to the convex hull are deactivated and

deleted from LF to ensure that the convex hull edges from

the convex portion of the curve are included. The algorithm

also extracts MA from Del(S) by employing Dual() func-

tion which gives the dual Delaunay edge of a VE. The algo-

rithm WDM_CRUST() has been designed to address closed

curves, in particular extended concave curves and also not

applicable for open curves. The worst case time complexity

of WDM_CRUST() can be shown to be O(n logn), incurred

due to the computation of Voronoi diagram. Theoretically,

the following lemma can be proven.

LEMMA 3.1 W DM_CRUST(S), where S is ε-sampled from

a BNC concave and closed planar curve ∑, contains an edge

between every pair of adjacent samples of ∑, for ε < 0.4

4. Results and Discussion

We implemented our algorithm in C++ using computational

geometry algorithms library (CGAL). To evaluate the per-

formance of our approach, we tested it on points sampled

randomly from the contours of silhouettes from MPEG 7 CE

Shape-1 Part B and aim@shape repositories.
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Figure 4: Reconstruction from sparse data. Rows (top to

bottom): Point sets of fish, cup and collection of curves.

Columns (left to right): Point sets, crust [ABE98], near-

est neighbor crust [DK99], result of [dGCSAD11] and

WDM_CRUST

Reconstruction from Sparse Data: Sparse data repre-

sents a major challenge for any curve reconstruction al-

gorithm. In practice, W DM_CRUST algorithm is found to

perform well for a variety of sparse and non-uniform in-

put data as shown in Figure 4. For shapes such as fish

and cup, WDM_CRUST is noticeably better than other

crust algorithms and the optimal transport based algorithm

[dGCSAD11]. Our method performs equally well in recon-

structing a collection of closed curves from a sparsely sam-

pled data as illustrated in the third row of Figure 4. Also

compared to [PM15], our algorithm nicely reconstructs di-

vergent as well as non-divergent concave portions of closed

curves as shown in Figure 5.

Figure 5: (b) result from [PM15] works only for divergent

concavity (blue box in (a)) (c) our approach works for non-

divergent concavity as well.

Robustness to Outliers: Most of the Delaunay/Voronoi

based algorithms interpolate the input data and hence found

to be intolerant towards the outliers. For point sets hav-

ing noises and outliers, any curve fitting technique may be

considered a more appropriate choice. Curve fitting tech-

niques, however make implicit assumptions on the under-

lying curve, which is highly impractical for sparse and non-

uniform data. Since WDM_CRUST is also an interpolating

Figure 6: Outlier experiment: All the stages of outlier

injection, dove shape reconstructed by WDM_CRUST pre-

serves fine details as compared to a simplified reconstruction

by deGoes et al [dGCSAD11].

technique, rather than eliminating the outliers from the re-

sults, we aim at showing the reconstruction of the original

shape while retaining outliers in the scene.

We experimented on a dove point set consisting of 54

points. Random outliers, expressed as a percentage of dove

point set size, were injected to the input data as shown in Fig-

ure 6. Our approach is noticeably better at dealing with the

outliers constituting even 40% of the curve sample. Results

by deGoes et al [dGCSAD11] lost many fine details of the

dove shape even for 10% outliers. However, a few artifacts

appear in the reconstruction for 70% outliers in the case of

both the algorithms. Please note that, albeit these artifacts,

dove shape has been well reconstructed by our method as

opposed to the deGoes et al [dGCSAD11].

Figure 7: Reconstruction of oni data. (a) Point set (b) crust

[ABE98] (c) nearest neighbor crust [DK99] (d) result of

[dGCSAD11] (e) WDM_CRUST.

Dealing with Sharp Corners: On closed and BNC con-

cave curves with sharp corners, our approach performs better

than other methods. For instance, the left horn of oni which

is sharp and pointed in Figure 7 is well captured by our algo-

rithm as opposed to other crust algorithms. Though, optimal

transport based approach reconstructs both the sharp corners

well, it loses several other details such as neck of the oni.

As opposed to this, our method not only captures the sharp

corners but also preserves other details of the original curve.

Figure 8 shows WDM_CRUST for point sets with sharp fea-

tures. WDM_CRUST correctly reconstructs the shapes for
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Figure 8: WDM_CRUST of curves with sharp features.

point sets in Figures 8 (a)-(b), for which all the TSP based

algorithms listed in [AMNS00] fail.

Figure 9: Medial Axes Gallery: WDM_MAT generated for

various non-uniformly sampled data.

Medial Axis Results: Figure 9 shows the reconstructed

curves as well as the medial axes for various non-uniformly

sampled data. Like any other approach, the approximation

quality of our medial axis algorithm is limited by the sam-

pling density of input data and apparently the smoothness of

the given curve.

5. Conclusion

In this paper, we presented a Voronoi and Delaunay based

algorithm for curve reconstruction and medial axis approxi-

mation using the idea of water flow model and for closed and

concave planar curves that are bi-tangent neighborhood con-

vergence. Experimental results indicate that our approach

is capable of capturing sharp corners and reconstructs the

curves from sparse data. Currently, extension of the pro-

posed algorithm to three dimensions is being considered.
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