
High Performance Graphics (2016)
Ulf Assarsson and Warren Hunt (Editors)

Bandwidth-Efficient BVH Layout
for Incremental Hardware Traversal

G. Liktor and K. Vaidyanathan

Intel Corporation

Abstract
The memory footprint of bounding volume hierarchies (BVHs) can be significantly reduced using incremental encoding, which
enables the coarse quantization of bounding volumes. However, this compression alone does not necessarily yield a comparable
improvement in memory bandwidth. While the bounding volumes of the BVH nodes can be aggressively quantized, the size of
the child node pointers remains a significant overhead. Moreover, as BVH nodes become comparably small to practical cache
line sizes, the BVH is cached less efficiently. In this paper we introduce a novel memory layout and node addressing scheme
and map it to a system architecture for fixed-function ray traversal. We evaluate this scheme using an architecture simulator
and demonstrate a significant reduction in memory bandwidth, compared to previous approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—Graphics
processors I.3.3 [Computer Graphics]: Three-Dimensional Graphics and Realism—Raytracing

1. Introduction

Tree-based acceleration structures, such as kd-trees or BVHs
(bounding volume hierarchies), are commonly used for the com-
putation of ray-scene intersections. Being shallower than kd-trees
and refittable under animation, BVHs dominate modern ray trac-
ing. However, a typical BVH node stores a large amount of data,
including 6 bounding planes and its child pointers.

The size of a BVH can be greatly reduced using quantiza-
tion [Mah05] and parent-plane sharing [FD09, EW11]. Recently,
Vaidyanathan et al. [VSAM16] combined these compression tech-
niques with an incremental traversal algorithm that enables the use
of reduced-precision arithmetic for the ray-box intersection tests,
and can be implemented efficiently in fixed-function hardware.

Meanwhile, the memory bandwidth generated by BVH node
fetches remains a significant problem, as we observe that the re-
duction of the bounding volume footprint does not yield a propor-
tional improvement in bandwidth, partly due to poor cache local-
ity. Yoon and Manocha [YM06] showed that cache locality can be
substantially improved by reordering nodes in the BVH. However,
their approach is not directly applicable to incrementally encoded
BVHs, as it requires the storage of two child pointers, which yields
a major overhead compared to the quantized node bounds.

We present a novel BVH memory layout for incremental traver-
sal that improves cache locality and compresses the child pointers,
in order to effectively reduce the bandwidth.

To this end, we make the following contributions:

• A novel node layout and addressing scheme
We achieve memory bandwidth reduction at two levels: we com-
press the child pointers by forming clusters within the BVH,
each within an arbitrarily reduced-precision address space. We
then choose the order of nodes inside these clusters to maxi-
mize the cache line locality. We introduce a new node type to
reference address-space changes during traversal. This keeps the
node sizes uniform, which is more suited for a fixed function
hardware.

• Architecture model and bandwidth analysis
Building upon previous research in the area of fixed function ray
traversal, we derive an architecture specialized for compact, in-
crementally encoded BVHs. Using a cycle-accurate simulation
model, we compare our layout to existing popular layouts, in-
cluding depth-first and clustered BVH with full-resolution point-
ers, and show an improvement of 15-35% in L2 to L1 bandwidth
and up to 15% in L2 bandwidth under different workloads with
varying ray coherence.

2. Related Work

We focus on the memory bandwidth of traversal and do not con-
sider the other aspects of ray-traced rendering, like shading. We
introduce the key factors that impact bandwidth, and discuss the
previous work motivating our research.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

DOI: 10.2312/hpg.20161192

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/hpg.20161192

G. Liktor and K. Vaidyanathan / Bandwidth-Efficient BVH Layout for Incremental Hardware Traversal

BVH construction hierarchically partitions the primitives in a
scene and stores a bounding box for each partition. The choice
of these partitions has a major impact on the number of box
and primitive intersections computed during ray traversal. A com-
monly used partitioning metric is the Surface Area Heuristic
(SAH) [MB90]. Although not an accurate indicator of traversal per-
formance [AKL13], it works well in most scenarios.

While construction quality directly affects bandwidth, our work
is orthogonal to the topology of the BVH, only influencing its map-
ping to physical memory. In this paper, we build BVHs based on a
binned SAH metric [Wal07].

Ray traversal on programmable architectures is a widely re-
searched topic. Coherent rays can be grouped into small packets
and traversed as SIMD batches [WSBW01]. However, many sce-
narios can produce rays with incoherent traversal paths. Other ap-
proaches use multi-BVHs, with several children per node that can be
intersected together in a SIMD batch [WBB08,DHK08,EG08]. Al-
though these are better suited for incoherent rays, the intersection
tests for some children can be redundant. Coherence can also be
extracted by sorting a large number of rays into batches that access
the same set of nodes. The rays can be sorted per node [GR08], per
multi-BVH node [BAM14, Tsa09] or per group of nodes [AK10].
Unfortunately, sorting can also generate a significant bandwidth
just by the movement of rays.

Hardware ray traversal has not been as extensively researched
as software implementations. Early hardware based architec-
tures [SWW∗04,WSS05] were also based on the SIMD processing
of ray packets, and demonstrated the benefits of using a dedicated
pipeline for traversing coherent rays. TRaX [SKKB09] and MIMD
TM [KSBD10] introduced MIMD processing which was better
suited for traversing incoherent rays. The T&I Engine [NPP∗11]
introduced dedicated hardware units for traversal and intersection,
based on which Lee et al. [LSL∗13] derived SGRT, an efficient ray
tracing architecture based on BVH traversal for mobile GPUs.

The traversal stack is another source of memory bandwidth,
which can be entirely eliminated with stackless traversal meth-
ods [KSS∗13, fSK14]. However these rely on bidirectional point-
ers to backtrack traversal steps which precludes the sharing of
bounding planes between parent and child nodes [FD09]. There-
fore we opt for another approach by using a short on-chip stack
and restarting traversal from the root node on a stack under-
flow [HSHH07, Lai10].

Incremental traversal is a recent technique to improve the effi-
ciency of ray tracing hardware through low-cost reduced-precision
arithmetic. Keely [Kee14] combined BVH quantization [Mah05]
with a traversal method that incrementally translates the ray ori-
gin closer to the next BVH node. This allows performing the
plane intersection tests with a reduced precision. Vaidyanathan et
al. [VSAM16] improved the robustness of incremental traversal,
and also further reduced the computational costs by reusing inter-
section tests from the parent nodes. This enables parent-plane shar-
ing [FD09] in incremental traversal, which we utilize in our work.

2.1. BVH Memory Layout

Compact node ordering schemes can eliminate a few child point-
ers from the BVH. Depth-first layout (DFL) places the left child
directly after the parent node, therefore only the the right pointer
is required. Alternatively, two sibling nodes can be stored sequen-
tially [AL09]. Besides compression, these layouts can also improve
cache locality, since child nodes are often tested together following
the parent during traversal. Nah et al. [NPK∗10] improved cache lo-
cality using an ordered depth-first layout (ODFL), storing the child
node with the largest surface area, next to the parent.

Subtree partitioning methods first decompose the BVH into clus-
ters of nodes, each containing one or more subtrees. By optimizing
the node order for multiple traversal paths it can further improve
cache locality. Moreover, the size of the child pointers within clus-
ters may be reduced. This optimization was presented for BSP trees
by Havran [Hav97]. Gil and Itai [GI99] showed that cache local-
ity for tree traversal can be significantly improved if the clusters
of nodes are generated top-down, by greedily merging the children
with the highest probability. Yoon et al. [YM06] applied this theory
to kd-tree based ray traversal.

Aila and Karras [AK10] split the BVH into smaller treelets that
are just large enough to fill the L1 cache. They limit the working
set and therefore the bandwidth by scheduling rays that traverse the
same treelet. Our algorithm on the other hand is designed for an
architecture where the node sizes are small enough that the band-
width of scheduling rays would become a significant overhead. It
builds upon Yoon et al.’s clustering technique [YM06] but uses two
levels of clustering to compress child pointers.

Havran’s compact subtree layout removes pointers from internal
nodes within subtrees, but the traversal algorithm needs to know
the order of these nodes implicitly. In treelet clusters [AK10] nodes
can reference children inside as well as outside the current treelet.
Both of these solutions use heterogeneous node sizes, which would
complicate node fetches in a hardware implementation. We unify
node sizes by introducing of a new node type that allows indirec-
tions for child pointers. Furthermore, we also save some bandwidth
by accessing these large pointers only when the child node is actu-
ally traversed.

3. Background

We begin the discussion of our memory layout optimizations with
a brief formalization of the problem, following similar notations to
previous work [GI99] [YM06]. Let T := {BV1,BV2, ...BVN} be a bi-
nary BVH of N nodes. With the exception of the root, we can deter-
mine the parent of each node by defining the operator parent(BVi).

A descent D is a sequence of BV nodes
{BVD1=1,BVD2 , ...,BVDk}, where the first item is the root and
BVDi−1 = parent(BVDi); i ∈ {2...k}. We can also define a ray
query Q as the sequence of nodes visited during traversal. It may
visit the same node multiple times depending on restart operations.
However, Q can be defined as a union of multiple descents,
assuming that traversal starts from the root node.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

52

G. Liktor and K. Vaidyanathan / Bandwidth-Efficient BVH Layout for Incremental Hardware Traversal

By the memory layout of the BVH we mean a function τ that
assigns a unique memory address to each BVi. Following [GI99],
we use the granularity of cache blocks, since the order within the
same block does not influence bandwidth. Assuming uniform node
sizes, a block can hold b nodes. We can define the layout as τ : N→
Z+, such that |τ−1(i)| ≤ b. We define the working set of a descent
as the number of different blocks accessed while iterating over its
nodes:

WSτ(Dk) = |{τ(Dk
i)|1≤ i≤ k}|, (1)

where Dk is the descend ending in the node BVk. To reduce band-
width, we seek τ

opt that minimizes the expected number of cache
misses during traversal.

Gil and Itai [GI99] showed that finding τ
opt is NP-hard, but there

are approximate solutions that seek to minimize the expected work-
ing set of a ray query, assuming that the probability of visiting each
node, Pr(BVk), can be estimated:

E(WSτ) = ∑
BVk∈T

Pr(BVk)WSτ(Dk). (2)

The impact of memory layout on bandwidth is illustrated in
Figure 1, where we show a simple traversal path accessing nodes
through two different node orderings.

H I J K L M N O

D E F G

B C

A

E

G

D

F

N

O

J

K

L

M

H

I

A

B

C

4 5 7 8 11 12 14 15

3 6 10 13

2 9

1 1-3 A B D

4-6 H I E

7-9 J K C

10-12 F L M

13-15 G N O

6 7 8 9 11 12 14 15

4 5 10 13

2 3

1
1-3 A B C

4-6 D E H

7-9 I J K

10-12 F L M

13-15 G N O

TR
A

V
ER

SA
L

PA
TH

CacheMEMORY LAYOUTS

D
EP

TH
-F

IR
ST

LA
YO

U
T

C
LU

ST
ER

ED
LA

YO
U

T

WS = 3 cache lines!

WS = 4 cache lines

Cache
Lines

Figure 1: Traversal of a ray that intersects 2 leaf nodes (top). While
it queries 7 nodes, more may be loaded due to the cache line size.
Depth-first layout results in 4 transactions (middle), but clustering
can reduce this to 3 (bottom).

4. Two-Level Clustering

When describing how changing the order of nodes can affect band-
width, we assumed that any τ layout fits into the same memory
footprint. In practice this may not hold. When using depth-first lay-
out (DFL), an internal node can be represented as {PRight |BV }: the
pointer to the right child node, and the node bounds (BV). Since the
left child directly follows, PLe f t can be omitted.

We did not consider that storing PLe f t allows less nodes per
cache line. The size |P| can be up to 4 bytes, which is small
compared to conventional BVH encodings used by previous work.
However, a node pair can be quantized to as small as 8 bytes using
DFL (Sec. 6.1), whereas clustering would require up to 12 bytes.
This 50% increase in node size counters the benefits of optimizing
τ. We therefore propose a two-level clustering scheme that al-
lows node reordering while storing two small child pointers on
the footprint of a regular pointer:

• Address Cluster (AC): A continuous address space that can be
referenced by a small pointer. If the original BVH can address
2n nodes, the maximum size of an AC is 2n/2.

• Cache Cluster (CC): A small set of nodes that fits within a
cache line, created within an AC.

The AC can maintain the node size of the depth-first layout (or
even reduce it), while the CC reorders nodes within the same AC for
the best cache utilization. Figure 2 provides a graphical overview
of this hierarchical structure.

4.1. Glue Nodes

The use of small pointers limits the number of nodes within an AC.
In order to support larger BVHs, we need a new node type that
points outside this limited range. We call these “glue nodes” re-
ferring to their connecting role: they store a single full-precision
pointer to the root of a new address cluster. The number of glue
nodes is much less than internal nodes: if we assume that the orig-
inal BVH contains 2N +1 nodes (N internal), and the average size
of an AC is

√
2N +1, the number of glue nodes is at the magnitude

of
√

N. Using regular pointers would increase the size of at least N
nodes. Furthermore, glue nodes only generate bandwidth when the
child node is traversed, not when accessing the parent node.

5. Algorithm

In order to effectively reduce the working set, we must carefully
select the nodes for each cluster. We adopt the probabilistic model
proposed by Yoon and Manocha [YM06]. They attempt to order the
nodes according to the most likely traversal path based on parent-
child and spatial locality.

Assuming that all traversal paths start at the root of the tree, their
COLBVH (Cache-Oblivious Layout of BVHs) algorithm iteratively
merges the child nodes that are the most likely to be traversed next.
Parent-child locality means the selection based on the conditional
probability that the parent nodes in the cluster are already traversed.
For ray tracing, the surface area is used as the probability measure.
Once the cluster reaches its limit size, the remaining child nodes
form the roots of new clusters and the process is repeated recur-
sively until the entire tree is clustered.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

53

G. Liktor and K. Vaidyanathan / Bandwidth-Efficient BVH Layout for Incremental Hardware Traversal

I

II

L I

...

...

......

...

1) Forming Address Clusters

I

II

L

...

...I

......

...

2a) Low-Res. Child pointers

I

II

L

...

...

I

......

...G

I

II

L

...

......G

Address Clusters

Cache Clusters

I

L

Internal node

Leaf node

Regular (large) pointer

Small pointer

G Glue node

2b) Glue Node Insertion 3) Cache-Aware Reordering

... ...

... ...

I I I L G

I

Linear Memory

Figure 2: The key steps of our clustering algorithm. In the first pass the address clusters are created (1), and connected by inserting glue
nodes (2a-b). This is followed by a conventional node reordering within each address cluster (3). The rightmost figure illustrates the layout
of address clusters in linear memory.

Spatial locality is used to define the order of clusters in linear
memory. The authors provide two methods of different complexity
to determine such an ordering: a graph-based approach inspired by
a cache-oblivious mesh layout algorithm [YLPM05], and a simpler,
but also faster multi-level depth-first layout.

Our algorithm is the modification of the COLBVH construc-
tion for two-level clustering. We have also made the method cache
line aware, which allowed further important optimizations. The key
steps of our algorithm, illustrated in Fig. 2, are the following:

0. Input: conventional BVH T, using e.g. depth-first layout; the
desired child pointer size as n bits.

1. From the root of T recursively create address clusters (AC) using
the COLBVH heuristics. An AC becomes full if the sum of its
nodes and child clusters reaches 2n. When an AC is full, the
remaining children form the roots of new ACs.

2. For each child AC we create a glue node within the parent AC.
Then step 1 is recursively repeated for each child.

3. Finally, within each AC we recursively create cache clusters
(CC), again by using the COLBVH heuristics.

5.1. Address Clusters

Algorithm 1 lists the pseudocode for the address cluster construc-
tion. The function BUILDAC gets recursively called with a desti-
nation offset and root node (ln. 3, 23). Once the address cluster is
allocated, the function returns the updated value of dstOffset
that points to the first available address for the next cluster (ln. 24).

The first part of the method merges child nodes until the AC gets
full, or there are no more child nodes remaining (ln. 6-11). The
function pop_max_SA refers to the selection of the child with the
largest surface area. In the AC we also need to reserve a slot for
its current children, since each of them is either a leaf node (which
will be merged later) or an internal node. An internal node will
either get merged, or a glue node is created that references it. Once
this loop terminates, we merge the remaining nodes and create glue
nodes for the child clusters. Note that the offset of the child cluster
roots is not yet known, therefore these glue nodes must be updated
later (ln. 22).

With all the nodes in place, we can reorder them within the cur-
rent AC using the COLBVH heuristics (ln. 20): see Sec. 5.2 for
details. We also ensure that the root of each AC is aligned with the
cache line size, otherwise the cache-aware clustering step would
not be effective (ln. 21).

Algorithm 1 Recursive building of address clusters.
1: CLUSTEREDLAYOUT(in srcBV H,out dstBV H)
2: BUILDAC(0, get_root(srcBVH));

3: BUILDAC(dstO f f set, srcRoot)
4: maxN← 2ptr_bits; AC←{};
5: childNodes←{srcRoot};

6: while (size(AC+ children) < maxN and !empty(children))
7: node← pop_max_SA(childNodes);
8: push_back(AC, node);
9: if (is_internal(node))

10: insert(children, node.le f t);
11: insert(children, node.right);

12: childACs←{}; . AC is full or no children left
13: for all (node ∈ childNodes)
14: if (is_internal(node))
15: push_back(childACs, node);
16: push_back(AC, make_glue(node));
17: else
18: push_back(AC, node);

19: dstO f f set +=BUILDCCS(dstO f f set,AC);

20: for all (rootNode ∈ childACs)
21: dstO f f set← cache_align(dstO f f set, cacheLine);
22: update_parent_glue_node(rootNode);
23: dstO f f set←BUILDAC(dstO f f set, rootNode);

24: return dstO f f set;

5.2. Cache Clusters

The creation of cache clusters is detailed in Alg. 2. Our clustering
is cache aware, which yields two important differences compared
to COLBVH. First, we do not need to recursively call the method
within clusters, but define the size of the CCs to the number of

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

54

G. Liktor and K. Vaidyanathan / Bandwidth-Efficient BVH Layout for Incremental Hardware Traversal

nodes within a cache line. Second, this also allows us to better align
CCs to cache line boundaries: full clusters that exactly match the
line size can be moved to the beginning of the AC. We have found
that if the line size is known, this optimization yields a significant
reduction in the cache misses (Sec. 7).

Our construction is iterative, where the active CCs (clusters that
are not full and have at least one child node to be merged) are kept
in a sorted list (CCRoots). In each iteration we select the first ac-
tive cluster and keep merging its children while it is possible (ln.
8-13). If there are unmerged children left, we insert them at the
beginning of the CCRoots. This defines the overall ordering of
cache clusters. If the cluster is complete, but not full, we store it
in the deferredCCs list, which gets written only after all full
clusters are processed (ln. 19-20).

The WRITECLUSTER function finalizes the node addresses. An
implementation challenge not detailed here is that when internal
nodes are stored, the addresses of their children are not yet known.
We need to maintain a look-up mechanism to retrieve the parent of
a node and update its child pointers when their children are stored
(ln. 23).

The order of Cache Clusters Our CCs within each address
space are stored in a multi-level ordered depth-first layout: after
each cluster we store its children, before any sibling cluster would
be listed. This is why we insert the list of child clusters at the begin-
ning in line 14. In contrast to [YM06], we have found that ordering
these clusters based on their surface area (with the largest at the
front) gives slightly better results than based on their position in
the BVH. Therefore we keep the list childNodes sorted, so the
operation pop_max_SA also simplifies to popping the head of the
list.

5.3. Further Optimizations

We experimented with further refinements of the algorithm that we
omitted from the above pseudocode for brevity:

• Padding: a cluster is fragmented if it overlaps more cache
lines. Traversing such a cluster may generate more cache misses.
Alg. 2 already writes full clusters to the beginning of the address
space. We found that instead of storing all remaining clusters
directly after each other, a small amount of padding could be
beneficial. E.g. if the cache line fits 8 nodes and 7 are already
occupied, we align the next CC to the beginning of a new cache
line (if it is larger than 1). We also need to limit padding, other-
wise it would move nodes outside the range of the small pointers.

• Cluster Merging: Alg. 2 merges only child nodes of the cur-
rent CC. We have experimented with two different heuristics
to merge sibling nodes instead. The first one, also proposed in
[YM06], merges a sibling if it overlaps the parent node with a
larger surface area than the area of the child. Our second heuris-
tic merges small completed clusters: by interleaving their nodes
and sorting them according to surface area, we are likely to find
larger nodes on the same cache line.

Algorithm 2 The creation of cache clusters within an address clus-
ter.
1: BUILDCCS(dstO f f set,AC)
2: maxN← cacheLineSize/nodeSize; . CC size
3: CCRoots← get_root(AC); . List of CC root nodes
4: de f erredCCs←{}; . store CCs for late writing

5: while (!empty(CCRoots))
6: childNodes← {pop_front(CCRoots)};
7: CC← {};
8: while (size(CC) < maxN and !empty(childNodes))
9: node← pop_max_SA(childNodes);

10: push_back(CC,node);
11: if (is_internal(node))
12: push_back(childNodes,node.le f t);
13: push_back(childNodes,node.right);

14: CCRoots←{childNodes+CCRoots}

15: if (size(CC) == maxN)
16: dstO f f set←WRITECLUSTER(dstO f f set,CC);
17: else
18: push_back(de f erredCCs,CC);

19: for all (CC ∈ de f erredCCs)
20: dstO f f set←WRITECLUSTER(dstO f f set,CC);

21: return dstO f f set;

22: WRITECLUSTER(dstO f f set,CC)
23: update_child_ptr(get_parent(CC [0]));
24: for (i := 0; i < size(CC); i++)
25: dstBV H [dstO f f set]←CC [i];
26: dstO f f set++;
27: return dstO f f set;

6. Architectural Simulation

In order to evaluate bandwidth with our memory layout, we de-
rive an architecture that is suited for the reduced-precision traversal
method of Vaidyanathan et al. [VSAM16]. We build upon the work
of Lee et al. [LSL∗13], which is focused on an energy-efficient ar-
chitecture based on dedicated hardware for traversal and primitive
intersection. Our analysis focuses on the performance of ray traver-
sal and ignores the cost of shading, which is beyond the scope of
this paper.

6.1. BVH Node Structure

Our compact node structure combines node quantization [Mah05]
with parent plane reuse [FD09](Sec. 2.1). This allows us to rep-
resent a pair of sibling nodes by just storing 6 planes and a 6-bit
reuse mask. The number of quantization bits defines an important
tradeoff between memory footprint and BVH quality. With more
aggressive quantization, the memory bandwidth of a single traver-
sal step reduces, but also the bounds become increasingly conserva-
tive, which leads to more node overlaps and redundant intersection
tests. In our system we use 6 bits per plane, because it allows us
to store the entire structure on 8 bytes, as shown in Fig. 3. This
is well-suited for practical cache line sizes, but increases the aver-
age traversal steps between 5-20%, depending on the BVH qual-
ity [VSAM16]. In Sec. 7.2 we briefly show results using different
node sizes.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

55

G. Liktor and K. Vaidyanathan / Bandwidth-Efficient BVH Layout for Incremental Hardware Traversal

𝒙𝒎𝒊𝒏
𝑩 𝒙𝒎𝒂𝒙

𝑨
𝒚
𝒎
𝒊𝒏

𝑨
𝒚
𝒎
𝒂
𝒙

𝑩

A
B

1 0 &A xmin, xmax, ymin, ... 0110..

Leaf
flags Child Ptrs Plane Offsets Reuse Mask

8-byte Internal Node:

6 x 6 bits per plane 6 bits2 bits 2 x 10 bits

&B

Figure 3: A 2D illustration of our quantized storage of sibling nodes
with parent-plane sharing (top). The layout of our internal nodes
(bottom). We store 2 bits to indicate leaves, one low-precision
pointer per child, and 6 plane offsets (z-axis not shown). Finally,
our reuse mask is set to 1 if the corresponding plane belongs to the
left child.

Jointly storing a pair of sibling nodes also moves the bounds
of each node one level higher, which has important consequences.
Most importantly, child nodes are only fetched on guaranteed in-
tersection, eliminating redundant bandwidth. Second, since the leaf
nodes contain no bounding plane data, their processing should be
moved to a dedicated leaf unit. In order to know in advance if the
next node to be traversed is a leaf, we reserve 2 bits per internal
node for this information, and also assume that the root of the BVH
is always an internal node.

6.2. Traversal Cluster

The Traversal Cluster is the primary building block of our archi-
tecture, which handles traversal and node intersections for several
rays in parallel as shown in Fig. 4. It consists of several Traversal,
Leaf and Primitive units, each of them pipelined and multi-threaded
for out-of-order processing.

Traversal Unit (TU): traverses one ray per thread and stores its
traversal state, which includes a short stack of 4 entries and a restart
trail [Lai10]. We do not use the stackless traversal approach of
Keely [Kee14] as it requires bidirectional pointers and prevents the
sharing of bounding planes with the parent box. The TU can fetch
and process one node pair every cycle. When a thread is ready to
process a new node pair, a fetch request is sent to the L1 cache. On
receiving the node pair, the TU pipeline decompresses the bound-
ing boxes, computes ray-bounding box intersections and updates
the traversal stack for the corresponding thread.

Leaf Unit (LU): fetches and processes leaf nodes as well as glue
nodes. It includes a node fetch and a dispatch stage. The node fetch
stage is identical to the TU. The node data includes a bit flag which
indicates if a primitive leaf or a glue node was fetched. For primi-
tive leaves, the LU issues a request to the PU for triangle intersec-
tions. If a glue node is received, the root offset of the new address
cluster is sent back to the TU that initiated the request.

Primitive Unit

TF 4

C
ro
s
s
b
a
r

Triangle
Test

TF 1

L1 $

Bank
1

Bank
K

Sub-Cluster 1

TU 1

TU 4

C
ro
s
s
b
a
r

Bank
1

Bank
K

LU

L1 $

TU 1

TU 4

C
ro
s
s
b
a
r

Bank
1

Bank
K

LU

L1 $
Sub-Cluster 2

C
ro
s
s
b
a
r

L2 $

Bank
1

Bank
K

Tr
av

er
sa

l C
lu

st
er

TU
Tr

av
er

sa
l U

n
it

TF
Tr

ia
n

gl
e

Fe
tc

h
LU

Le
af

 U
n

it

Figure 4: The block diagram of a Traversal Cluster

Primitive Unit (PU): performs the ray-triangle intersection tests.
This can be an arbitrary full-floating point precision algorithm; our
implementation is based on Woop [WBW13]. The vertex indices
and position data for this test are fetched by triangle fetch units us-
ing 4 successive 12-byte accesses, backed by a separate L1 cache.
The received vertex positions go through a pipelined triangle test
unit, which sends the intersection results back to the requesting
TU. We allocate 4 fetch units to fully utilize a single intersection
pipeline.

6.3. Memory Hierarchy

With a compressed node structure of just 8 bytes, the bandwidth be-
tween the TU and the L1 cache is significantly reduced. In contrast
to the T&I Engine of Lee et al. [LSL∗13], which has a dedicated L1
cache per-unit, this allows us to share the L1 cache across several
traversal and leaf units. We use a banked L1 cache and a cross-
bar network with a narrow 8-byte data width. When multiple TUs
fetch nodes from the same L1 cache bank bank conflicts occur and
the parallel accesses to the same bank are serialized. To avoid stalls,
we address this problem by:

• introducing more banks than the number of T/L/P units, reducing
the number of bank conflicts.

• introducing sufficient number of threads per unit to hide the la-
tency of bank conflicts.

• each TU has a dedicated local storage (L0) for the top 3 levels of
the BVH, since these nodes are often accessed.

We observe that the ratio of traversed internal nodes to triangles is
greater than 8 : 1 for most of our test scenes. Therefore we introduce
one PU and 8 TUs inside each traversal cluster. Since sharing the
L1 cache across more than 4 TUs introduces significant latencies,
we introduce a smaller logical unit called the Sub-Cluster, which
assigns a group of 4 TUs to an 8-bank L1 cache.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

56

G. Liktor and K. Vaidyanathan / Bandwidth-Efficient BVH Layout for Incremental Hardware Traversal

TEMPLE CROWN PLANTS HAIRBALL SANMIGUEL

Tris Nodes / Ray
500K 90I / 6L / 7G

Tris Nodes / Ray
5M 60I / 8L / 3G

Tris Nodes / Ray
1.2M 134I / 8L / 7G

Tris Nodes / Ray
2.5M 90I / 20L / 6G

Tris Nodes / Ray
1.6M 148I / 8L / 7G

Figure 5: The scenes used in our analysis. TEMPLE is rendered with diffuse one-bounce indirect lighting, while CROWN goes up to 4 bounces.
PLANTS and HAIRBALL use environmental lighting. SANMIGUEL has direct lighting from a single light. We also show the average nodes
accessed per ray (I-internal, L-leaf, G-glue), where glue nodes are only used in our BVH layout.

We ignore the latencies of the arithmetic pipeline in the TU and
PU as it can vary with different bounding-box and primitive inter-
section techniques. Moreover, with sufficient threads to hide this
latency we do not expect it to have a direct impact on memory
bandwidth. The L1 caches fetch missing cache lines from a higher-
latency L2 cache, which is banked and shared across all traversal
clusters. This L2 cache could potentially be shared with the L2
cache on current GPUs. The L2 cache can fetch 64 bytes of data
from higher levels in the memory hierarchy, such as a Last Level
Cache (LLC) or DRAM. Although we specify a latency for these
fetches, we do not model these higher levels, leaving this analysis
for future work.

7. Results and Analysis

Based on the architecture described in Section 6, we simulate a
configuration having 4 traversal clusters and a shared L2 cache,
which can perform intersection tests for 32 node pairs per cycle (8
TUs in each cluster). Assuming an operating clock frequency of 1
GHz, we can achieve a ray throughput of approximately 200-350
Mrays/s for our test scenes with this configuration.

We analyzed performance statistics with a focus on two main
aspects. First, we show how our node reordering algorithm reduces
bandwidth compared to the conventional ordered depth-first layout.
This is not only significant for energy-efficiency, but the reduction
of cache misses may also increase the overall throughput. How-
ever, as we discuss in the second part of our analysis, low band-
width by itself is not a guarantee of higher performance. To this
end, we present some of the architectural challenges that need to be
addressed for a scalable ray tracing architecture.

7.1. Workloads and System Configuration

We use 5 different test scenes in our evaluation within a wide range
of geometric complexity, as well as material and lighting combina-
tions, resulting in ray workloads with varying degrees of coherence.
The TEMPLE scene has moderate geometric complexity with inco-
herent rays, while the CROWN scene has very high geometric com-
plexity with more coherent rays resulting from a large number of
glossy surfaces. PLANTS is an outdoor scene with incoherent rays

sampling the environment light and fewer primitive intersections.
HAIRBALL is a test scene with extreme geometric complexity and
incoherent rays. SANMIGUEL is a scene with high geometric com-
plexity and high ray coherence. Figure 5 shows the basic attributes
of these workloads.

Since our simulation focuses on ray traversal only, we treat shad-
ing and ray generation as a “black box”. We stream traces of
rays captured from PBRT [PH10], that are distributed among our
Traversal Clusters in tiles of 4×4 pixels. For CROWN we used the
Intel Embree [WWB∗14] renderer. Note that some of the scenes
feature instancing, where the same BVH is traversed for multiple
objects in the scenes, greatly improving cache-efficiency. We added
an idealized instancing support to our system: instance nodes are
special leaf nodes that are processed in the LUs. While our node
and triangle bandwidth measurements are realistic, we do not ac-
count for the bandwidth generated by instance metadata (geometry
headers and transformation).

Our system has several parameters, giving us some degree of
freedom to scale hardware resources for the desired ray through-
put. We have already discussed the number of T/L/P units that
were based on typical leaf-to-internal node ratios in our test scenes.
We model the cache hierarchy up to the level of the L2 cache,
we set the hit latencies to {tL1 = 4; tL2 = 32; tLLC = 100} cycles,
where LLC is the last level cache, and always produces a hit with
a constant latency. We explore the performance of our system us-
ing varying L1 and L2 sizes, but unless otherwise stated, we set the
L1Node = 40KB,L1Tri = 32KB in each cluster (split evenly among
subclusters), and an L2 size of 512 KB. We have found that for
most workloads the resulting latency could be efficiently hidden
using 16 threads on each TU and 32 threads on each LU and PU.
The number of threads plays an important role not only in latency
hiding but also out-of-order processing, since we do not rely on ray
sorting, in constrast to [Kee14] or [AK10].

7.2. Bandwidth Analysis

L1 bandwidth In Fig. 8A we show the overall bandwidth require-
ments of traversing the same set of rays using different BVH node
layouts. Using the ordered depth-first (ODFL) layout as a baseline,
we show how node reordering using glue nodes (OURS) can reduce

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

57

G. Liktor and K. Vaidyanathan / Bandwidth-Efficient BVH Layout for Incremental Hardware Traversal

both the L1 and L2 cache bandwidth, in contrast to the cache aware
variant of Yoon et al.’s method [YM06](CALBVH), which requires
an additional 4 bytes per node for the second child pointer.

Using our method, we can observe more than 30% reduction
in L1 node bandwidth in the SANMIGUEL and TEMPLE scenes,
which we consider the most relevant workloads for an interactive
ray tracing architecture. The gains on the CROWN are still signifi-
cant, though somewhat less due to the large amount of small trian-
gles. Interestingly, our method performs the best on the PLANTS

trace, which features several small BVHs using instancing. Fi-
nally, HAIRBALL is a pathological case, where the extreme depth-
complexity of thin geometry makes our clustering heuristic based
on surface area ineffective: on this scene we realize only 13% re-
duction in node bandwidth. When combined with the triangle band-
width, our total improvement in the L1 bandwidth is less, but still
above 13% for all but one scenes.

L2 bandwidth When analyzing the L2 bandwidth, we can observe
that the miss rate does not improve. However, this is only because
we already filtered out more bandwidth in the L1 cache, thus the
remaining accesses to L2 are less coherent. Overall, we can still
reduce the L2 to L1 traffic with more than 10% with the TEMPLE,
CROWN and PLANTS scenes. Our heuristic fails for HAIRBALL,
while in the SANMIGUEL trace the rays are so coherent that they
produce similarly good results using all layouts.

The impact of leaf extension nodes Besides node traversal, the
triangle intersections also produce significant bandwidth. While
we could adopt mesh layout optimization techniques, we can par-
tially address this limitation by storing the vertex indices in our leaf
nodes. This alternative layout is motivated by the fact that vertex in-
dices are not shared by different triangles (unlike vertex positions),
and since we store the bounding box in the parent node, traversing
a primitive leaf node always results in accessing the triangle. Since
this additional information does not fit into 8 bytes, we increase the
size of the primitive leaves to 16-bytes that are loaded in two 8-byte
transactions by the leaf unit.

It is interesting to compare the previous bandwidth results to the
measurements using these extension nodes (Fig. 8B). This removes
the index fetches from the PU, and moves it to the LU, which loads
the indices with a second node fetch from L1Node. Note that while
indices take only 12 bytes compared to the 36 bytes required by the
vertex fetches before the intersections, the L2 to L1 triangle traffic
reduces with more than 50% in all scenes! This is because vertices
are shared among multiple triangles, so their hit rate is much better
in the cache, especially with coherent rays. The L1 node bandwidth
increases by a small margin due to the additional queries, but the
total bandwidth is still lower with extension nodes. For the first
three test traces our layout can further reduce the bandwidth with
extension nodes.

Bandwidth as a function of cache size We also examined how
bandwidth and utilization change when using different L1 and L2
sizes. In Fig. 6 we first show that compared to ODFL our clustering
achieves a similar relative improvement in L1 bandwidth, regard-
less the capacity of L1.

32 KB 40 KB 64KB 32 KB 40 KB 64 KB

21% 20% 18% 14% 14% 13%

128 KB 256 KB 512 KB 128 KB 256 KB 512 KB

15% 14% 10% 11% 10% 8%

54% 80% 98% 35% 46% 58%

63% 88% 98% 38% 49% 61%

L2$

L2
$
←

LL
C

(B
yt

es
 /

 r
ay

)

BW Reduction

TU

Utilization

BW Reduction

TEMPLE CROWN

Node L1$

L1
$
←

L2
$

(B
yt

es
 /

 r
ay

)

158 158 158
259 226 177

417 384
335

158 158 158
326 288 226

484 446
384

196 196 196

332 286 217

528
482

413

100

250

400

550

700

196 196 196

470 408 305

666 604

501

274 198 133306 221 145337 217 121287 188 109
0

100

200

300

Figure 6: Bandwidth measurements with different L1 and L2 sizes.
We compare our method (green) with the standard ODFL (gray).

When scaling the L2 cache with a fixed L1, we see a different
trend: as the capacity of L2 increases, the reduction achieved by our
method slowly diminishes. Our explanation is that the outstanding
misses from L2 become less and less coherent and since more of the
frequently traversed nodes reside inside L2, the clustering heuris-
tic cannot predict the outgoing access pattern anymore. There is
another interesting trend regarding the utilization of the traversal
unit, which increases with the L2 capacity. As we will discuss in
Sec. 7.3, this has a critical performance impact. In conclusion, our
method greatly improves performance with smaller L2 caches, and
has a constant relative improvement in L1 bandwidth-efficiency.

Bandwidth as a function of node size In our design we have
opted for an 8-byte node representation, since this has the best
alignment for practical cache line sizes. On a 64-byte cache line
we can encode 16 boxes (8 node pairs) using 6 bits per plane. This
does not mean that our method would not work with larger nodes as
well, and we have investigated this problem in our last bandwidth
experiment.

There is an interesting tradeoff between node size and band-
width. Reducing the node sizes trivially shrinks the bandwidth of
a given number of traversal steps, however, it also allows less bits
in the node quantization, which increases the number of traversal
steps (by making the bounds more conservative). In Figure 7 we
compare the three layout techniques with different node sizes, also
showing the maximum precision they can afford for plane encod-
ing. ODFL and OUR can use 6 bits on 8 bytes and 8 bits on 10 bytes,
respectively, while the second child pointer prevents CALBVH from
having 8-byte nodes and allows 5 and 7 bit precision on 10 and 12
bytes, respectively. In Fig. 7 we can see that the 8 and 10-byte vari-
ants of our method provide similar bandwidth results.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

58

G. Liktor and K. Vaidyanathan / Bandwidth-Efficient BVH Layout for Incremental Hardware Traversal

Node Bytes 12

Method ODFL OUR ODFL OUR CALBVH CALBVH

Bits / Plane 6 6 8 8 5 7

T. Nodes 96.9 103.7 87.1 90.5 110.1 91.0 1/ray

L2$ → L1$ 441.41 371.24 417.75 355.70 476.89 385.57 B/ray

LLC → L2$ 120.46 108.22 115.88 102.22 148.21 113.15 B/ray

T. Nodes 68.0 70.8 63.3 65.5 73.8 64.6 1/ray

L2$ → L1$ 400.18 362.88 415.33 372.84 433.77 395.36 B/ray

LLC → L2$ 139.46 130.07 147.49 133.15 156.02 148.49 B/ray

8 10

TEMPLE

CROWN

Figure 7: While using larger nodes allows less nodes per cache line,
it also reduces the traversal steps due to the improved precision.
Compared to ODFL, our method also adds a small amount of steps
due to glue node traversal.

7.3. Architectural Implications

Lastly, we move our focus to the overall throughput of our system.
While the reduction we realized in cache bandwidth can be very
important for lowering the energy consumption, our ultimate mo-
tivation is to design a system with a high throughput (rays/s). The
purpose of this section is to show that bandwidth by itself is not a
sufficient indicator of performance, because the system has multi-
ple potential bottlenecks. We show some of the important factors of
the hardware that may limit utilization, and how the system scales
with adding more traversal clusters.

The overall throughput of the system is based on the utilization
of the traversal units. In some cases low utilization can be addressed
by just increasing the number of threads (latency hiding), but in
other cases the system has an inherent bottleneck. Two examples
for this are the ratio of different units and the theoretical throughput
of the buses.

Ratio of units: While the number of T/L/P units within a cluster
can be chosen conservatively, we deemed it wasteful to scale for
worst-case performance and set the ratio of T/P to 8/1: most traces
we are aiming to process contained this ratio of triangles to internal
nodes. However, this means that we are going to be bottlenecked
on other traces where the ratio is less. The examples for this are
the CROWN and HAIRBALL traces. As we can observe in Fig. 9,
the utilization on these workloads is limited, even with only a few
Traversal Clusters. For interactive rendering, we considered these
scenes outliers.

Bus utilization: In our final experiment we analyze the scalability
of the system, given by the restriction of the data ports. In Fig. 9, we
can see how the utilization and ray throughput changes when we in-
crease the traversal clusters in the system. Ideally one can hope for
a linear scaling, but unfortunately the frequency of transactions on
the L2 to LLC bus (shared by all clusters) asymptotically reaches its
limit. In our case this is one 64-byte cache line per cycle. Many of
our scenes become L2 bandwidth-bound when we scale the number
of clusters to 8, and this is where the reduction of storing indices in
leaf nodes (Sec. 7.2) can bring major benefits.

8. Conclusion

We study the impact of BVH compression based on a practical
memory hierarchy and show that the quantization of bounding vol-
umes alone does not achieve its full potential for bandwidth reduc-
tion. We address this problem by introducing a novel BVH layout
that achieves better compression of BVH nodes as well as improved
cache line locality and demonstrate a significant reduction in over-
all bandwidth.

We also discuss important architectural implications of BVH
compression. First, the reduced bandwidth throughout the mem-
ory hierarchy permits sharing of caches. Second, the significantly
reduced size of the BVH nodes compared to the size of a ray makes
global ray reordering schemes less appealing. Lastly, we show that
a ray throughput of several hundred million rays per second can be
achieved with a reasonable bandwidth.

Currently we have not optimized our implementation for BVH
build performance, but we believe that an efficient parallel imple-
mentation should be possible due to the greedy nature of our algo-
rithm. In the future we would also like to investigate compression
techniques for primitive data. We are hopeful that addressing these
few remaining challenges can user in an era of real time ray tracing
in the near future.

Acknowledgements We would like to thank Charles Lingle,
David Blythe, and Tom Piazza for supporting this research. We
are grateful for the valuable contributions of Prasoonkumar Surti,
David Baldwin, and Marco Salvi. We thank various artists for mak-
ing their scenes available for the community. The TEMPLE scene
is courtesy of Epic Games, Inc. The CROWN scene is courtesy of
Martin Lubich, and SANMIGUEL was modeled by Guillermo M.
Leal Llaguno.

clusters TEMPLE CROWN PLANTS HAIRBALL SANMIGUEL

TU Util. 99 70 93 51 97 %

Bus Util. 29 38 8.8 35 2.2 %

Mrays/s 174.5 186.6 111.1 92.2 105.1

TU Util. 98 61 92 50 97 %

Bus Util. 59 68 18 70 4.5 %

Mrays/s 347.8 326.0 218.8 179.3 209.3

TU Util. 79 34 87 32 97 %

Bus Util. 96 87 35 94 8.9 %

Mrays/s 555.9 367.4 415.4 228.6 416.9

TU Util. 95 63 90 44 94 %

Bus Util. 21 28 6.1 25 1.4 %

Mrays/s 167.8 167.7 107.5 78.8 101.5

TU Util. 95 59 88 43 94 %

Bus Util. 43 53 12 49 2.8 %

Mrays/s 335.0 316.0 209.3 154.9 202.1

TU Util. 91 41 86 38 94 %

Bus Util. 83 80 24 91 5.6 %

Mrays/s 642.9 436.8 409.9 273.1 407.0

2

4

8

Using Index buffers, 40 KB Node L1$, 32 KB Tri L1$

Indices in leaf nodes, 48 KB Node L1$, 24 KB Tri L1$

2

4

8

Figure 9: The scalability of our system under different workloads.
The throughput can grow near-linearly up to the limit of the LLC
to L2 bus. Storing indices in leaf nodes reduces pressure on the bus
and allows better scaling.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

59

G. Liktor and K. Vaidyanathan / Bandwidth-Efficient BVH Layout for Incremental Hardware Traversal

ODFL CALBVH OURS ODFL CALBVH OURS ODFL CALBVH OURS ODFL CALBVH OURS ODFL CALBVH OURS

L1
$
←

L2
$

(B
yt

es
 /

 r
ay

)

misses 7.0% 6.4% 4.6% 7.2% 7.5% 5.5% 2.8% 2.7% 1.5% 6.6% 7.7% 5.8% 0.3% 0.3% 0.2%

8% 34% -4% 23% 3% 45% -17% 13% -8% 31%

6% 20% -2% 13% 7% 33% -9% 6% -4% 16%

L2
$
←

LL
C

(B
yt

es
 /

 r
ay

)

misses 36% 40% 40% 49% 53% 51% 27% 32% 35% 53% 57% 55% 30% 33% 35%
-2% 14% -9% 10% -13% 13% -18% 3% -14% 2%

L1
$
←

L2
$

(B
yt

es
 /

 r
ay

)

misses 7.3% 6.7% 5.2% 7.3% 7.7% 5.9% 3.3% 3.3% 1.9% 6.9% 8.3% 6.4% 0.4% 0.4% 0.3%

8% 28% -6% 19% -1% 41% -20% 8% -14% 27%
7% 19% -5% 12% 6% 38% -15% 4% -9% 19%

L2
$
←

LL
C

(B
yt

es
 /

 r
ay

)

misses 30% 35% 33% 30% 35% 33% 19% 25% 26% 44% 51% 46% 23% 27% 28%
-6% 12% -15% 9% -23% 16% -33% -1% -26% 3%

Node

L1$ BW Reduction

L1$ Total BW Reduction

L2$

A) Using Index Buffers

B) Storing Indices in Leaf Nodes

Layout

Node

L1$ BW Reduction

L1$ Total BW Reduction

BW Reduction

L2$
BW Reduction

SANMIGUELTEMPLE CROWN PLANTS HAIRBALL

196 196 196

408 374 289

604 570
485

0

150

300

450

600

219 224 188
0

50

100

150

200

250

222 242 200

158 158 158

292 301 234

449 459
392

99 112 86

105 105 105

265 240 144

371 345
249

272 272 272

452 516 406

724 788 677

0

200

400

600

800

382 451 370
0

125

250

375

500

25 25 25

30 32 22

55 57
46

0

25

50

75

100

17 19 16
0

10

20

30

40

88 88 88

459 419 353

547 507
441

0

150

300

450

600

166 176 146
0

50

100

150

200

250

165 190 150

60 60 60
332 350 283

391 410
343

72 89 61

42 42 42
330 308 189

371 350

231

112 112 112

561 661 535

673 772 647

0

200

400

600

800

296 392 298
0

125

250

375

500

10 10 10

37 42 28

48 52
38

0

25

50

75

100

11 14 11
0

10

20

30

40

Figure 8: General bandwidth measurements on all test scenes. The cache sizes were: Node L1 40 KB, L2 256 KB, Triangle L1 32 KB. On the
L1 bus we color-coded the triangle-bandwidth in orange and the node-bandwidth in blue. We can observe a major improvement in bandwidth
when the indices are stored in leaf nodes.

References

[AK10] AILA T., KARRAS T.: Architecture Considerations for Tracing
Incoherent Rays. In High-Performance Graphics (2010), pp. 113–122.
2, 7

[AKL13] AILA T., KARRAS T., LAINE S.: On Quality Metrics of
Bounding Volume Hierarchies. In High-Performance Graphics (2013),
pp. 101–107. 2

[AL09] AILA T., LAINE S.: Understanding the Efficiency of Ray Traver-
sal on GPUs. In High-Performance Graphics (2009), pp. 145–149. 2

[BAM14] BARRINGER R., AKENINE-MÖLLER T.: Dynamic ray stream
traversal. ACM Trans. Graph. 33, 4 (July 2014), 151:1–151:9. 2

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow bound-
ing volume hierarchies for fast simd ray tracing of incoherent rays. In
EGSR’08 Proceedings of the Nineteenth Eurographics Conference on
Rendering (2008), pp. 1225–1233. 2

[EG08] ERNST M., GREINER G.: Multi bounding volume hierarchies.
In Interactive Ray Tracing, 2008. RT 2008. IEEE Symposium on (Aug
2008), pp. 35–40. 2

[EW11] ERNST M., WOOP S.: Ray Tracing with Shared-Plane Bounding
Volume Hierarchies. Journal of Graphics, GPU, and Game Tools, 15, 3
(2011), 141–151. 1

[FD09] FABIANOWSKI B., DINGLIANA J.: Compact BVH Storage for
Ray Tracing and Photon Mapping. In Proceedings of Eurographics Ire-
land Workshop (2009), pp. 1–8. 1, 2, 5

[fSK14] ÁFRA A. T., SZIRMAY-KALOS L.: Stackless multi-bvh traver-

sal for cpu, mic and gpu ray tracing. Computer Graphics Forum 33, 1
(2014), 129–140. 2

[GI99] GIL J., ITAI A.: How to pack trees. Journal of Algorithms 32
(1999), 113–127. 2, 3

[GR08] GRIBBLE C. P., RAMANI K.: Coherent ray tracing via stream
filtering. In Interactive Ray Tracing, 2008. RT 2008. IEEE Symposium
on (Aug 2008), pp. 59–66. 2

[Hav97] HAVRAN V.: Cache sensitive representation for the bsp tree. In
Compugraphics (1997), vol. 97, pp. 369–376. 2

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M., HANRAHAN
P.: Interactive k-d tree gpu raytracing. In Proceedings of the 2007 Sym-
posium on Interactive 3D Graphics and Games (2007), I3D ’07, ACM,
pp. 167–174. 2

[Kee14] KEELY S.: Reduced Precision for Hardware Ray Tracing in
GPUs. In High-Performance Graphics (2014), pp. 29–40. 2, 6, 7

[KSBD10] KOPTA D., SPJUT J., BRUNVAND E., DAVIS A.: Efficient
MIMD Architectures for High-Performance Ray Tracing. In IEEE In-
ternational Conference on Computer Design (2010), pp. 9–16. 2

[KSS∗13] KOPTA D., SHKURKO K., SPJUT J., BRUNVAND E., DAVIS
A.: An Energy and Bandwidth Efficient Ray Tracing Architecture. In
High-Performance Graphics (2013), ACM, pp. 121–128. 2

[Lai10] LAINE S.: Restart Trail for Stackless BVH Traversal. In High-
Performance Graphics (2010), pp. 107–111. 2, 6

[LSL∗13] LEE W.-J., SHIN Y., LEE J., KIM J.-W., NAH J.-H., JUNG
S., LEE S., PARK H.-S., HAN T.-D.: SGRT: A Mobile GPU Architec-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

60

G. Liktor and K. Vaidyanathan / Bandwidth-Efficient BVH Layout for Incremental Hardware Traversal

ture for Real-time Ray Tracing. In High-Performance Graphics (2013),
ACM, pp. 109–119. 2, 5, 6

[Mah05] MAHOVSKY J. A.: Ray Tracing with Reduced-precision Bound-
ing Volume Hierarchies. PhD thesis, 2005. 1, 2, 5

[MB90] MACDONALD J. D., BOOTH K. S.: Heuristics for Ray Tracing
using Space Subdivision. 153–165. 2

[NPK∗10] NAH J.-H., PARK J.-S., KIM J.-W., PARK C., HAN T.-D.:
Ordered Depth-first Layouts for Ray Tracing. In ACM SIGGRAPH ASIA
Sketches (2010), pp. 55:1–55:2. 2

[NPP∗11] NAH J.-H., PARK J.-S., PARK C., KIM J.-W., JUNG Y.-H.,
PARK W.-C., HAN T.-D.: T & I Engine: Traversal and Intersection
Engine for Hardware Accelerated Ray Tracing. ACM Transactions on
Graphics, 30, 6 (2011), 160:1–160:10. 2

[PH10] PHARR M., HUMPHREYS G.: Physically Based Rendering:
From Theory to Implementation, 2nd ed. Morgan Kaufmann, 2010. 7

[SKKB09] SPJUT J., KENSLER A., KOPTA D., BRUNVAND E.: TRaX:
A Multicore Hardware Architecture for Real-time Ray Tracing. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 28, 12 (2009), 1802–1815. 2

[SWW∗04] SCHMITTLER J., WOOP S., WAGNER D., PAUL W. J.,
SLUSALLEK P.: Realtime Ray Tracing of Dynamic Scenes on an FPGA
Chip. In Graphics Hardware (2004), pp. 95–106. 2

[Tsa09] TSAKOK J. A.: Faster incoherent rays: Multi-bvh ray stream
tracing. In Proceedings of the Conference on High Performance Graph-
ics 2009 (New York, NY, USA, 2009), HPG ’09, ACM, pp. 151–158.
2

[VSAM16] VAIDYANATHAN K., SALVI M., AKENINE-MÖLLER T.:
Watertight Ray Traversal with Reduced Precision. In High-Performance
Graphics (2016). 1, 2, 5

[Wal07] WALD I.: On Fast Construction of SAH-based Bounding Vol-
ume Hierarchies. In IEEE Symposium on Interactive Ray Tracing (2007),
IEEE Computer Society, pp. 33–40. 2

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting rid of packets -
efficient simd single-ray traversal using multi-branching bvhs -. In In-
teractive Ray Tracing, 2008. RT 2008. IEEE Symposium on (Aug 2008),
pp. 49–57. 2

[WBW13] WOOP S., BENTHIN C., WALD I.: Watertight Ray/Triangle
Intersection. Journal of Computer Graphics Techniques, 2, 1 (2013),
65–82. 6

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER M.: In-
teractive rendering with coherent ray tracing. Computer Graphics Forum
20, 3 (2001), 153–165. 2

[WSS05] WOOP S., SCHMITTLER J., SLUSALLEK P.: RPU: A Pro-
grammable Ray Processing Unit for Realtime Ray Tracing. ACM Trans-
actions on Graphics, 24, 3 (2005), 434–444. 2

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM
Transactions on Graphics, 33, 4 (2014), 143:1–143:8. 7

[YLPM05] YOON S.-E., LINDSTROM P., PASCUCCI V., MANOCHA D.:
Cache-Oblivious Mesh Layouts. In ACM Transactions on Graphics,
(2005), vol. 24, ACM, pp. 886–893. 4

[YM06] YOON S.-E., MANOCHA D.: Cache-Efficient Layouts of
Bounding Volume Hierarchies. Computer Graphics Forum, 25, 3 (2006),
507–516. 1, 2, 3, 5, 8

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

61

