
High Performance Graphics (2014)
Jonathan Ragan-Kelley and Ingo Wald (Editors)

Fast ANN for High-Quality Collaborative Filtering

Yun-Ta Tsai1, Markus Steinberger1,2, Dawid Pająk1, and Kari Pulli1

1NVIDIA 2Graz University of Technology

Collaborative

Filter

(a)(a) (b)(b) (c)(c) (d)(d)

Figure 1: Collaborative filtering is a powerful, yet computationally demanding denoising approach. (a) Relying on self-similarity
in the input data, collaborative filtering requires the search for patches which are similar to reference patch (red). Applying a 3D
transform or a weighted average operation on these patches, unwanted noise is removed and the filtered results are scattered
back to all patch locations. Our method accelerates the process of searching for similar patches and facilitates high-quality
collaborative filtering even on mobile devices. Application examples for collaborative filtering include (left: our output; right:
noisy input) (b) denoising a burst image stack, (c) reconstruction of a global illumination scene, and (d) geometry reconstruction.

Abstract
Collaborative filtering collects similar patches, jointly filters them, and scatters the output back to input patches;
each pixel gets a contribution from each patch that overlaps with it, allowing signal reconstruction from highly
corrupted data. Exploiting self-similarity, however, requires finding matching image patches, which is an expensive
operation. We propose a GPU-friendly approximated-nearest-neighbor algorithm that produces high-quality results
for any type of collaborative filter. We evaluate our ANN search against state-of-the-art ANN algorithms in several
application domains. Our method is orders of magnitudes faster, yet provides similar or higher-quality results than
the previous work.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer Vision]:
Enhancement—Filtering

1. Introduction

Noise removal [BCM05, DFKE06] is an important problem
in application domains such as imaging, image synthesis, and
geometry reconstruction (Fig. 1). A powerful approach to
noise removal relies on self-similarity in the data. Exploiting
self-similarity requires finding data points that should have
similar values (pixels in 2D images, 3D points in surface
scans). This matching is often done by considering an image
patch, which gives more context than a single pixel and makes
finding the correct matches more robust. Overlapping patches
also facilitate collaborative filtering: if the image patches are,
for example, of size 8×8, each pixel is part of 64 different
patches, and if all those are filtered separately, each pixel

receives 64 different results. These 64 results can further be
filtered or averaged to obtain strongly denoised estimates.
Similar patches could be found from nearby regions in the
same image, or in a time sequence, from different images. It
is often desirable to find several matching patches instead of
finding just the single, best match. This problem can be for-
mulated so that the patch is interpreted as a high-dimensional
vector (e.g., 64D for 8× 8 patches), and the k closest vec-
tors are found in a k-nearest-neighbor search. Relaxing the
problem by requiring only approximate matches allows signi-
ficant speed-ups, at only a negligible cost on the denoising
performance. This leads to a class of algorithms called the
approximate-nearest-neighbor, or ANN algorithms.

c© The Eurographics Association 2014.

DOI: 10.2312/hpg.20141094

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/hpg.20141094

Y. Tsai et al. / Fast ANN for High-Quality Collaborative Filtering

Many techniques that accelerate ANN search have been
proposed. Examples include random KD-trees, K-means clu-
stering, Local Sensitive Hashing, and Principal Component
Analysis. While being efficient, the majority of these solu-
tions suffers from a) the curse of dimensionality, where high-
dimensional data becomes very sparse and the distance metric
loses its discrimination power, b) limited accuracy, reducing
the quality of the matches and the filtering result, c) high
pre-processing cost, which prohibits the use in interactive
applications, and d) poor performance scaling on massively
parallel systems, such as GPUs. Importantly, the search for
the best matches is completely separated from collaborative
filtering, leading to inefficient implementations.

We present an approximate-nearest-neighbor search me-
thod that is optimized for both collaborative filtering and an
efficient implementation on the GPU. Whereas many other
methods first construct a search structure and then repeatedly
use it to perform search and filtering, we in essence perform
all the queries in parallel as we construct the search structure.
The method is general and can be used in different denoising
algorithms. We demonstrate the use of our method for 2D
image denoising, both, using a single image and denoising
an image burst. Furthermore, we show how it can be used
to filter the output of ray-traced renderings, and to denoise
surfaces recorded with 3D range scanners.

2. Related Work

The key enabler of a collaborative filtering [BCM05,
DFKE06] is a fast nearest-neighborhood (NN) search; there-
fore, we focus the discussion here on various NN methods.

The KD-tree is the most widely-used family of algorithms
for accelerated NN search [Ben75]. It is very effective for
exact search when the data dimensionality is low. For high-
dimensional data, several approximations exist.

Randomized KD-trees have been used to look up image
features in very large image recognition problems [PCI∗07,
SAH08]. To avoid excessive backtracking when searching
for neighboring elements, dynamically-built priority queues
can be used [AM93, BL97]. Randomized KD-trees address
this issue by splitting the data among multiple KD-trees gene-
rated from randomized overlapping subsets of the data. The
trees are smaller and can be searched concurrently, with less
backtracking. Pre-processing becomes more expensive, as
the data must first be analyzed with PCA.

There are other methods for mitigating the cost of backtrac-
king. One approach utilizes spatial coherency to propagate
matches [OA12,HS12]. If the best candidates for a patch have
already been found, and a new search is done for a nearby
patch, the good matches found previously can be propaga-
ted to help the current search. The bookkeeping adds some
overhead, however. Gaussian KD-trees [AGDL09] sparse-
ly represent distributions in high-dimensional space. They
support spatio-temporal filtering, exploit the commonalities

between bilateral, non-local means, and other related filters
based on an assumption of Gaussian distributions, and can
be implemented efficiently on the GPU. The key difference
with respect to a regular KD-tree is that, in addition to the
splitting value, it also stores the minimum and the maximum
of the data projected onto the cut axis. During search, this
can be used to skip branches that are likely to only have few
samples. Such design elegantly integrates filtering and NN
search into a single data structure. However, it also limits the
types of supported filters, whereas our method can work with
any type of transformations.

Clustering trees use a different choice for defining how
the tree should branch. Fukunaga and Narendra [FN75] pro-
posed K-means trees, where a tree structure is constructed
via K-means, recursively at each level clustering the data
points into k disjoint groups. The trees are constructed by
hierarchical clustering [ML12], where the branching factor k
determines whether a flat or deep tree is built. For clustering,
a simple random selection of k points is used. To improve
search performance, multiple trees can be built in parallel.
Nistér and Stewénius [NS06] proposed to construct trees in
the metric space. An advantage of using K-means is its ef-
ficiency of clustering. However, the centroid can be easily
influenced by outliers. We use FLANN implementation [ML]
as our benchmark k-means tree implementation. K-means
trees can also be combined with KD-trees to boost search
performance [ML09]. This approach has been successfully
adopted to noise reduction [BKC08], where Brox et al. per-
form a recursive k-means clustering with k = 2 splits in each
node. To increase precision, patches within distance w of a
decision boundary are assigned to both sets, which increases
the memory footprint and complicates data management.

Vantage point trees [Yia93] split points using the absolute
distance from a single center, instead of partitioning points on
the basis of relative distance to multiple centers. The number
and thickness of these so-called “hypershells” can also be
chosen in various ways to improve performance in image
processing applications [KZN08].

Locality sensitive hashing [GIM99] is an efficient method
for NN search on binary features. Zitnick [Zit10] proposed a
similar method using mini-hash for the same purpose. While
a binary descriptor has a small memory footprint and the
Hamming distance can be used as an efficient metric, a fairly
large support is required to have enough discriminative power,
which makes collaborative filtering more costly.

To accelerate search, PatchMatch [BSFG09] uses a ran-
dom NN search where neighboring patches propagate good
matches. The generalized PatchMatch [BSGF10] further im-
proves this search strategy to support kNN queries. To avoid
brute force search, PatchGP [CKYY13], an extension to pixel
geodesic paths [BS07], only checks subsets of path directions.
As the distance measure on these subsets can be unreliable
due to noise, PatchGP uses customized multi-scale filters to
achieve good denoising results.

c© The Eurographics Association 2014.

62

Y. Tsai et al. / Fast ANN for High-Quality Collaborative Filtering

Many GPU-accelerated nearest-neighborhood techniqu-
es have been proposed. For instance, redundant norm com-
putations can be minimized by exploiting an overlap be-
tween search windows [XLYD11], or accelerated insertion
sort [GDNB10]. To reduce the search space, the data can
also be partitioned into a set of randomly overlapping sphe-
res [Cay10].

All these algorithms suffer from one or more of the follo-
wing problems:

• complex data structures are needed for managing nodes
and search,

• dimensionality reduction lowers filtering quality,
• costly pre-processing is required,
• multiple levels of indirection are not well suited for current

GPU architectures (pointer chasing),
• suboptimal support for collaborative filtering,
• unreliability with high noise.

Our method addresses all of these problems and we demon-
strate its benefits in multiple applications.

Several GPU optimizations techniques inspired our appro-
ach. Work queues are an efficient way to recursively construct
tree structures on the GPU [CT08, GPM11]. Task descriptors
for each are kept in a queue in GPU memory. Threads are
running in a loop and consistently draw tasks from the queue
until all tasks have been processed. After processing a node,
tasks for the child nodes can be added back to the queue. This
way of looping until all tasks have been completed is called a
persistent threads approach [AL09].

3. ANN for Collaborative Filtering

There are several criteria our ANN method has to fulfill. It
should work on images (both 2D color images and 3D range
images or meshes), and be able to handle fairly large patch
sizes (e.g., 8× 8). Furthermore, the entire method, i.e., the
search structure construction, the search, and the filtering,
needs to be fast. Consequently, the method has to map well
on the GPU to benefit from its massive parallelism.

We also want to take advantage of the characteristics of
collaborative filtering and known properties of the input data.
For example, natural images tend to be locally coherent, both
spatially, and temporally in case of a video or an image burst.
Thus, it is typically sufficient to search for similar image
patches in a close proximity [Leb12,BCM05], as a full search
over the whole image yields a small quality improvement
(see Table 1) with a huge increase in the execution time.
It is also known that a relatively small number of similar
patches/candidates (e.g., k = 16) is sufficient [Leb12], and
that even this small query can be approximate.

We exploit these characteristics and limit the search space
by dividing the image into a set of tiles (see Fig. 2). As we
demonstrate in Table 1, for collaborative filtering applications,
the tiled search performs almost as well as a full global or

Figure 2: The implementation of tiled collaborative filte-
ring. The input image is divided into non-overlapping tiles,
each n×n pixels large. Since each patch is centered around
certain pixel within a tile, patches that are close to border
of neighboring tiles (green and blue in the example figure)
overlap and contribute to each others filtering results.

Search Scope PSNR [dB]

Global 28.44
Sliding window (15×15) 28.43
Tile (15×15) 28.19

Table 1: Comparison of non-local means (NLM) filtering
for the BM3D dataset [DFKE06] using three different search
scopes. Each image is corrupted with zero-mean additive
Gausian noise with σ = 20, PSNR = 22.12dB; patch size 8×
8 and number of candidates k = 16. Global covers the whole
image, Sliding window uses a symmetric search window
around each patch’s center, and Tile divides the image into
non-overlapping tiles within which we look for the patch
matches.

symmetrically centered search. This is because the patches
on the border of neighboring tiles overlap, and therefore
contribute to each others filtering results.

To improve the query performance, we pre-cluster patches
in a tile so that similar patches are grouped together. While
previous methods first construct a search acceleration structu-
re and then repeatedly use the structure to perform a search,
we fuse the data structure construction and search, achieving
a significant speed-up.

Below we discuss the main steps of the proposed algorithm:
building the cluster list, using it to perform the ANN query,
and collaborative filtering.

3.1. Pre-clustering Patches within a Tile

We first divide an image into tiles as shown in Fig. 2. Each
tile is processed independently during query, but due to the
collaborative filtering, the outputs will overlap. A larger tile
allows finding better matches, while a smaller tile fits bet-
ter into the cache or shared memory, maximizing memory
locality for each query, as shown in Table 2.

c© The Eurographics Association 2014.

63

Y. Tsai et al. / Fast ANN for High-Quality Collaborative Filtering

Our preferred setup uses 15×15 tiles (with 225 potential
matches) and 8× 8 patches. This patch size is a common
choice, as it is large enough to be robust to noise, and small
enough for efficient processing [BCM05, DFKE06, Leb12].

Tile Size Clustering [ms] Query [ms] PNSR [dB]

11×11 2.58 2.27 27.94
15×15 3.52 2.07 28.04
19×19 4.73 1.96 28.09

Table 2: Performance of our method as a function of tile
size (BM3D dataset [DFKE06], patch size 8× 8, k = 16).
Each image is corrupted with zero-mean additive Gausian
noise with σ = 20 that yields PSNR = 22.12dB. For tiles
larger than 15×15 pixels, the improvement in image quality
becomes negligible.

The patches are clustered hierarchically (see Fig. 3). At
each step, the remaining patches (initially all the patches
within the tile) are split into two clusters. This is implemen-
ted with a variant of K-means++ [AV07] algorithm, which
we additionally modified to remove irregular workloads and
pseudo-random memory access patterns. The new algorithm
performs better on the GPU and is summarized below:

1. Choose the first patch in the node as the first center.
2. Compute `2 norm ni between the first patch and every

other patch and normalize the distances with ci =
∑ j≤i n j

∑i ni
.

3. The first patch with ci greater than the threshold τ (we use
τ = 0.5) is selected as the second center.

To speed up the process, we only perform K-means on a
subset of patches, e.g., 8, to find the cluster centers. This
sub-sampling only slightly affects the clustering quality, but
drastically reduces the computational load. Finally, we assign
each patch to the closest of the two centers.

The clustering process continues recursively until the size
of the cluster is below a threshold, which usually is twice the
number of candidates required for filtering. For instance, for
non-local means image denoising we use the top 16 matches
for each patch, in which case we stop the recursion when the
cluster is smaller than 32 patches.

3.2. Query and Candidate Refinement

After clustering, we can perform the NN query. Because
similar patches are grouped within the same cluster, we do
not need to perform a traditional tree traversal; instead, for
each patch in the cluster we simply find its nearest neighbors
by inspecting the patches in the cluster. If higher quality is
required, we can search additional clusters. This increases
the query time, which grows quadratically with the number
of clusters being searched. However, we found that in most
cases searching a single cluster is enough.

Figure 4 illustrates the parallel exhaustive search within a

C0 C1

(a) Sub-sampling

(b) Run k-means algorithm

(c) Assign labels

(d) Exchange

Figure 3: Hierarchical clustering. (a) The input cluster is
sub-sampled and used to (b) estimate two new cluster centers.
(c) The patches in the input cluster are associated with the
closest center, and then (d) reorganized to produce two new
sub-clusters. The process is repeated until the output cluster
size goes below a certain threshold.

cluster. For each patch, we find the indices of the k nearest
neighbors within the same cluster. We encode the indices of
the nearest neighbors as a bit field, if the maximum number of
elements in a cluster is 32, a 32-bit integer suffices. Replacing
repeated tree searches with a simple cluster look-up results
not only in a tremendous speed-up, but also allows us to
efficiently implement collaborative filtering.

p0 p1 p2 p3

(a) Distance Table

t0 t1 t2 t3

t0

t1

t2

t3

0.0

0.0

0.0

0.0

0.8

0.8

0.2

0.2

0.4

0.4

1.2

1.2

1.4

1.4 0.3

0.3

v0 v1 v2 v3

v0

v1

v2

v3

1

1

1

1

0

1

0

1

0

1

0

0

0

0 1

0

≤T(0,0) = 0.0

≤T(0,1) = 0.8

≤T(0,2) = 0.2

≤T(0,3) = 0.4

v0 v1 v2 v3

v0

v1

v2

v3

1

1

1

1

1

0

1

1

1

1

0

1

0

1 1

1

≤T(1,0) = 0.8

≤T(1,1) = 0.0

≤T(1,2) = 1.2

≤T(1,3) = 1.4

v0 v1 v2 v3

v0

v1

v2

v3

1

1

1

1

0

1

1

0

0

0

1

0

0

0 1

0

≤T(2,0) = 0.2

≤T(2,1) = 1.2

≤T(2,2) = 0.0

≤T(2,3) = 0.3

v0 v1 v2 v3

v0

v1

v2

v3

1

1

1

1

0

1

1

1

1

0

1

0

1

0 0

1

≤T(3,0) = 0.4

≤T(3,1) = 1.4

≤T(3,2) = 0.3

≤T(3,3) = 0.0

(b) Voting (k = 2)

Figure 4: Cluster-wide ANN lookup. Finding k nearest ne-
ighbors (here 2) for all patches in a cluster (here 4) is done
in two steps. (a) We first compute a symmetric lookup table
for all pair-wise distances δi, j . (b) Next, for each patch, we
find all patch partitions. The first (top-left) matrix compares
distances δi, j to δ0, j , the second (top-right) to δ1, j , and so
forth. We only need the rows (partitions) that have k = 2 ones
(high-lighted in orange), the columns indicate the patches
closest to the patch of the row. For example, the top-most
orange row says that for patch p1, the two closest patches
are patches p0 and p1 (with a distance threshold = 0.8). We
directly use the rows to binary-encode the nearest neighbors
for each patch (e.g., for patch p0 the encoding is 1010).

3.3. Collaborative Filtering

After the candidate list is generated, we perform collabora-
tive filtering in parallel for each cluster. For each patch, the
nearest neighbors are fetched, the stack of matching patches
is filtered, and the results are distributed to each participating
patch in the output image. Since all patches within the same

c© The Eurographics Association 2014.

64

Y. Tsai et al. / Fast ANN for High-Quality Collaborative Filtering

cluster are likely to have some common candidates, locality
is maximized and computation can be drastically reduced.

4. Implementation

Our algorithm offers opportunities for extensive paralleliza-
tion. First, each tile can be processed in parallel. Second, the
individual splits during hierarchical clustering can be paralle-
lized. Finally, candidates for each query can be determined
in parallel. In a CPU implementation, this parallelism can be
exploited in a multi-threaded implementation in conjunction
with SSE vectorization. Using the available parallelism in a
GPU implementation faces several additional challenges:

C1: Register pressure. Keeping a local copy of a single
high-dimensional input vector may exceed the per-thread
register file. Computations such as K-means ultimately
lead to spilling registers to slower memory.

C2: Memory access patterns. The clustering algorithm
groups unrelated patches to nearby memory locations, le-
ading to inefficient, scattered memory access patterns.

C3: Thread divergence. The number of instructions execu-
ted for clustering depends on the data. Threads within
the same warp but working on different nodes will show
varying execution times and divergence hurts performance.

C4: Kernel launch overhead. Launching a kernel at each
level of hierarchical clustering imposes a serious overhead.
Determining efficient thread setups for unbalanced clusters
adds another layer of complexity.

C5: Memory footprint. Computing and storing the candi-
dates for all queries in parallel can result in serious memory
and bandwidth requirements when storing the candidate
information (particularly important on a mobile SoC).

We present next an efficient GPU implementation addressing
all these challenges.

4.1. Clustering

The input data for our algorithm is given by high-dimensional
patch data that usually surrounds the current pixel (image
data) or the current vertex (3D mesh data). Extracting this
patch data from the original input representation would si-
gnificantly increase memory consumption as it duplicates
the overlapping input data. Given that the following stage
simply clusters similar patches without altering the patch
data, we store and work on references (the pixel coordina-
tes). This way, cache hit rates also increase as neighboring
patches access overlapping regions. In video and image stack
processing, the data reference can include the frame number;
in mesh processing the vertex index can be used as reference.

The major workload of clustering is formed by the 2-means
algorithm, which is repeatedly run to generate a hierarchical
clustering. Binary clustering is an inherently diverging and ir-
regular task, both at instruction level and in terms of memory.
During clustering, distances between arbitrary patches may

be computed. Clustering at thread level would impose several
problems mentioned earlier (C1-C4).

To address these problems, we developed a warp-wide bina-
ry clustering algorithm based on shuffle instructions. Shuffle
instructions permit exchange of a variable between threads
of the same warp without use of shared memory. This al-
lows us to keep only a subset of the high-dimensional data
in each thread, reducing register usage. Furthermore, assi-
gning successive dimensions to the individual threads in the
warp automatically leads to good memory access patterns
since the input dimensions sit next to each other in memory.
Using multiple threads to split a single cluster (node) offers
the opportunity to alter the roles of individual threads for
the different steps of the k-means algorithm. Our warp-wide
binary clustering works like this:

1. Each cluster is assigned a warp for splitting it, the first
center is set.

2. For each sub-sampled patch in the cluster, the entire warp
computes the distance to the first center by executing a
parallel reduction using efficient shuffle instructions.

3. Each thread keeps one of the computed distances in a
register; the warp computes a prefix sum of these distances
to choose the second center.

4. All threads in the warp cooperatively run at most five
iterations of the k-means algorithm. At each iteration, the
two centers are updated, and the distances are re-computed
using parallel reductions.

5. The entire warp determines for each patch the distance to
both centers for re-assignment.

6. All threads run through the patch array from the front and
back at the same time, marking non-fitting pairs for exchan-
ge. As soon as the number of pairs to exchange matches
the warp size, all threads perform exchanges concurrently.

These steps address both C1 and C2, and also avoid diver-
gence (C3), as an entire warp works on the same problem.
Also, the problem of low parallelism on the first levels of
hierarchical clustering is reduced, as the number of threads
working at each level is multiplied by the warp size.

The only remaining issues are the kernel launch overhe-
ad and thread setup when creating the hierarchy (C4). To
mitigate these issues, we use a task queue [CT08] in combi-
nation with a persistent threads implementation [AL09]. A
similar technique has been used to generate bounding volume
hierarchies [GPM11]. In the task queue, we keep identifiers
(lowerIndex and upperIndex) for each node that still needs
to be split. Each worker warp draws such an identifier pair
from the queue, splits the corresponding node, puts the iden-
tifier for one child back into the queue and starts working
on the other child. In this way, only a single kernel launch
is needed and nodes at different levels can be worked on
concurrently.

The impact of these optimizations is shown in Table 3.
Warp-wide execution clearly has the highest impact on per-
formance, increasing execution speed by a factor of 40. Addi-

c© The Eurographics Association 2014.

65

Y. Tsai et al. / Fast ANN for High-Quality Collaborative Filtering

Strategy Time [ms] Speed-up

Naïve implementation 272.06 -
Warp-wide processing 6.54 41.62x

Persistent thread 4.84 56.16x
Parallel exchange 3.46 78.68x

Table 3: Optimization strategies and speed-up for clustering
for a 0.25 MPix image on a GTX 680.

tionally avoiding the kernel launch overhead and working on
nodes from multiple levels concurrently reduces the execution
time by 26%. A further 29% reduction is due to the parallel
exchange strategy. Overall, our optimizations reduced execu-
tion time by 98.8% compared to a naïve implementation.

4.2. Query

After clustering, similar patches are grouped in the same
cluster. The next closest set of patches can be found in the ad-
jacent clusters. This spatial relationship allows us to quickly
retrieve potential candidates without costly traversal.

Considering C1-C2, we again perform warp-wide compu-
tations rather than using a single thread to select the candida-
tes. To determine the candidates for an entire cluster, we use
an entire block of threads. Each warp is then used to compute
a set of inter-patch distances. Because the distance is symme-
trical, we can pre-compute all the pair-wise distances within a
cluster, and store them in shared memory, illustrated in Fig. 4.
Each entry T (i, j) stores the value of δi, j for patches Pi and
Pj.

Once the matrix is computed, each warp is assigned to
generate the candidates for a single patch Ps. Instead of sor-
ting all candidates, we follow a voting scheme, which turned
out to be nearly twice as fast as sorting: each patch Pi in
the cluster is uniquely assigned to one of the threads in the
warp. If the cluster size matches the warp size, every thread is
responsible for a single patch. We then iteratively try to find
the distance threshold λ w.r.t. Ps, which yields k candidates.
Because all the possible thresholds are in the matrix, we only
iterate over the stored distances. To compute the number of
patches that fall within the threshold, we use ballot and popc
instructions. This is the whole process:

1. Each thread block is assigned to a cluster.
2. Compute distance δi, j using warp-wide reduction and sto-

re the result in T (i, j) and T (j, i).
3. Each warp is assigned to determine the candidates for a

single patch Ps.
4. Find at most k patches whose distance to Ps is less than or

equal to λ iteratively via voting, where λ = T (i,s).

In our algorithm, candidates are only searched for in the sa-
me cluster or within two neighboring clusters with additional
expense of shared memory. Thus, all candidate patch referen-
ces are close in memory after indexing. We can exploit this

fact to reduce the memory requirements when encoding the
candidates (C5). Instead of storing each individual candidate
index, we only store the candidate index within the cluster
using a bit field. This strategy allows us to use the result of
the voting scheme (ballot instruction) directly to encode the
candidates, reducing the memory requirement to as many bits
as there are elements in a cluster.

Strategy Time [ms] Speed-up

Naïve implementaion 171.19 -
Warp-wide processing 10.85 15.78x

No tree 5.86 29.21x
Voting 3.33 51.41x

Compressed candandidates 3.17 54.00x

Table 4: Optimization strategies and speedup for query for a
0.25 MPix image on a GTX 680.

The impact of this optimization is shown in Table 4. Warp-
wide execution again has the highest impact on performance,
speeding up search by a factor of about 16. Avoiding the
tree traversal nearly halves the execution time. Another 43%
reduction is achieved by the voting scheme in comparison to
sorting. Finally, the compressed candidate encoding reduces
execution time by merely 5%. However, this optimization
reduces the memory required for candidate encoding by one
order of magnitude.

4.3. Filtering

While we only covered clustering and query in more detail,
most of these techniques can also be used during the filtering
stage that follows the query stage in most applications. When
working with patch data, we again use an entire warp to work
on a single patch to reduce register pressure and per-thread
shared memory requirements. All optimizations reducing
data load and store can also be used during filtering.

During collaborative filtering we take advantage of the
grouping of similar patches. Often, steps in collaborative fil-
tering, such as the transformation in BM3D filtering or the
distance computations between patches in NLM, can be for-
mulated as precomputations, In our filtering implementations,
we start a block of threads for each cluster and run these pre-
computations only for the patches in that cluster. Intermediate
results can be stored in fast local shared memory.

Our candidate encoding scheme allows further optimiza-
tions. In many cases, the same set of candidates is used for
multiple patches in a cluster, i.e., if patch b and c are can-
didates for a, a and c are probably going to be candidates
for b. Thus, we can run (at least some) computations only
once for all patches that share the same candidate set and
use the results for all patches. Due to the bitwise candidate
encoding, we can efficiently find equal candidate sets using
simple comparisons.

c© The Eurographics Association 2014.

66

Y. Tsai et al. / Fast ANN for High-Quality Collaborative Filtering

5. Evaluation

We compare our algorithm against other ANN methods, fo-
cusing on quality and performance. We break the evaluation
into the following tests: a) nearest-neighbor query, b) image
quality, and c) performance. For a fair comparison, we on-
ly select well-known algorithms that support kNN queries
and work with different collaborative filters. If not specified
differently, all tests work on 8×8 patches, and use k = 16.

Nearest-neighbor Query (NNQ) We use two metrics to
evaluate the quality of the NNQ. First, we compute the over-
lap between the delivered k nearest neighbors with the ground
truth determined via exhaustive search, i.e., how many candi-
dates does the ANN method get right. Second, we compute
the ratio between the sum of distances of the delivered can-
didate patches and the ground truth Dann/Dknn, i.e., by how
much does ANN increase the average patch distance. Table 5
shows the results for randomized KD-trees [PCI∗07,SAH08],
K-means trees [FN75], composite trees [ML], hierarchical
clustering [ML09], generalized patch-match [BSGF10] (for
meaningful comparisons, we only use translations, not scale
or rotation), random ball cover (RBC) [Cay10] and our appro-
ach. We used the images from the BM3D dataset [DFKE06],
and performed NNQ for each 8×8 patch within every 15×15
tile as our benchmark.

Method % of correct Dann/Dknn

Randomized KD-trees 24.87 3.01
K-means 34.86 2.00
Composite 35.21 1.99
Hierarchical clustering 7.18 7.38
Generalized patch-match 0.22 23.91
RBC 97.88 1.01
Ours 39.01 1.32

Table 5: Quality metrics for different ANN methods for the
BM3D dataset. Our approach returns almost 40% of the ne-
arest neighbors. The average distance of the patches returned
by our method is 32% worse than the ground truth.

Image Quality To evaluate the effects of ANN search on
collaborative filtering, we ran patchwise non-local means
filtering [BCM05] and BM3D filtering [DFKE06] on the
dataset from Dabov et al. [DFKE06]. We added zero-mean
additive Gaussian noise with σ = 20/255 to the 8-bit data va-
lues. We then ran the ANN algorithms on these input images
in tiles and collaboratively filtered the returned candidates
as in NNQ evaluation. The results are shown in Table 6. Our
method is only slightly worse than RBC, and maintains the
highest performance among all ANN methods with BM3D.
Note that our method achieves a higher PSNR value than
RBC for BM3D filtering. This is because our approximation
is less likely to match noise to noise. We also tested with and
without searching the neighboring two clusters, as mentioned
in Sec. 3.2; the improvement was modest (0.1 dB), and the

cost is quadratic. Thus, all the evaluations only consider a
single cluster during query.

Method NLM [dB] BM3D [dB]

Randomized KD-trees 26.88 30.72
K-means 27.13 30.68
Composite 27.02 30.57
Hierarchical clustering 25.65 29.87
Generalized patch-match 21.24 28.92
RBC 27.83 30.71
Ours 27.79 31.05
Exhaustive Search (GT) 28.55 31.10

Table 6: Average PSNR for 11 images [DFKE06] corrupted
with zero-mean Gaussian noise with σ = 20/255. Patchwise
NLM and BM3D filtering use different ANN methods.

Performance As most ANN approaches require preproces-
sing, we measure and report the times for both clustering and
query on an Intel i7-950 with 8GB of RAM and an NVIDIA
Geforce GTX 680. The FLANN CPU implementations are
optimized with multi-threading, and the window search uses
SIMD (SSE2). The input resolution is 0.25 MP, k = 16.

The results of this test are shown in Table 7. The runtimes
of all four FLANN implementations (KD-trees, K-means,
composite, hierarchical clustering) are very similar. The time
is split fairly evenly between preprocessing and query. All
four CPU methods deliver their results in about a second,
indicating that the implementations are very similar, only the
clustering criteria change. Generalized patch-match does not
do any pre-clustering, and, thus, takes nine times longer for
queries. However, by using information from neighboring
pixels to guide the query process, it is about four times faster
than a brute force window search. Implementing the same
brute force window search on the GPU, the entire query
process is done in less than 600 ms, faster than any approach
on the CPU. Applying the same optimization strategies for
the window search as we used for our approach (warp-wide
execution, voting instead of sorting), we could lower the
execution time by 90%. However, our approach is still six
times faster, completing clustering in 3.6 ms and query in 4.6
ms. Our approach takes less than 1% of the execution time of
the fastest CPU implementation.

We compared our method against two other GPU-based
ANN methods: kNN-Garcia [GDNB10], and RBC [Cay10].
Unlike our approach, these methods are not designed to work
on small tiles and therefore struggle to perform in this mode
(see Table 7). Disabling tiled processing significantly impro-
ves their run-time performance – kNN-Garcia took 590.73
ms to complete, and RBC finished in 2565 ms. These num-
bers, however, are still far from our results. Moreover, a large
input patch-set greatly reduces the ANN quality. In case of
RBC, disabling tiled processing caused ANN accuracy drop
from 97.88% to 33.49%.

c© The Eurographics Association 2014.

67

Y. Tsai et al. / Fast ANN for High-Quality Collaborative Filtering

Method Clustering Query Total [ms]

Randomized KD-trees 407 380 788
K-means 670 312 982
Composite 666 357 1024
Hierarchical clustering 415 601 1017
Generalized patch-match 0 8930 8930
Window search (CPU) 0 36700 36700

kNN-Garcia (GPU) 25466 398 26359
RBC (GPU) 10837 491 11328
Window search (GPU) 0 594.99 594.99
Window search (GPU opt) 0 48.3 48.3
Ours (GPU) 3.55 4.64 8.19

Table 7: Run-time for different NN methods. Our method is
significantly faster than other methods while still delivering
high quality results.

We also implemented our algorithm for different architec-
tures. Running on the CPU (Core i7-950), it takes 130 ms to
retrieve 16 candidates for a 0.25 MPix images. On a mobile
GPU (Tegra K1), it takes 122.3 ms, which is even less than
the desktop CPU version. Furthermore, our method has a
small memory footprint. For a 0.25 MP image, we only requ-
ire 5 MB of additional storage. As we can process the image
in tiles, we can keep the memory requirement constant while
supporting arbitrary image sizes. We can increase the number
of concurrently processed tiles for future GPU architectures,
which may require a higher workload.

6. Applications

We demonstrate our method for image processing, global
illumination, and geometry refinement.

Single Frame Noise Reduction is the primary motivation
for many collaborative filtering techniques. Many ANN and
acceleration methods have been proposed for this domain,
but they either have to rely on additional post-processing to
improve the quality [CKYY13] or work only in conjunction
with a limited number of filters [AGDL09]. Our method is
independent of the choice of filters, while providing consi-
stent quality without additional post-processing. In Table 8
we compare our method against the original CBM3D imple-
mentation using their dataset [DFKE06]. Again, we added
zero-mean Gaussian noise with σ = 20/255 to all images.
Both CBM3D and ours are configured to use a discrete cosine
transform as the 2D transform, the Walsh-Hadamard trans-
form in the third dimension, and operate in opponent color
space. The only difference is that CBM3D uses a brute-force
window search. Our candidate list encoding (Sec. 4.2) ena-
bles us to implement filtering very efficiently on the GPU.
The results show that our method is very close to the original
implementation, yet significantly faster.

PSNR [dB] Run-time [ms]

Input 18.58 -
CBM3D 30.44 812000
Our BM3D 30.34 703.18
Our NLM 25.75 39.17

Table 8: Comparison between the original CBM3D imple-
mentation [DFKE06] and our GPU-enabled methods. While
our BM3D implementation loses only 0.1 dB in terms of qu-
ality, it is more than 1000 times faster. Further improvement
in run-time can be achieved by switching to a simpler NLM
filter (at the cost of reduced denoising performance).

Burst Noise Reduction Current digital cameras can operate
in a burst mode where they quickly capture multiple fra-
mes. Simple accumulation of frames from such a burst stack
can significantly reduce the noise and improve the overall
signal-to-noise ratio. The upper bound of this improvement is
proportional to

√
N, where N is the stack size. This approach,

however, fails for scenes with motion, where naïve accumu-
lation produces visible ghosting artifacts. To mitigate this
issue, we perform single-frame denoising, but look for simi-
lar patches not only in the spatial, but also in the temporal
neighborhood [DFE07]. This requires a slight modification
of the clustering part of our algorithm, which now processes
the data at a particular tile location from all frames conjointly.
Then we perform non-local means filtering for each patch
from the reference image. In Fig. 5 we compare our method
to Gaussian KD-Trees [AGDL09], which support both burst
noise reduction and GPU acceleration. For single frame de-
noising Gaussian KD-trees and our approach achieve similar
PSNR values, while ours is more than 1500 times faster. For
an entire burst stack, our implementation achieves a 3 dB
better PSNR while being 2000 times faster. Denoising an
entire burst stack is a difficult task for Gaussian KD-trees, as
the data becomes high-dimensional and requires PCA prepro-
cessing. As Gaussian KD-trees require multiple parameters
and have a very long running time, tuning the approach for
optimal image quality is a difficult process.

Global Illumination Many modern interactive global illu-
mination techniques apply guided noise reduction on sparsely
sampled indirect illumination [BEM11]. We verify the ap-
plicability of our ANN method by using the output from a
direct illumination forward-rendering pipeline as guidance
for performing nearest-neighbor query. Clustering is done on
the guidance image only, using an 8×8 patch size. To enhan-
ce clustering stability in the shadow regions, we increased
the ambient light in the scene. During query we operate on
the guidance data, but return samples from the indirect illu-
mination, then combine with direct illumination to generate
the final result. Results are summarized in Fig. 6.

Geometry Denoising Range data produced by 3D scanners
is usually noisy and requires post-processing [TL94]. Self-

c© The Eurographics Association 2014.

68

Y. Tsai et al. / Fast ANN for High-Quality Collaborative Filtering

First frame of stack
26.45dB

First frame of stack
26.45dB

GKD-Trees / �rst frame
31.01dB / 11.3s

GKD-Trees / �rst frame
31.01dB / 11.3s

Ours NLM / �rst frame
31.90dB / 0.02s

Ours NLM / �rst frame
31.90dB / 0.02s

GKD-Trees / stack
31.53dB / 1080s

GKD-Trees / stack
31.53dB / 1080s

Ours NLM / stack
34.10dB / 0.52s

Ours NLM / stack
34.10dB / 0.52s

Ground truthGround truth

Figure 5: Burst Image Denoising. The fence dataset (16 images) was corrupted with additive Gaussian noise of σ = 12/255.
Each frame in the stack is 1.4 MP with random warping to simulate camera motion. Both Gaussian KD-Trees and ours run on the
same GPU. Parameters for both methods are adjusted for the best image quality. We measured end-to-end processing time from
clustering, query, and filtering on a GTX 680. Notice that our method significantly outperforms Gaussian KD-Trees in both cases.

Window searchWindow search

35.06dB / 2.27s35.06dB / 2.27s

OursOurs

35.11dB / 2.20s35.11dB / 2.20s

4spp4spp

18.99dB / 2.17s18.99dB / 2.17s

512spp512spp

35.63dB / 243s35.63dB / 243s

Ground truth (1024spp)Ground truth (1024spp)

25.20dB / 1.45s25.20dB / 1.45s25.22dB / 1.39s25.22dB / 1.39s8.31dB / 1.37s8.31dB / 1.37s25.01dB / 164s25.01dB / 164s

Figure 6: Global Illumination Reconstruction. ANN methods can be used to speed up the filtering of noisy Monte-Carlo global
illumination rendering. Our ANN method achieves nearly the same quality as window search. In terms of PSNR, both approaches
are similar to a 512spp rendering.

similarity in the scan data can also be used to reduce this
noise. Gaussian KD-trees, in conjunction with NLM filtering,
has been used for this task [AGDL09], extracting a detail
layer of the mesh after applying Laplacian smoothing. To
evaluate the suitability of our ANN algorithm, we replaced
Gaussian KD-trees with our approach to generate filtering
candidates. The results of this evaluation are shown in Fig. 7.

Noisy Input Ours Exhaustive Search

Figure 7: Geometry denoising. Our ANN algorithm can
also be used to find candidates for NLM filtering 3D meshes.
Noisy input is generated with σ set to half of the average edge
length. The reconstructions of our method and exhaustive
search with k = 256 are visually indistinguishable.

7. Summary and Conclusions

We have presented an ANN method building on the combi-
nation of tiling, hierarchical clustering using 2-means, and
query within a single cluster. According to our evaluation,
our approach can be used as input for high-quality, state-of-
the-art collaborative filtering in multiple application domains,
such as denoising, burst imaging, global illumination post-
processing, and geometry reconstruction. While our approach
hardly loses any quality in comparison to exhaustive search,
it allows for many GPU optimizations.

Using warp-wide execution to work on a patch, avoiding
kernel launches, and dynamically changing the work assign-
ment for threads, results in speed-ups between 54× and 79×
in comparison to a naïve GPU implementation. In compari-
son to state-of-the-art ANN methods, we achieve significantly
better approximations to the ground truth exhaustive search
while being up to 100 times faster. In comparison to Gaus-
sian KD-trees [AGDL09] another GPU method, we are up to
2000× faster while achieving better image quality.

c© The Eurographics Association 2014.

69

Y. Tsai et al. / Fast ANN for High-Quality Collaborative Filtering

While our method is designed to work with any collabo-
rative filtering approach, our implementation enforces some
restrictions. Our implementation works very well in certain
parameter ranges, e.g., patch size 4× 4, 8× 8, or 16× 16.
Parameter setups that conflict with the GPU warp size or
require too much shared memory can reduce performance by
up to an order of magnitude. In the future we want to explore
the acceleration of complex computation chains where colla-
borative filtering is the bottleneck, such as end-to-end camera
pipelines, video noise reduction, super-resolution, and image
editing.

References
[AGDL09] ADAMS A., GELFAND N., DOLSON J., LEVOY M.:

Gaussian kd-trees for fast high-dimensional filtering. ACM Trans-
actions on Graphics 28, 3 (2009). 2, 8, 9

[AL09] AILA T., LAINE S.: Understanding the efficiency of ray
traversal on GPUs. In HPG (2009). 3, 5

[AM93] ARYA S., MOUNT D.: Algorithms for fast vector quanti-
zation. In Data Compression Conference (1993). 2

[AV07] ARTHUR D., VASSILVITSKII S.: k-means++: The advan-
tages of careful seeding. In SODA (2007). 4

[BCM05] BUADES A., COLL B., MOREL J.-M.: A non-local
algorithm for image denoising. In CVPR (2005). 1, 2, 3, 4, 7

[BEM11] BAUSZAT P., EISEMANN M., MAGNOR M.: Guided
image filtering for interactive high-quality global illumination.
Computer Graphics Forum 30, 4 (2011). 8

[Ben75] BENTLEY J. L.: Multidimensional binary search trees
used for associative searching. Commun. ACM 18, 9 (1975). 2

[BKC08] BROX T., KLEINSCHMIDT O., CREMERS D.: Efficient
nonlocal means for denoising of textural patterns. IEEE Trans.
Image Processing 17, 7 (2008). 2

[BL97] BEIS J., LOWE D.: Shape indexing using approximate
nearest-neighbour search in high-dimensional spaces. In CVPR
(1997). 2

[BS07] BAI X., SAPIRO G.: A geodesic framework for fast in-
teractive image and video segmentation and matting. In ICCV
(2007). 2

[BSFG09] BARNES C., SHECHTMAN E., FINKELSTEIN A.,
GOLDMAN D. B.: PatchMatch: A randomized corresponden-
ce algorithm for structural image editing. ACM Transactions on
Graphics 28, 3 (2009). 2

[BSGF10] BARNES C., SHECHTMAN E., GOLDMAN D. B., FIN-
KELSTEIN A.: The generalized PatchMatch correspondence algo-
rithm. In ECCV (2010). 2, 7

[Cay10] CAYTON L.: A nearest neighbor data structure for gra-
phics hardware. In International Workshop on Accelerating Data
Management Systems Using Modern Processor and Storage Ar-
chitectures (2010). 3, 7

[CKYY13] CHEN X., KANG S. B., YANG J., YU J.: Fast patch-
based denoising using approximated patch geodesic paths. In
CVPR (2013). 2, 8

[CT08] CEDERMAN D., TSIGAS P.: On dynamic load balancing
on graphics processors. In Symposium on Graphics Hardware
(2008). 3, 5

[DFE07] DABOV K., FOI A., EGIAZARIAN K.: Video denoising
by sparse 3d transform-domain collaborative filtering. In EUSIP-
CO (2007). 8

[DFKE06] DABOV K., FOI A., KATKOVNIK V., EGIAZARIAN
K.: Image denoising with block-matching and 3d filtering. In
SPIE Electronic Imaging (2006). 1, 2, 3, 4, 7, 8

[FN75] FUKUNAGA K., NARENDRA P. M.: A branch and bound
algorithm for computing k-nearest neighbors. IEEE Transactions
on Computers C-24, 7 (1975). 2, 7

[GDNB10] GARCIA V., DEBREUVE E., NIELSEN F., BARLAUD
M.: K-nearest neighbor search: Fast gpu-based implementations
and application to high-dimensional feature matching. In Image
Processing (ICIP), 2010 17th IEEE International Conference on
(2010), IEEE, pp. 3757–3760. 3, 7

[GIM99] GIONIS A., INDYK P., MOTWANI R.: Similarity search
in high dimensions via hashing. In VLDB (1999). 2

[GPM11] GARANZHA K., PANTALEONI J., MCALLISTER D.:
Simpler and faster hlbvh with work queues. In HPG (2011). 3, 5

[HS12] HE K., SUN J.: Computing nearest-neighbor fields via
propagation-assisted kd-trees. In CVPR (2012). 2

[KZN08] KUMAR N., ZHANG L., NAYAR S. K.: What is a good
nearest neighbors algorithm for finding similar patches in images?
In ECCV (2008). 2

[Leb12] LEBRUN M.: An analysis and implementation of the
BM3D image denoising method. Image Processing On Line 2
(2012), 175–213. doi:10.5201/ipol.2012.l-bm3d. 3, 4

[ML] MUJA M., LOWE D. G.: Flann - fast library for approxi-
mate nearest neighbors. http://www.cs.ubc.ca/research/
flann/. 2, 7

[ML09] MUJA M., LOWE D. G.: Fast approximate nearest neigh-
bors with automatic algorithm configuration. In VISAPP (2009).
2, 7

[ML12] MUJA M., LOWE D. G.: Fast matching of binary features.
In Computer and Robot Vision (2012). 2

[NS06] NISTÉR D., STEWÉNIUS H.: Scalable recognition with a
vocabulary tree. In CVPR (2006). 2

[OA12] OLONETSKY I., AVIDAN S.: TreeCANN – k-d tree cohe-
rence approximate nearest neighbor algorithm. In ECCV (2012).
2

[PCI∗07] PHILBIN J., CHUM O., ISARD M., SIVIC J., ZISSER-
MAN A.: Object retrieval with large vocabularies and fast spatial
matching. In CVPR (2007). 2, 7

[SAH08] SILPA-ANAN C., HARTLEY R.: Optimised kd-trees for
fast image descriptor matching. In CVPR (2008). 2, 7

[TL94] TURK G., LEVOY M.: Zippered polygon meshes from
range images. In SIGGRAPH (1994). 8

[XLYD11] XIAO C., LIU M., YONGWEI N., DONG Z.: Fast
exact nearest patch matching for patch-based image editing and
processing. IEEE Trans. on Visualization and Computer Graphics
17, 8 (2011). 3

[Yia93] YIANILOS P. N.: Data structures and algorithms for ne-
arest neighbor search in general metric spaces. In SODA (1993).
2

[Zit10] ZITNICK C. L.: Binary coherent edge descriptors. In
ECCV (2010). 2

c© The Eurographics Association 2014.

70

http://dx.doi.org/10.5201/ipol.2012.l-bm3d
http://www.cs.ubc.ca/research/flann/
http://www.cs.ubc.ca/research/flann/

