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Abstract

In this work we propose a curve approximation method that operates in the curvature domain. The curvature is represented using
one of several different types of basis functions (linear, quadratic, spline, sinusoidal, orthogonal polynomial), and the curve’s
geometry is reconstructed from that curvature basis. Our hypothesis is that different curvature bases will result in different
aesthetics for the reconstructed curve. We conducted a user study comparing multiple curvature bases, both for aesthetics and
similarity to the original curve, and found statistically significant differences in how people ranked the reconstructed curve’s
aesthetics and similarity. To support adaptive curve fitting we developed a fitting algorithm that matches the original curve’s

geometry and explicitly accounts for corners.

1. Introduction

Curves are used in a wide variety of applications, from traditional
sketching to animation paths to data fitting. Often an artist or de-
signer first sketches [GJ12, BBSOS] the curve (using a tablet pen
or equivalent), at which point the curve is represented as a sim-
ple list of connected points. Rarely is the curve kept in this for-
mat; instead, it is processed into a higher-level representation (such
as a spline) using a mix of smoothing and fitting. This process-
ing serves two purposes; first, it smooths or filters the data, re-
moving noise due to the capture process, and second, higher-level
curve representations can be re-sampled at will and support math-
ematical operations such as taking derivatives. As has been noted
before, different curve representations have a different “look and
feel” [OEYK12, FRSW87, MS09, WKSM12]. Curvature clearly
plays a role in this, as does the fitting or smoothing process used.

In this paper we ask: what role does curvature play in deter-
mining the aesthetics of a curve? There are three pieces we need
to explore this question. First, we need a higher-level curve rep-
resentation that lets us experiment with different curvature bases.
Second, we need a fitting method that is faithful to an original,
sketched curve (in an 2 sense). Third, we need to define a context
for comparing aesthetics — it’s likely that a curve that is aestheti-
cally pleasing in a drawing of a flower will not be so in a drawing
of a building.

Traditionally, higher-order curves have been represented as
splines — essentially, piece-wise polynomials. This representation
— along with traditional fitting approaches — tends to minimize
maximum curvature, smoothing out noise but also usually smooth-
ing out high-curvature features. More recent approaches have ex-
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plored representing curves as glued-together pieces of curves,
each of which have linear curvature (clothoid curves [OEYK12,
MSO09, BLP10]) or come from a family of pre-defined “nice”
curves [MS11]. This is the approach we take, only we broaden it
to include a variety of curvature bases, from constant to sinusoid.
We provide a general-purpose algorithm for fitting a curve of this
form to an input sketched curve that takes into account corners.

To evaluate the aesthetics of these different curvature bases,
we turned to a crowd-sourced survey (Mechanical Turk). Partici-
pants were asked to evaluate both the aesthetics of the curves (pre-
sented as a drawing) and how similar the curves were to the orig-
inal (fidelity of fit). We chose to conduct our evaluations on com-
plete drawings instead of single curves, under the hypothesis that
the content of the drawing will have an influence on what is per-
ceived as aesthetic. Obviously, an extensive evaluation of all types
of drawings is not feasible; we settled for a set of drawings that
span simple to complex, and natural to man-made.

Contributions: Our contributions are 1) An analytic representa-
tion for curves based on curvature bases, 2) An algorithm for fitting
to a sketched curve with a desired level of accuracy, which accounts
for corners in the curve; 3) A user study that demonstrates that cur-
vature bases do show a measurable effect in terms of aesthetics.

The paper is laid out as follows: Section 2 discusses previous
curve fitting methods and aesthetic studies; section 3 describes the
curve representation and how to reconstruct the curve from the cur-
vature bases; in section 4 we describe the user study that we used to
evaluate the aesthetics of the resulting curves; section 5 discusses
the results of that study; section 6 describes the details of the fitting
algorithm; and finally, section 7 contains concluding remarks and
future work.
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2. Related work

Curve fitting and smoothing has a long history [FRSW87], and
a full review is beyond the scope of this paper. We focus here
on methods that explicitly reconstruct the curve from the curva-
ture or from a “basis” set of curves. The inspiration for our work
is curve design using piece-wise clothoid curves [MS09], and the
idea that the choice of mathematical representation of curves may
have an aesthetic component [WKSM12]. In fact, Shaheen et.
al. give a method that distinguishes between the sketching style
of different artists by comparing mathematical representations of
their sketches [SRG15]. Baran et. al. give a method for approx-
imating curves using clothoid segments [BLP10] and Orbay et.
al [OEYK12] extend this to evaluating product designs.

Curvature manipulation has long been recognized as a means for
smoothing, or neatening, curves [MR07, FRSW87, BAFS94]. Un-
fortunately, too much curvature smoothing also tends to remove
the “character” of the line by reducing sharp features. Stroke dy-
namics (i.e., the speed at which a user sketches) have been used
to reduce this problem [TSB11], although this technique requires
temporal data. An alternative is to fit a curve basis set to the raw
data — the most common approach being Bézier curves [BBS08],
B-Splines [WPLO6], or equivalent piece-wise polynomial represen-
tations. Usually, the degree of the polynomials and the number of
segments is kept low, which has the effect of setting the nth deriva-
tives to zero and capping the number of times the curve bends.
Recent work has also incorporated curvature constraints into the
spline formulation itself [MG16].

A less-used alternative is conic splines [Pav83]. McCrae [MS11,
Sin99] used French curve segments to neaten drawings; although
this set of curves has no formal mathematical description, the curve
shapes themselves have been refined based on aesthetic properties.

Different approaches have been used to characterize the aes-
thetic nature of a curve. In [KNS] they classify curves as divergent,
neutral, and convergent, based on a designer’s classification, and
show that this classification can be linked to curvature. Similarly,
in [YS06] they use curve segments based on linear logarithmic cur-
vature. In [XMO09] they move particles along trajectories with con-
stantly changing curvature, similar to how we reconstruct curves
only with a more limited basis set. In [Zit13] they focus on hand-
writing, and averages similar bits and pieces of the hand-written
text to create more regular results. None of these papers validated
the relative aesthetics of the curves.

3. Curvature basis representation

Figure 1 shows the basic format of our curve representation (upper
left), and an example of each different curvature basis (upper right).
Given a curve in 2D we can calculate the curvature at each point
along the curve. Conversely, given the curvature, we can uniquely
reconstruct the curve in 2D (up to a rotation and translation).

Rather than create a function that represents the curve’s 2D ge-
ometry we create a function that represents the curve’s curvature
— and then integrate to get the 2D geometry. The middle row of
Figure 1 shows curvature functions built using 8 different bases,
and their corresponding reconstructed curves underneath. We de-

fine two classes of bases types — piecewise (the first 3) and multi-
basis (the last 5).

We next provide more information on the bases functions and
the reconstruction algorithm. In Section 6 we provide a windowing
algorithm for fitting to a sketched curve — this algorithm was used
to generate the examples in Figure 1.

3.1. Basis functions

Similar to splines, we can think of the curvature function as be-
ing broken up into n pieces, each of which is represented by a
simple polynomial function (linear, quadratic) with positional or
derivative constraints at the boundaries. We classify these as our
piecewise polynomial bases. From left to right in Figure 1 we have
1) [PWL] piecewise linear — linear sections with positional con-
straints, 2) [QUAD] piecewise quadratic — quadratic polynomial
sections with positional constraints, and 3) [QUADS] quadratic
spline — quadratic polynomial sections with derivative constraints.
In Figure 1 we have shown these with 8 segments each.

We can also represent each section as the sum of a set of
weighted, ortho-normal basis functions. More formally, let {b; :
R — R},-E[l_’m] be the set of basis functions, then we define the
curvature as the weighted sum of the basis functions (c(¢) =
Yic[1,m wibi(t)). Figure 1 upper right shows our five types: Haar
wavelets, Mexican Hat wavelets, Laguerre polynomials, Hermite
polynomials, and sinusoid functions.

The multi-basis can also be split up into segments; in Figure 1
we use two segments, with the join indicated by the red line. We
ensure positional continuity across the segments; this reduces the
degrees of freedom by 1 (i.e., we have m — 1 weights to set in the
second segment, instead of m).

Our fitting algorithm optimizes both for the number of segments
and the placement of the segment boundaries, taking into consider-
ation both the curvature values and the original, 2D geometry.

3.2. Curve Reconstruction

‘We define each curvature function on the unit interval, centered at
zero: ¢(t) : [—0.5,0.5] — R so that we can reconstruct the curve
from the middle outward (reducing computational error). The re-
construction algorithm starts at the origin and integrates a 2D co-
ordinate frame forward and backward through time based on the
curvature values.

We describe two methods for reconstructing the geometry of the
curve from the curvature. This reconstruction is unique up to a ro-
tation and translation; both methods start with a position and orien-
tation of the t = 0 coordinate frame that defines the curve’s position
and orientation in space.

Our first method is function-based, and uses an ODE solver to
integrate the coordinate frame through the curvature values. This
method has the advantage that it returns a continuous fitted curve,
but it tends to be slow and is not suitable for real-time non-linear
optimization.

Our second method reconstructs the curve by inverting the dis-
crete curvature calculation of section 6.1. Essentially, we use the

(© 2019 The Author(s)
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Figure 1: Representing a curve from a curvature bases. In the upper left is a curve reconstructed from the curvature. We show the bases
set for our multi-bases curves in the upper right. For each type we show the curvature function and the reconstructed curve. The piece-wise
bases were split into 8 uniform segments, the multi-bases into two segments..

curvature at a set of time points #; € [0, 1] to find the angle change
at each point and add segments to the curve in the direction of this
angle. To do this we need a good approximation of the length of
the segment from ¢; to 7,1, which can be extracted from the orig-
inal sketch if we are fitting to one. The two disadvantages of this
method are 1) the accuracy of the reconstruction depends on the
number of points reconstructed 2) it requires the segment lengths
of the original curve. To address these issues we resample the orig-
inal curve using arc-length parameterization using twice as many
sample points as the original curve.

4. Curvature Aesthetics Study Design

The goal of our user study is to determine if the choice of basis
function 1) has an effect on the aesthetics of a fitted curve and 2)
the visual similarity of the fitted curve to the original. Recognizing
that context has a role in aesthetics, we do not evaluate curves in
isolation, but as a collection of curves making up a drawing. We re-
construct all of the curves with the same bases and ensure that the
reconstruction for each type has approximately the same amount
of error. For our survey, we use a forced-choice, inter-subject ap-
proach with two question types, one for aesthetics and one for sim-
ilarity to the original.

We discuss the drawings, the questions, and the participants next.

4.1. The Drawings

Aesthetics are difficult to determine when considering a single ab-
stract curve, thus we combined a variety of curves into recogniz-
able drawings. Figure 2 shows the eight drawings that we created
for the purposes of this study. These drawings were chosen in or-
der to span a range of complexity. The hat drawing is the simplest
drawing, made with only a few, relatively smooth curves. The ele-
phant, boy, and cat represent a mid-range complexity. The bush, the
Seattle skyline, and the mountainous scene represent more complex

© 2019 The Author(s)
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Figure 2: The drawings used in the study. All eight drawings were
made by tracing images found on publicly-available “how to draw”
web sites. Shown are the original, unfitted drawings.

images with both linear elements and sharp curvature changes. By
using multiple drawings we hoped to catch any differences in the
aesthetics of the basis function that were due to the semantic infor-
mation in the drawings and the types of curves they contain.

4.2. The Questions

Our study contained two different types of forced-choice questions
designed to measure both aesthetics and visual similarity. Question
type 1 showed pairs of drawings and asked the user to select the
one that seemed more aesthetically pleasing (see left of Figure 3).
In question type 2 the user was asked to choose which of two re-
constructed drawings was most similar to the original drawing (see
right of Figure 3).
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Figure 3: Left: Question type 1, aesthetic. Right: Question type 2,
similarity.

For each of the eight drawings we generated nine variations of
the drawing: the original drawing and one for each basis function
type (the three piecewise polynomial and the five multi-basis). Each
drawing variation was compared to all the others, with each combi-
nation shown in both orderings (left-right). This resulted in a total
of 1152 questions (8 drawings x 9x8 comparisons X 2 left-right).

Similarly, for the type 2 questions we generated all possible pairs
(we included the original) with both left and right orderings.

From the full question set we uniform randomly selected 15
questions from each question type to avoid fatigue (30 total for each
participant). In addition, we added in one attention-check question
(type 2) with an obvious correct answer. This resulted in roughly
7-8 answers per question type.

We collected 466 responses via Amazon Mechanical Turk
(AMT). No restrictions were placed on the participants.

5. Study Results

This section presents the results of the study, including our user
attentiveness check and our check for order bias.

5.1. Terminology

We discuss results in terms of appearances and votes. We define an
appearance to be any time a basis appears as an answer to a survey
question and we define a vote to be any time a study participant
selects the basis as the answer to a survey question.

In order to determine if a particular basis has a statistically-
significant difference in number of votes than another basis we use
a two sample t-test between them. Specifically, we construct an ar-
ray of ones and zeros for each pair of basis functions. Each element
in the array represents an appearance and each non-zero element
in the array represents a vote for that basis. The mean of the array
indicates which basis was voted for more often, and the p value
indicates if this preference was statistically significant.

5.2. Attention Checks

We used four attention check questions in the survey — images
such as the example shown in Figure 3 where (in preliminary tests)
all of the participants picked the left image. Almost all of the sur-
vey participants correctly answered the attention check questions.

Those who failed were still largely correlated with the overall av-
erages. For this reason, we did not exclude any of the survey re-
sponses.

5.3. Order Bias

We placed each image on the left and right a roughly equivalent
number of times to prevent order effects from skewing the results.
We did find a small right bias throughout our survey, which we
hypothesize is due to people picking the right image more often
if they had no opinion. Here we compare the proportion that the
right side image was picked to the expected proportion 50% which
would result if no order bias were present.

When answering the first question group (aesthetics) users chose
the right hand image 53.1% of the time. This was statistically sig-
nificant with a z score of 5.12 and p-value of 1.52¢ — 7. When an-
swering the second question (similarity to original), users chose
the right image 51.1% of the time (z score of 1.574 and a p-value
of 0.0577), which was less statistically significant.

We hypothesized that there is a stronger order bias in the ques-
tions where there was not a clear answer. We looked at each com-
parison between images and used a statistical test to see if one of
the images in the comparison was chosen significantly more than
the other (i.e. questions with a preferred answer). We then found the
proportion of time the right hand image was picked for comparisons
with and without a preferred answer. Figure 1 gives a summary of
our results.

We found that the pictures where there was not a preferred an-
swer had a much higher right bias. For instance, in the aesthetic
question set, the p-value for the comparisons with a preferred an-
swer is 0.0114, whereas the p-value for the comparisons that do not
have a preferred answer is 0.000111, which is much lower. In the
similarity question set there is a slight left bias (not statistically sig-
nificant) for the pictures that have a preferred answer and a fairly
strong right bias (p-value=0.0021) for pictures that do not have a
preferred answer.

Since the right bias is much stronger in the aesthetic question
set, we also speculate that, in general, this type of question does
not have as strongly preferred answers. Indeed, it is more subjec-
tive and less clear which image is more aesthetically pleasing than
which image looks more like an original image.

We conclude that the presence of an order bias indicates there
were many questions that did not have a preferred answer. How-
ever, as noted earlier, our equal placement of images within the
survey prevents any skewing in the data.

5.4. Basis Preference Ordering

When analyzing which bases were preferred aesthetically we
looked both at each drawing individually and at all drawings col-
lectively.

Figure 4 shows the overall aesthetic preference across all draw-
ings. We measure preference as the total number of votes over the
total number of appearances of each basis. The bars with matching

(© 2019 The Author(s)
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Aesthetics Question Set Similarity to Original Question Set
Total Clear preference | Unclear Preference | Total Clear preference | Unclear Preference
Prop. RS picked | 0.531 0.520 0.543 0.511 0.488 0.545
Z score 5.12 2.27 3.69 1.574 -1.267 2.8
p-value 1.53e-07 | 0.0114 1.11e-4 0.0577 | 0.8974 0.00211
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Table 1: Order bias tends to occur when the p-value is large and the bases are indistinguishable. There tends to be more bias toward the

right side than the left.
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Figure 4: Aesthetic preference for each of the basis types averaged
across all pictures. Preference is measured as the number of votes
over the number of appearances. Bars of the same color are not
aesthetically different based on statistical significance.

color are not preferred over each other with any statistical signifi-
cance. This significance was determined using two sampled t-tests.

These combined results reveal that, in general, the quadratic is
the most aesthetically pleasing basis and PWL is the second most
aesthetically pleasing. Hermite, sinusoid, and the original drawing
tend to have the same aesthetic quality, and so do Laguerre, Hat and
Haar wavelets. The quadratic spline is the clear loser when it comes
to aesthetics. We hypothesize that quadratic spline performs poorly
because it does not allow for differential discontinuities which are
necessary to create sharp corners in a curve.

This overall ordering describes a general trend in aesthetics, but
the actual aesthetics vary from image to image, sometimes signifi-
cantly so. For example, the PWL basis tends to do well and is the
second or third most preferred basis for most drawings, but in the
Seattle drawing, PWL is the third least preferred basis. Figure 5
shows the ordering for each of the drawings.

5.5. Similarity to Original

We analyzed the similarity of each basis to the original (as deter-
mined by our study participants) both across all drawings and for
each drawing individually.

Figure 6 shows the similarity of each basis to the original sketch
across all drawings. We defined similarity to the original to be the
number of votes for a basis over the number of times it appears
in the similarity question. That is, the similarity to the original is

© 2019 The Author(s)
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based on how many times a survey participant stated the basis was
more similar to the original drawing than a drawing reconstructed
from a different basis.

Looking at similarity across all drawings we see that the original
is the most similar to itself by a significant margin, as one would ex-
pect. The sinusoid is the second most similar to original. Laguerre
is the third, although not significantly more so than the Hat ba-
sis. Hat, Quadratic, Haar, and Hermite have a preference close to
0.5 suggesting that these all appear to be equally different from
the original. This does not necessarily mean that they are indistin-
guishable from one another. These bases could all look different,
but their relative difference from the original could all be roughly
equivalent. The piece-wise linear basis is noticeably different from
the original and all other bases, and finally, the quadratic spline is
the most different-looking basis of all (again because the quadratic
spline does not handle sharp corners well).

Figure 7 displays the similarity to original broken down by draw-
ing. As expected, the original is selected as the most similar to itself
in almost every drawing. In the more detailed pictures, the sinusoid
basis is indistinguishable from the original (the Seattle, mountain,
and tree drawings).

5.6. Differences Between Drawings

It is worth noting that some of the drawings seemed to have signif-
icant aesthetic differences when reconstructed using different basis
functions and others did not.

The most complex drawings appeared to have little variation in
aesthetic rankings. For example, the mountain drawing had no sig-
nificantly difference aesthetics across all of the bases (except for
the quadratic spline variation). The more complex drawings may
have so many details that it is hard to pick out changes in aesthetic
quality due to individual curve shapes.

The most simple drawing, the hat, also had little variation in aes-
thetics. The curves within this very simple drawing may not be sig-
nificantly altered by different bases, and therefore the overall aes-
thetics do not change. This is corroborated by the fact that large
groups of bases variations of the hat were perceived to be equally
similar to the original hat picture.

5.7. Discussion of Survey Results

In sum, we can conclude that the basis function that is used to re-
construct the curve does, indeed, have an effect on the perceived
aesthetics of the drawing. Part of this effect may simply be smooth-
ing; as can be seen in Figure ?? where the original curves in the
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Figure 5: Aesthetic ordering per drawing along with the the ratio of votes to appearances. Basis functions within the same colored box do

not show a statistically significant difference in score.

drawings contain a great deal of local curvature changes and peaks.
However, although many of the basis functions eliminated these
local curvature changes, there were still differences in perceived
aesthetics, which indicates that using a specific basis does lead to
perceivable differences.

The quadratic curvature basis generally produces drawings with
the most aesthetically pleasing qualities and the piece-wise linear
basis the second most. Further, we found that it varied from draw-
ing to drawing how similar the quadratic basis appeared to the
original drawing, and overall, the quadratic was just as similar to
the original drawing as several other bases. This suggests that the
aesthetic quality of the quadratic basis may be detected at a more
subconscious level. Piece-wise linear, on the other hand, looked
significantly more different from the original than the other bases.
Participants could tell that piece-wise linear looked different and in
general thought the different look was more aesthetically pleasing.

6. Curve Fitting

We now define our curve fitting algorithm. Given a sequence of 2D
points which define a curve, the algorithm determines how many
segments, where to place the boundaries (splits) between the seg-
ments, and then adjusts the free parameters of the bases in order to
best-fit the original set of points in an L? sense.

We perform the fit in multiple stages, first fitting in curvature
space (linear) then in geometry space (non-linear optimization).
We use a windowing approach to speed up the non-linear optimiza-
tion. We perform the non-linear optimization in geometry space
because, in the end, we care about reconstructing the geometry, not
the curve’s curvature values.

(© 2019 The Author(s)
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Figure 6: The overall similarity of each basis reconstruction to the
original drawing. This is the average across all drawings used in
the survey. Bases with the same colored bars are not significantly
different (determined by a two sample t-test). Note that Laguerre is
not significantly greater than Hat, but it is significantly more simi-
lar to the original than quadratic.

6.1. Calculating Curvature

We use the discrete calculation outlined in [MS09] ( [KKO06]
presents an alternative method), which measures the change in an-
gle AB between two adjacent line segments divided by the arclength
As of one of those segments,
A8

K= A5
The curvature values for the first and last points of the curve are
undefined, so we set them to the values of the adjacent points.

¢y

6.2. Fitting to the Curvature

Once the curvature is calculated we break the curve up into seg-
ments, each of which can be approximated with a simple basis
function (see Section 6.3). For our piecewise bases this means each
segment can be represented by a piecewise linear function or a
quadratic polynomial; for our multi-basis, this means the segment
can be represented by a sum of weighted basis functions. Our task
is to set the coefficients of the polynomials (piecewise bases) or the
weights (multi-basis) so that the resulting function approximates
the calculated curvature.

Each segment has a start and end split point. This creates a
unique assignment to each segment of one (or more) data points.
We fit all segments at once using a least-squares approach.

We formulate the fit as Ax = b, where x is either the weights
(multi-bases), the y values of the piecewise join points, the con-
trol points of the spline (quadratic spline), or the coefficients of the
quadratic polynomials (quadratic). Each row of A corresponds to
one time, curvature pair (¢;,K;). For the multi-basis, the row sets
Y. bi(tj) = x;, where ¢; is the arc-length distance along the curve
of the point j.

For the multi-basis and quadratic with positional constraints, we

use a modified version of the standard least-squares approach that

© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

includes a second set of (underconstrained) equality constraints,
Ox = ¢ [HH81]. This second set of constraints is used to ensure
that the end point of one segment is the same as the start of the

second p;(t) = piy1(2).

6.3. Finding Split Points

Our goal with creating the initial set of split points is to keep the
number of segments small while still limiting the total amount of
curvature change within each segment. We make two observations:
First, noise in the curvature (small wiggles) can largely be ignored,
since that primarily arises from noise in the geometry that we are
trying to smooth out. Second, corners in the original curve tend to
produce a “spike” in the curvature. To accurately capture this spike
it is best to create split points at the inflection points as well as the
peak of the curvature; otherwise, the reconstruction will smooth out
that corner.

We pre-process the sketch by arc-length sampling it and scaling
it so that the curve fits in the unit square (normalizing the curvature
values, since curvature depends on scale). We add split points at the
geometric corners, the extrema, and to split up segments.

Geometric corners: Sharp corners in the original curve should be
modeled as delta functions in the curvature plot. We explicitly find
these corners using the Short Straw Algorithm [?] and add three
split points (representing a delta function) which are each two sam-
ple points apart, centered on the corner.

Extrema: We identify extrema as points who’s absolute curvature
value is both greater than an absolute threshold (|k| > 1) and in the
top 1/4 of absolute curvature values for the entire curve. Similar
to the Short Straw algorithm, we remove the smaller of extrema
that are too close together (within 0.05 of each other in absolute
curvature value or closer than 4 sample points).

Linear fit: We recursively subdivide the remaining segments un-
til they are sufficiently well-modeled with a linear segment or the
resulting segment would have fewer than two data points in it. We
define “sufficiently close” using a user-defined threshold dy,; based
on the overall range of curvature values.

dm = €| max k; — mink;| 2)
1 1
We set € = 0.1 for the examples in this paper.

This initial fit is now refined using non-linear optimization in
geometry space, splitting segments further if necessary. We perform
this as a sliding window for computational efficiency.

6.3.1. Windowing

The window consists of four segments (see Figure 9). The window
that is being fitted (red) consists of three split points and the pre-
ceding segment. To the left of the window is the currently fixed part
of the curve — the split points that have already been fitted (blue).
To the right of the window are the remaining split points on the
curve that have not yet been fitted (gray). Note that only the part
of the curve that can change (red) is included in the optimizer error
calculation.

After the segments corresponding to the area under the window
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Figure 7: Similarity to the original broken down by drawing. The number in parenthesis is our standard metric votes versus appearances
which measures the number of times participants choose the drawing as being more similar to the original than another basis.

have been optimized, and additional split points added if necessary,
the window moves one split point toward the end of the curve. This
is repeated until the window has reached the end and all split points
become fixed points.

6.4. Non-Linear Optimization

The Nonlinear Optimizer (NLO)) uses a general-purpose optimizer
to adjust the parameters of the curvature basis functions. We used
MATLAB’s fminsearch}with standard settings, which imple-
ments a version of Nelder-Mead’s simplex method [LRWW98].

Error function: The curve is reconstructed using the discrete

method in 3.2. This reconstructed curve is then compared to the
original in geometry-space. The error is the sum of the distance
between the reconstructed curve and the original data points, mod-
ified slightly to account for parameter slide (no backtracking) and
the windowing.

6.5. Implementation Details

Reconstruction from curvature is unique up to a rotation and trans-
lation. In practice, we always start the ODE reconstruction by cen-
tering the curve over the origin with the tangent vector pointing in
the positive x direction. The ODE reconstruction then starts in the
middle of the curve and integrates out in both directions, in order

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.
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Figure 8: Identifying good candidates for split points. Left: Identify
points with high curvature, then filter out ones that are too close
together (extrema). Right: Approximate each segment with a linear
function and iteratively add splits at the points that are furthest
from the linear fit.

to minimize drift. We start the discrete reconstruction with the first
point of the curve at the origin and the initial vector in the positive
x direction.

We find an initial rotation and translation that take the recon-
structed curve to the original’s location by aligning the correspond-
ing points and vectors. Since determining the corresponding x vec-
tor in the original curve can be problematic due to noise, we then
apply a non-linear optimization procedure to solve for the best ro-
tation and translation, this time matching the reconstructed curve’s
geometry to the original in a least-squares sense. This also ad-
dresses issues with global drift.

As a pre-processing step we resample the curve using arc-length
sampling, filtering out duplicate points. This reduces error in the
curvature calculation and provides one level of smoothing. For pen
input we apply a Gaussian filter two times to reduce noise due to
pen jitter.

6.6. Timing

There is a wide range in computation time involved for different
drawings and different basis functions. At one extreme, the Seattle
drawing takes close to an hour to fit the entire drawing using the La-
guerre basis. At the other extreme, it only took 33 seconds to fit the
dolphin picture using the piece-wise linear basis (all un-optimized
MATLAB code). In interactive applications this could be amortized
by fitting as the user draws the curve.

7. Concluding Remarks

We describe an algorithm for reconstructing 2D and 3D sketched
curves using a variety of different bases in curvature space. Using
a simple forced-choice test, we demonstrated that different curva-
ture bases produce drawings that have a noticeable difference in
aesthetics.
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