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Figure 1: Left to right: an example image, our optimized Playful Palette and our approximated Playful Palette. RGB histograms for each are
displayed inset. We attempt to reproduce the full gamut of the input image with the colors in a Playful Palette. Our optimization produces
high quality results, while our approximation is an order of magnitude faster.

Abstract

Playful Palettes are a recent innovation in how artists can mix, explore, and choose colors in a user interface that combines
the benefits of a traditional media painter’s palette with non-destructive capabilities of digital tools. We present a technique to
generate a Playful Palette that best represents the colors found in an input image, allowing the artist to select colors from the
image’s gamut, while maintaining full editability of the palette. We show that our approach outperforms recent work in terms
of how accurately the image gamut is reproduced, and we present an approximation algorithm that is an order of magnitude

faster with an acceptable loss in quality.
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1. Introduction

While digital painting tools have become dramatically more capa-
ble and expressive in recent years, there are still ways they could
better support the artistic process. Improving the color picking in-
terface is one such opportunity. Recently Playful Palette [SLD17]
was introduced to address many longstanding shortcomings of dig-
ital color pickers, including supporting exploration and harmoniza-
tion while providing non-destructive editing, infinite history and
recoloring.
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A remaining fundamental difficulty for many artists is the “blank
canvas” problem, in which it can be difficult to take the first steps
on a new, clean document [Aud93]. Similarly, it can be difficult to
generate a color palette from scratch when lacking context or in-
spiration. Many artists gain inspiration from photographs, artwork,
and other imagery that inspires the creative process.

‘We present an algorithm that can generate a Playful Palette from
a user-provided image, such that the colors present in the Playful
Palette match the image colors and vice versa, as closely as possi-
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Figure 2: Playful Palette configurations and their resulting RGB gamuts. Pairs of abutting blobs create linear gradients and thus lines in 3D
(a,b). Triplets of abutting blobs create 3D triangles (c,d). When more than three blobs simultaneously abut (e), more complex curved surfaces

can be constructed.

ble. This can help artists to find inspiration in images or other art-
works by providing a parameterized palette they can interact with
to select colors, find new combinations, and mix and match to their
liking. Furthermore, novice artists often struggle with generating
colors for certain types of content such as skin tones. Creating a
Playful Palette from an image of a face can easily provide the artist
with a range of skin tones to select, and an easy way to experiment
with shadowing, highlighting, or adding accent hues.

Our algorithm takes an image as input and directly optimizes the
position and color of a fixed number of blobs until a loss function
is minimized. Our loss function encodes the bi-directional similar-
ity between the image RGB gamut and the Playful Palette RGB
gamut. Optimization yields high quality (high bi-directional simi-
larity) results but takes tens of seconds. We also present an approx-
imation algorithm that runs in one tenth the time while achieving
qualitatively similar results. We conclude by comparing our results
to two state of the art palette generation approaches to show that
our proposed algorithms are favorable in terms of both quality and
runtime.

2. Related Work

The work most similar to ours is that of Nguyen et al. [NRS15],
in which they create 1D or 2D palettes from images or collections
of images using self organizing maps (SOM). These palettes can
be used to visualize the colorspace of the input image(s), and sup-
port selecting colors as custom image-based palettes. The advan-
tage of our work is that a Playful Palette representation of the same
data affords greater interactive potential for the user—an artist can
change blob colors, rearrange blobs, or add or remove blobs to take
the image-based palette and customize it for their needs. More re-
cently, Shugrina et al. [SKSF18] present Color Sails, which provide
a more structured form of color palette that is more amenable to

generation via machine learning, but does not have the interactive
affordances of Playful Palette.

There is extensive work on selecting discrete palettes from im-
ages. O’Donovan et al. present the first work to use machine learn-
ing to model user preference for color palettes [OAH11], and later
use the preferences of many users to understand classes of color and
palette aesthetics among artists [OAH14]. Lin et al. [LH13] focus
specifically on modeling how users extract palettes from images.
Each of these works is limited to small palettes of discrete colors,
and does not model gradients or blending.

Some previous works use palette models as ways to facilitate
image editing. One of the earliest and most influential results came
from Cohen-Or et al. [COSG*06], which extracts the hue distribu-
tion from an image and modifies it to confirm to an idealized hue
template. Chang et al. [CFL" 15] extract palettes that contain up to
seven colors from an image and modify the image as the palette
colors are changed by the user. Mellado et al. [MVH"17] extend
this concept by incorporating perceptual constraints into the palette
modifications. These works are useful for editing images, but do
not support painting type interactions focused on color selection.

A related problem is to decompose an image into layers, which
requires assigning colors to those layers that constitute a palette.
Tan et al. [TLG16] use a simplified convex hull algorithm to cre-
ate a basis for image pixels from a small number of color lay-
ers. LayerBuilder [LFDH17] achieves a similar result using non-
linear dimensionality reduction to generate the palette instead. Ak-
soy et al. [AASP17] performs a “soft segmentation” where each
layer actually contains a distribution of colors. Most recently, Tan
et al. present an improved version of their layer separation [TEG18]
that is significantly faster when separating an image into layers,
but the palette extraction uses the same approach as their earlier
work. These techniques allow images to be modified accordingly,
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but again do not support selection of new colors from the image
gamut.

An interesting variation of the layer decomposition focuses on
images of paintings specifically. The Pigmento system [TDLG18]
estimates multispectral pigment coefficients and mixing weights
for oil- or acrylic-type paintings. Aharoni-Mack et al. [AMSL17]
do the same for watercolor paintings. These pigments could then
be used in a painting system that simulates real physical paints.

Finally, there is work on recommending colors to support paint-
ing and design tasks. Son et al. [SOK*15] use color affinity from
a public dataset of rated color themes to present to the artist colors
that compliment the current composition. Phan et al. [PFC18] learn
color palette models from curated sets of images (e.g. Cézanne
paintings) and suggest relevant colors to choose among, based on
the selected model. These interfaces are closer to our goal of mak-
ing artists more successful, but they do not support unconstrained
exploration or blending of colors.

3. Playful Palettes

A Playful Palette is defined as a set of discrete colored “blobs” in
a “mixing dish,” where the blobs smoothly blend with one another
when they are within some distance threshold. Each blob is defined
as a tuple {r,g,b,u,v} where r, g, and b are the blob’s color and
u and v are the blob’s location. For this paper, we only consider
8bit RGB color values normalized to r, g, b, € [0, 1], though Playful
Palette can support other color spaces (e.g. CMYK, HDR, or multi-
spectral pigments). A blob position is defined within u,v € [—1,1].
While Playful Palette supports blobs of varying radius, we fix the
radius of all blobs to 0.3 (in normalized units of u,v); thus each
blob nominally occupies 9% of the Playful Palette, comfortably al-
lowing up to 10 blobs at once.

Each blob is rendered as a point sample with a radial falloft con-
tribution. The contributions of all blobs are summed per pixel. For
any pixel where the summed contribution is greater than a thresh-
old, that pixel is colored according to the weighted average of the
contributing blobs. This way, smooth gradients are achieved be-
tween abutting blobs.

This model is trivially parallelizable and therefore amenable to
GPU computing. We have implemented the rendering algorithm as
an OpenGL fragment shader which runs in an interactive HTMLS5
and WebGL demo. We have also implemented a CPU-only version
in C++ with multiple threads and SSE SIMD vectorization, which
is easier to use for optimization later.

3.1. Gamuts

It is useful to examine the RGB color gamuts that are constructed
by different Playful Palette configurations. See Figure 2 for illustra-
tions. Two abutting blobs create a smooth linear gradient between
them, and therefore a straight line segment in 3D (Fig. 2a,b). Three
abutting blobs effectively use barycentric coordinates for interpola-
tion among three 3D points and therefore create a triangle (Fig. 2c).

In general, more than three blobs can be decomposed into a set of

triplets of abutting blobs that form a triangle mesh in 3D (Fig. 2d).
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As the Playful Palette mixing dish is a 2D domain, the resulting
3D gamut must be at most a 2D manifold (generally, a combination
of points 1D, and 2D manifolds)—there is no way to position four
blobs to each mix with each other and create a continuous 3D vol-
ume in the RGB domain. This is in contrast to approaches by e.g.
Tan et al. [TLG16] which explicitly constructs a simplified convex
hull of the image RGB histogram so that every point in the interior
volume can be achieved with some interpolating weights. Buades
et al. [BLM10] argue that the color distribution of a real image can
generally be best described with a 2D manifold.

There are some configurations of blobs that can achieve more
than three blobs mixing with each other simultaneously and result
in a curved surface rather than two planar triangles (Fig. 2e), but
they are still not able to achieve a volumetric gamut, and therefore
can only approximately model the colors in a natural image.

3.2. Problem Statement

The goal of this work is to construct a Playful Palette that best rep-
resents the RGB gamut of an input image. Inspired by work on bidi-
rectional similarity [SCSIO8], we consider two aspects of that rep-
resentation. First, for every color in the input image, there should
be a similar color in the Playful Palette. Second, for every color in
the Playful Palette, there should be a similar image color. The first
condition ensures that the Playful Palette accurately reproduces the
set of image colors so the artist can select among them. The second
condition ensures that the Playful Palette does not include many
colors that are not in the input image, which would be unnecessar-
ily distracting. It also avoids a trivial solution of a Playful Palette
that simply reproduces all possible colors, by penalizing colors that
are not present in the input image.

We focus on Playful Palette instead of other types of color
palettes because it provides a convenient, low dimensional parame-
terization to approach the problem. For example, some digital color
pickers mimic an oil painter’s mixing palette as a bitmap the artist
can mix colors on [BSLMO1]. However, such a palette at a rea-
sonable size could have as many as on the order of one million
degrees of freedom. Conversely, a Playful Palette of reasonable
size will have on the order of tens of degrees of freedom and be
resolution independent. Another option is to create a palette of dis-
crete swatches [CFL* 15]. However such a palette will require many
swatches to reproduce any smooth color gradient, and the resulting
complexity will make the palette difficult for an artist to modify
intuitively. Color Sails [SKSF18] are another option which have a
strict topology to enable easier generation via deep learning, but
lose the playful interactivity of Playful Palette.

4. Method

We formulate our approach as an optimization problem. The state
vector X is defined as:

x = {r1,g1,b1,u},Vi,r2-} (O]

For each blob there are five variables representing its color and po-
sition, so for n blobs there are 5n variables. In general, our target
n = 8 so x has 40 dimensions. We chose n = 8 as we feel it is dif-
ficult to work with palettes with more blobs, and this provides the
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Figure 3: Our approximation algorithm. From left to right: the input image, the 32 x 32 SOM result, the clustering result, the cluster

triangulation, and the output Playful Palette.

maximum flexibility to represent image colors, but it remains a user
parameter. We optimize on 1’ = %1 and v/ = % so that all state
variables are in [0, 1].

We explicitly choose not to include blob radius, even though it is
a user parameter. The reason for this is that it is not clear how blob
radius will impact the achieved color gamut of a Playful Palette.
It is easy to imagine that the optimization might drive blob radii
towards zero or to become unbounded, and additional regulariza-
tion or constraint terms would further complicate the optimization.
Therefore, we use a constant blob radius.

The state vector is rendered as:

Ik =g(x) 2

where Iy is the rendered image of the Playful Palette as defined by x
and g is the rendering function defined by Shugrina et al. [SLD17].
As our implementation is a CPU optimization in C++, we use a
CPU-only implementation of the Playful Palette rendering algo-
rithm for g because it is easier to integrate into the optimization
framework.

4.1. Objective Function

We define our objective function for minimization as:

f(x) =d(l,k) 3)

where [ is the input image and Ix is the rendered Playful Palette
image for x. d is a function that computes the distance between the
two images, based on the intuitions discussed in Section 3.2.

d(1,Ix) = o |1\ meHPRGB*QRGBH )

+(1-o) meHpms-quH) )

|IX gel P

For image pixel p, prgs is the color triplet {r,g,b} for that pixel.
The first sum in Eq. 4 computes how well each image pixel is repre-
sented by the Playful Palette, while the second sum penalizes colors
in the Playful Palette that are not in the image. The o parameter al-
lows tuning for the relative strength of these terms. Using a=0.5
weights them equally, while at=1 ignores the penalty for palette
colors that are not in the image. See Fig. 7 for a visualization of
the impact of this parameter. We use a=0.9, which prefers more

colorful palettes while limiting spurious colors, but it could be left
as a user parameter.

4.2. Optimization

Unfortunately, we cannot compute derivatives for f analytically
or with automatic differentiation, as the Playful Palette rendering
function g is not expressed as a mathematical equation. Using finite
differencing to estimate f’ for gradient descent requires 41 evalua-
tions of g per step which is prohibitively slow.

Therefore we must rely on derivative-free optimization methods.
We experimented with CMA-ES [HMKO03] but also found that it
relied on too many expensive g evaluations to progress. We use
the Nelder-Mead simplex algorithm [NM65] because it uses rela-
tively few g evaluations and converges in a reasonable amount of
time. Conventional wisdom is that Nelder-Mead is poorly suited for
problems with many variables [HAR*10], but we find that it per-
forms well for our problem. We believe this is partially because of
our favorable initialization strategy (detailed later), and partially
because the high cost of evaluating our objective relative to the
initial progress made by Nelder-Mead before convergence is still
preferable [HNO6].

To improve the performance when computing f, we render the
Playful Palette image Ix at 48 x 48 pixels. We also subsample the
input image I with a 3D histogram. We use 16 x 16 x 16 uniform
RGB histogram bins to store the pixel colors of /, and consider
only the colors of non-zero histogram bins. Therefore we have on
the order of 1000 pixels from / and Ix each when computing Eq. 4.

4.3. Initialization

The nature of our objective function f means that there are large
portions of the search space with zero or near zero gradients, which
makes optimization difficult. For example, with two blobs, if the
blobs are far apart, then small changes in # and v for either blob
will not change the achieved gamut because it will not change the
connectivity of blobs. In these cases, the blobs will not move closer
together to ultimately create a linear or triangular portion in the
output gamut.

To address this problem, we rely on a good initialization. While
the optimization may struggle to move two distant blobs together,
it is able to move two abutting blobs apart. Therefore, we begin the

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.



S. DiVerdi et al. / Generating Playful Palettes from Images

® ¢ v'\&ﬂ-{

]s¢1$\\1

Figure 4: Our results for different numbers of blobs from 3 (left) to 9 (right). Optimization results are on top and approximation results are
on bottom. (a) The input image, (b) the SOM result, (c) the k-means clusters for k=9. The approximation results are less colorful than the
optimization because the SOM and k-means steps produce a subset of all image colors. Importantly, color salience is not considered—though
skin pixels are clearly important in the image, they are a small portion of the overall gamut and may not be perceptually dominant in the

resulting Playful Palette.

optimization with all blobs abutting. Specifically, for every blob,
u=0.5 and v=0.5.

We also experimented with different color initializations. We
found that both random initialization or uniform initialization
(where all blob colors are set to the same average color value) were
unlikely to reliably generate the set of blob colors we thought were
appropriate for an image. To encourage inclusion of a diverse set of
salient colors, we instead initialize the blob colors with the results
of k-means clustering [Jail0] on the image colors. That is, we per-
form k-means clustering where k=n and for each cluster compute
the average RGB color and assign it to one of the blobs.

5. Approximation

While our optimization approach produces the best results, it may
be too slow to use in an interactive application. Therefore, we also
propose a feed-forward approximation algorithm as an alternative
to an iterative closed-loop. The approximation operates in a series
of steps: the input image is subsampled, the color samples are ap-
proximated via non-linear dimensionality reduction to two dimen-
sions, the 2D results are clustered to find discrete colors, the clus-
ters are triangulated, and the triangle vertices become the Playful
Palette blobs. See Figure 3 for an illustration of these steps.

5.1. Dimensionality Reduction

We base our approach in that of Nguyen et al. [NRS15], who ap-
proximate the 3D RGB color distribution of a natural image (or
set of natural images) using one or two dimensional Kohonen Self-
Organizing Maps (SOM) [Koh90]. This formulation is appealing
for its similarity to our problem statement: a 2D manifold defined
by vertices and local edge connectivity (a quad mesh) is used to
approximate a 3D volumetric cloud of samples. It is intuitive that
the resulting 2D manifold could be approximated by triangles, and
that those triangles would then constitute a Playful Palette.

Other non-linear dimensionality reduction methods may be ap-
plicable in addition to SOM: multi-dimensional scaling [CCO00],
isomap [TDSLO0], locally linear embedding [RS00], or t-
SNE [MHOS] for example. The benefit of SOM is that it lets us
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specifically enforce a 2D square grid topology, which correspond-
ingly guarantees we can interpolate smoothly within the output
manifold. SOM also converges quickly and yields good results.

We use an SOM of 32 x 32 nodes. SOM performance is directly a
function of the number of input training samples, so we use a sub-
set of the image pixels. Furthermore SOM will take into account
the density of samples, which means that if for example an image
is mostly black, the output SOM will output most nodes with black
or near black colors. This is not useful for users though, who should
see a diverse gamut regardless of image frequency. Therefore as in-
put to our approximation algorithm, we subsample the input image
as the non-zero bins of a uniform 16 x 16 x 16 3D histogram on the
RGB color cube. This yields on the order of 1000 input samples,
regardless of image size.

5.2. Clustering

Once we have a 2D continuous distribution of colors representing
our input image, we need to select the discrete set of colors of our
output blobs. We experimented with mean shift clustering [Che95]
and k-means [JailO].

Mean shift is appealing because it can also suggest the appro-
priate number of clusters. However mean shift relies on two user
parameters—the spatial distance threshold and the sample differ-
ence threshold—which are difficult to tune. We found that across
a wide variety of images, there were often images with too many
clusters (i.e. more than 10) or with clusters that did not achieve
a single discrete color, regardless of how we set the parameters.
Barring a principled way to adapt these thresholds to the image to
ensure a reasonable number of discretely colored clusters, this was
not a suitable option. Instead, k-means guarantees that the output
will be the target number of clusters and each cluster will have a
single color assigned to it.

As input to k-means, we pass in the reduced set of RGB colors
output from the dimensionality reduction as 3D points. While this
ignores the spatial arrangement of the colors as a property of the
clustering step, the colors have all been projected onto the SOM 2D
manifold, so clustering reliably finds color clusters that are spatially
connected (though it is not enforced as a requirement).
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Figure 5: Example output on Van Gogh’s Starry Night for Chang et
al. [CFL*15] (left) and Tan et al. [TLG16] (right), both configured
to generate 7 colors.

It is also possible to use an approach such as initializing k-means
by mean shift as Cabria and Gondra propose [CG12]. The prob-
lem of mean shift still proposing too many clusters remains. We
use k=8 and random initialization with acceptable results. It is still
possible that random initialization may produce poor clusters, par-
ticularly if the distribution of input colors is very inhomogeneous.
SOM discourages inhomogeneous distribributions however (by pe-
nalizing highly distorted mesh geometries), so we have not found
this to be a problem.

5.3. Geometric Configuration

The output of the clustering step is a set of RGB colors from the
input assigned to each cluster, as well as the average color for each
cluster. We iterate through the pixels of the 2D manifold from SOM
and for each pixel assign it the color of the cluster to which it be-
longs. Then for each cluster we find the pixel coordinate of the
cluster centroid. These positions and colors are the basis of the out-
put Playful Palette blobs. If we simply converted these values to
blobs however, we would find that adjacent blobs do not necessar-
ily abut which limits the gamut unnecessarily. Instead we prefer to
have blobs touching when their clusters are spatially adjacent, to
include their mixtures in the output gamut.

To achieve this, we compute a Delaunay triangulation [Del34]
of the cluster positions. This creates a connected graph where ev-
ery cluster position is a vertex and adjacent clusters have an edge
connecting them. In our output Playful Palette with blob radius of
0.3, two blobs abut to form a pleasing gradient when their distance
is roughly 0.45 (see Fig. 2a). Therefore, our goal is to position the
vertices such that each edge is near 0.45 in length.

We move the vertices iteratively. For a single 2D vertex position
p, the update equation is:
P=ptbi ¥ a—p) )
Q| 24 lla—rl

where Q is the set of vertex positions adjacent to p, ¢ is the target
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Figure 6: Aggregate achieved objective values over 56 images.
Each column shows min, 25th, 50th, and 75th percentile, and max.

distance, and B is a rate parameter. We use $=0.1, with a maxi-
mum of 500 iterations and a convergence threshold of 0.001. Each
iteration, we scale the vertex positions so their bounds are the unit
circle, to avoid growing or shrinking.

6. Results

Figure 4 shows an example of how our optimization and approx-
imation methods perform for varying numbers of blobs. Because
the approximation relies on triangulation, it cannot estimate fewer
than three blobs. As the number of blobs increases, the optimization
result becomes significantly more colorful to capture image pixels
that were not well represented with fewer blobs. The approxima-
tion results appear to converge and do not become very different
beyond six or seven blobs (Fig. 4), likely because the SOM results
do not change as input to the clustering. Adapting the number of
SOM nodes based on the target number of Playful Palette blobs
may address this limitation; we leave it for future work.

6.1. Evaluation

To evaluate our methods, we use them to generate palettes for a
set of 56 images, with 44 photographs from the MIT-Adobe FiveK
dataset [BPCD11], and 12 paintings from Google Arts & Cul-
ture [Gool18]. For each image we generate Playful Palettes with our
optimization method (OPT) and approximation method (SOM). We
visualize the RGB gamuts of each version and compute the objec-
tive function score as well. RGB gamuts are shown as 3D plots in-
side the unit cube, viewed down the cube diagonal (the luminance
gradient from black to white). The objective function is the same
as Eq. 4 with o=0.9—an objective value of 2;—6 is roughly 0.004,
which corresponds to one 8-bit color step.

We compare our methods to two state of the art approaches: that
of Chang et al. [CFL*15] and that of Tan et al. [TLG16]. Chang’s
technique uses k-means to find a set of color cluster centroids to
use to parameterize edits to the image. Conversely, Tan’s technique
uses a simplified convex hull to decompose an image into a set
of disjoint layers that composite together to form the input image.

(© 2019 The Author(s)
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Figure 7: Optimization results for different values of o in Eq. 4. From left to right, o is 0, 0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99, and 1. As o
increases, the result includes more colors not present in the input image. We use 0.=0.9 but this could be left as a user parameter to customize

the results.

Both methods output a small palette of discrete colors (Fig. 5). We
can directly compare these palettes via our objective function, but
they perform poorly because they do not include any blending or
gradients among the palette colors. As an extension of these tech-
niques, we can also use them as blob color constraints in our op-
timization algorithm. This makes a more appropriate comparison
between our results and previous work possible, by showing how
well the colors extracted by previous work able to reproduce image
gamuts in the Playful Palette framework.

We use the labels OPT, SOM, Chang, ChangOpt, Tan, and
TanOpt for our optimization, our approximation, Chang et al.’s dis-
crete and optimized versions, and Tan et al.’s discrete and optimized
versions respectively. In our comparison, all methods produce Play-
ful Palettes with seven blobs, because seven is the maximum num-
ber of palette colors Chang can produce.

Aggregate results over all 56 images for the achieved objective
value of each treatment are presented in Table 1 and Figure 6. A
Friedman test [Fri37] found that there is a statistically significant
difference in the objective values depending on which algorithm
is used, %%(5)=271.5306, p < 0.001. Post-hoc pairwise Mann-
Whitney U tests [MW47] with Bonferroni correction found signif-
icant differences (p < 0.001) for all comparisons except for OPT
and TanOpt (U=1462.5, p=0.54). Example results are in Figure §;
the complete set is in the supplemental material.

| OPT SOM  Chang ChangOpt Tan  TanOpt
u | 0.0027  0.0059 0.0326 0.0180  0.1077  0.0030
SD | 0.0012 0.0029 0.0113 0.0106  0.0287  0.0016

Table 1: The mean and standard deviation of the achieved objective
function value (Eq. 4) over 56 test images for each algorithm.

6.2. Performance

We ran all our tests on a 2015 retina MacBook Pro with a quad-core
2.5 GHz Intel Core i7, 16GB of RAM, and an AMD Radeon R9
M370X. The OPT method is a standalone executable implemented
in C++, while the SOM method is implemented in JavaScript and
executed inside Chrome. Chang is also JavaScript within Chrome,
and Tan uses Python 2.7. All methods are CPU only. OPT ren-
ders palettes using multiple threads, but the optimization is single
threaded. All other methods are single threaded. Timing data from
a selected set of images is presented in Table 2. While each method
uses different languages, the runtimes are dominated by the algo-
rithm complexity—OPT and Tan involve slow optimizations over

© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

complex loss functions, while SOM’s optimization is much faster
and Chang directly computes its result.

image | OPT SOM Chang Tan

0] 262 2.5 1.1 345
3| 269 2.6 1.3 212
8 | 19.1 2.5 1.0 115
45 | 343 2.8 1.5 157
54 8.5 24 1.7 20.1

Table 2: Performance on selected images, in seconds.

6.3. Discussion

From our comparison results there are a number of interesting ob-
servations to be made.

First, OPT and TanOpt perform equivalently, though TanOpt
takes twice as long as OPT. SOM achieves roughly twice the score
of OPT but is an order of magnitude faster. ChangOpt is unable
to achieve competitive results. Unsurprisingly Chang and Tan are
dramatically worst due to their discrete palettes.

Figure 8 shows some consistent behaviors that explain these dif-
ferences in objective score. Because Tan uses a simplified convex
hull, it tends to create palettes that include extreme colors which
lie on the gamut periphery in order to contain all the image colors
inside the hull volume. However, the optimization is able to move
blobs to overlap more, so the resulting Playful Palette colors may
mostly consist of their gradients. This may explain why the Tan dis-
crete palettes can appear to include colors that are not obvious in
the TanOpt palettes. Also, using Tan to extract seven colors means
the convex hull can fit the image colors more tightly. A Tan palette
of four or five colors would be more likely to include non-image
colors correspondingly.

Chang on the other hand consistently produces color gamuts that
are too conservative, missing many important image colors and
generally being low contrast. This is because Chang uses a cluster-
ing approach, which selects palette colors as centroids of the image
color clusters. These centroids are by definition at the centers of
the clusters, which means there are portions of the clusters that are
outside the resulting color gamut.

Because our optimization method is directly trying to minimize
the objective function value, it can effectively choose palette colors
that are around the edges of the image color gamut, to represent as
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Figure 8: Selected results. From left to right, columns are input image, our optimization, our approximation, Chang et al. [CFL* 15] discrete
and optimized palettes, and Tan et al. [TLG16] discrete and optimized palettes. Rows show constructed palettes, RGB histograms, and
objective function values. Histograms of discrete palettes are omitted.
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Figure 9: Alternative visualization for the first row in Fig. 8 (id=31,
purple flowers). RGB histograms (top) viewed along the green axis
with black in the lower left, and 1D luminance histograms (bottom),
from left to right: OPT, SOM, ChangOpt, and TanOpt.

many of the colors as possible, without including too many extrane-
ous colors. Our SOM approximation’s main failure mode is to not
include a salient image color in the output palette. This is generally
a result of the clustering step, which may not find the appropriate
number of clusters, or may cluster poorly due to initialization or
other properties of the data. It is also possible that both the SOM
step and the clustering step cause small amounts of shrinkage on
the resulting gamut, which when combined reduce the quality of
the result.

On the other hand, our approximation does a good job of captur-
ing the luminance variation in an image, which is not well visual-
ized by our RGB histograms because they are projected along the
luminance dimension. However, comparing the SOM and Chang-
Opt palettes in Figure 8 shows that the palettes have similar chroma
but consistently greater contrast in the SOM results. We also in-
clude Figure 9 to more clearly visualize luminance differences.

Performance-wise Chang is the fastest at about one second per
image, while SOM is about 2.5 seconds, both fast enough for in-
teractive use. OPT takes about 20 seconds on average, as does Tan,
which is unsurprising as they both rely on iterative optimizations.
ChangOpt and TanOpt performance is the sum of OPT and Chang
or Tan respectively, making ChangOpt marginally slower than OPT
(about 21 seconds) and TanOpt about twice as slow (about 40 sec-
onds). While it is difficult to quantify what is “fast enough,” in the
context of a mobile and web app such as Adobe Color CC [Ado19],
developer guidelines specify that response delays of 200 ms can
feel “sluggish” and after 5 seconds, the app may be considered to
be non-responsive [Fit10, Goo19]. When waiting for a webpage to
load, 62% of shoppers will leave after 5 seconds [BM16]. An app
such as Photoshop may make professional users wait longer for
processing of large images, but for 1 Mpix images such as ours,
most operations complete in a few seconds or less. While in certain
contexts users may be willing to wait for OPT to complete, there
are many cases where the performance of SOM is a requirement.

7. Conclusion

We present a method to create a Playful Palette that best represents
the colors in the given input image, using an optimization approach
that is high quality but slow. We also present an approximation al-
gorithm that is an order of magnitude faster at about half the quality.
We evaluate this performance in a comparison with two other state

© 2019 The Author(s)
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of the art techniques on a large set of images of natural scenery and
paintings.

There are many promising avenues for future work. We do not
explore here how users desire to select colors from an image, work-
ing on the assumption that a faithful reproduction is most valuable
but maybe that is not the case. Once a palette has been generated
from an image, it would also be interesting to consider how modi-
fying the palette might be used to modify the image e.g. for recolor-
ing. Finally, we generate a single palette for an entire image, but it
might be more useful to generate separate palettes for different por-
tions of the image, such as one palette for skin tones and another for
foliage, by combining our algorithm with an image segmentation.

In the meantime, we hope our technique will make Playful
Palette even more useful for digital artists to integrate into their
creative process.
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