
The 8th ACM/EG Expressive Symposium EXPRESSIVE 2019
C. Kaplan, A. Forbes, and S. DiVerdi (Editors)

Sketching and layering graffiti primitives

D. Berio1, P. Asente2, J. Echevarria2, F. Fol Leymarie1

1Goldsmiths College, University of London, London, United Kingdom
2Adobe Research, San Jose, USA

(a) (b)

(c)

Figure 1: Output from our system. (a), stylistic variations of the same stroke for a letter "S". (b), a letter "S" with non-global layering and
arrows at the stroke ends. (c), combination and layering of multiple strokes and rendering effects for the graffiti composition "EXPRESS".

Abstract
We present a variant of the skeletal strokes algorithm aimed at mimicking the appearance of hand made graffiti art. It includes
a unique fold-culling process that stylizes folds rather than eliminating them. We demonstrate how the stroke structure can be
exploited to generate non-global layering and self-overlap effects like the ones that are typically seen in graffiti art and other
related art forms like traditional calligraphy. The method produces vector output with no artificial artwork splits, patches or
masks to render the non-global layering; each path of the vector output is part of the desired outline. The method lets users
interactively generate a wide variety of stylised outputs.

CCS Concepts
• Computing methodologies → Parametric curve and surface models; • Applied computing → Fine arts;

1. Introduction

Like typography, calligraphy and handwriting, graffiti letters
[CC84] are often conceived and created as the combination of one
or more strokes. These strokes take the form of stylised building
blocks that, depending on the graffiti sub-genre, are either sketched
with skillful free hand motions or precisely traced in a geometric
way. Strokes are often interlocked in complex ways and may have
self-overlaps and loops [Fer16]. They are then fused and traced to
create the outline of a highly stylised version of one or more letter
forms. The resulting outlines are not limited to the boundary of the
letter, but may extend to suggest where different strokes overlap or

where a stroke folds over itself. This increase in visual complexity
may be evocative of a 3D composition, but it does not necessarily
follow the rules of projective geometry (Fig. 2).

Reproducing these kind of drawings with conventional vector
drawing packages can be problematic. Many [Ado19b] assume that
objects are separately layered in a back-to-front order. As a result,
creating interlocking patterns and overlaps requires either manually
masking hidden parts of an outline, or cutting overlapping parts
and manually removing occluding parts of object outlines. Other
applications [Ado19a] support planar-map decompositions, but in
a way that does not maintain the continuity of the original strokes.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

DOI: 10.2312/exp.20191076 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/exp.20191076

D. Berio, P. Asente, J. Echevarria & F. Fol Leymarie / Sketching and layering graffiti primitives

Figure 2: Graffiti with complicated intertwined strokes, courtesy of
the graffiti artists SMART (top) and ENS (bottom).

Both approaches are time consuming and, more importantly, lose
the underlying structure of the drawing. This makes it difficult to
perform changes and explore variations of a drawing.

In this paper, we propose an interactive computational model of
graffiti strokes (Sec. 3) and develop a method for rapidly combin-
ing these strokes into letters and other interlocking patterns (Sec.
4.3). Our stroke model relies on a variant of the popular Skele-
tal Strokes technique [HL94] that we extend to mimic the appear-
ance of graffiti. We then exploit the stroke structure to develop an
efficient method and interface for handling complex layering and
self-overlaps. The output of our method is a set of non intersecting
outlines, like the ones produced by hidden line removal methods in
3D, but relying on a fully 2D representation and interface.

2. Background

Strokes. Fonts are commonly stored as and defined by a set of out-
lines. However it is commonly acknowledged that letterforms are
based on a set of strokes, making a stroke-based approach to font
design advantageous [Noo05]. Knuth’s Metafont system [Knu79]
describes the strokes in a character as brush footprints swept along
a set of parametric curves. Width variations along a stroke come
from changes in the brush footprint, mimicking calligraphic pens.
Jakubiak et al. [JPF06] observed that this approach can limit the
generation of stylised fonts, and defined a stroke as a curve with
parallel offsets for variable thickness and a pair of cap shapes at
the stroke ends. Hu and Hertsch [HH01] developed a component-
based representation of fonts, and treated each side of the outline
separately to obtain more natural results in curved regions.

Skeletal Strokes [HL94] generate a stroke by deforming a vector
input along a path. One common issue with them is the appearance
of folds in high curvature portions of the spine. Several approaches
have been proposed to adjust [LA15] or remove [HL94; Ase10]
them. Contrary to those, we exploit the folding behavior to mimic
artistic self-overlapping effects.

Layering. Wiley and Williams developed Druid [WW06], a system
for designing interwoven drawings. The system resolves overlaps
between spline curves with a local labelling of crossings. However,
our experiments found their method unreliable in the presence of
the folds and loops generated by the skeletal stroke algorithm, lead-
ing to edge visibility errors that can propagate around the outline.
McCann and Pollard [MP09] developed an interactive system for
non-globally layering transparent bitmaps based on detecting re-
gions of overlap, but it does not handle objects overlapping them-
selves. Igarashi and Mitani [IM10] developed a similar method for
3D objects on a plane, which does permit self-overlaps. We follow
a similar approach but operate on the outlines of 2D objects.

Asente et al. developed LivePaint [ASP07], an interactive
method for editing and painting planar maps [BG89] that maintains
the original underlying geometry. However, creating and modify-
ing overlaps requires manually assigning appropriate stroke and fill
attributes to edges and faces of the map. With a similar applica-
tion in mind, Dalstein et al. developed Vector Graphics Complexes
(VCG) [DRP14], a data structure specifically aimed at processing
and editing potentially overlapping and intersecting vector art in a
manner similar to planar maps, while maintaining topological and
incidence relations. Our layering implementation relies on planar
maps but maintains the structural information of a drawing across
edits through a stroke-based representation.

3. Stroke generation

The basis for our stroke generation method is a variant of the pop-
ular skeletal strokes technique [HL94]. A skeletal stroke is defined
as an input shape, called a prototype, that is deformed along a des-
tination path, called the spine. The deformation is performed by
mapping portions of the prototype to portions of the spine, and ap-
plying a deformation that depends on a variable-width profile that
maps distances along the spine to a pair of widths.

Width profile. Typical skeletal stroke implementations assume that
the width varies continuously along the spine. However, we observe
that components of graffiti letters often have widths that change
discontinuously at spine corners, resulting in an effect that evokes
a 3D projection of a surface or the trace of a chiseled calligraphic
pen. To facilitate this, we define a spine as a sequence of vertex
pairs, where each vertex pair is connected by a segment and each
segment has an initial and final width; see Fig. 3.

Figure 3: Strokes with rectangular prototypes and varying width
profiles (below). Each color represents a different segment.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

52

D. Berio, P. Asente, J. Echevarria & F. Fol Leymarie / Sketching and layering graffiti primitives

Our system uses only straight segments, but the method we de-
scribe is general enough to work with curved segments as well.

Prototype deformation. In the standard case of a continuous width
profile, the prototype can be deformed by mapping points along its
outline to points that are perpendicular to the spine. These points
are given by a sequence of orthogonal ribs that are constructed on
each side of the spine, their lengths depending on the width pro-
file. This approach can lead to self-folds in the deformed prototype,
corresponding to corners and high-curvature portions of the spine.
They produce retrograde motion in the stroke outline. These folds
are often considered undesirable, and the usual approach to avoid
them is to adjust the orientation and length of the ribs. This can
be done globally [HL94], by using the angle bisectors rather than
the normals at corners and interpolating the intermediate ribs ac-
cordingly. Another approach is to perform the adjustment locally
[ASP07], which avoids the potentially skewed appearance of the
stroke caused by the latter method.

In our use case, we must accommodate width discontinuities at
spine corners. Moreover, many graffiti styles stylize folds instead of
avoiding them (Fig. 1). Our definition of ribs thus differs slightly
from the one in traditional skeletal strokes. The initial and final
ribs of the stroke are perpendicular to the spine. Each spine vertex
gets two ribs, one for each segment, with the ribs for the segment
interpolating between its starting and ending ribs (Fig. 4, bottom).

The ribs at each vertex are defined using an oblique coordinate
system [ûuu1, ûuu2] (Fig. 4a), centered at the vertex and defined as

ûuu1 = d̂dd1sgn(α) ûuu2 =−d̂dd2sgn(α), (1)

where d̂dd1 and d̂dd2 denote the unit tangents preceding and following
the vertex, α is the angle between the two tangents, and sgn(α)
ensures that the coordinate system is always oriented towards the
convex part of the stroke. The offsets with respect to this basis are
then given by

o1 =
w2

sinα
o2 =

w1
sinα

, (2)

with w1 and w2 denoting the profile widths preceding and fol-
lowing the vertex. This construction results in a weighted bisector
bbb = o1ûuu1 +o2ûuu2, whose direction is the same as the angle bisector
when the widths on each side of the vertex are equal.

On the convex side of a vertex, we test the outline angle at bbb
and generate a miter if it is too acute, as is done in other stroking
algorithms. The ribs at the vertex end either at bbb or at the miter
intersections. On the concave side, the ribs could end at the tip of
the vector −bbb, removing folds (Fig. 4a) in a manner similar to the
bisector-based method proposed in the original skeletal strokes im-
plementation [HL94]. However, for our application we exploit the
folds in order to render overlapping effects. To do so, we end the
ribs at the tips of the vectors w̌ûuu1− bbb and w̌ûuu2− bbb (Fig. 4b). Here
w̌ is the minimum of o1 and o2 scaled by an angle fall-off function

1− exp

(
−α

2

σ2

)
(3)

that decreases the amount of folding proportionally to the angle
between spine segments, according to a user configurable param-
eter σ that we set to π/4 (Fig. 5). This avoids excessive folding

mitering

(a) (b)

Figure 4: Corner rib adjustment according to the oblique coordi-
nate system [ûuu1, ûuu2] and corner mitering. (a) Unfolded construction
similar to the one proposed by Hsu et al. [HL94]. (b) Folded con-
struction. Below, the ribs generated by each construction.

Figure 5: Effect of the angle fall-off parameter σ. When σ = 0
(left) the parameter has no effect. A larger value of σ = π/4 (right)
reduces the amount of folding proportionally to the angle between
spine segments α. This affects the resulting smoothed trajectory,
shown in grey. Note that the fall-off function does not affect folds
with acute angles (second row).

for obtuse angles and, for our use case, improves the visual qual-
ity of the smoothing discussed in the subsequent section. Note that
the segment-end ribs for a vertex do not actually pass through the
vertex, but since our prototypes are always rectangles, only the rib
endpoints matter.

The folds generated by this method remain through the stroke-
smoothing step described in the rest of this section, and are resolved
in the layering method described in Sec. 4.

3.1. Smooth strokes

In addition to applying strokes to polygonal and curved spines, we
would like to smooth strokes applied to polygonal spines to achieve
certain graffiti styles. One approach would be to smooth the spine
before applying the stroke, but we note that the result often looks
rather mechanical and not hand-drawn (Fig. 6b). Instead, we apply
the stroke to the original spine and then smooth the resulting outline
(Fig. 6c).

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

53

D. Berio, P. Asente, J. Echevarria & F. Fol Leymarie / Sketching and layering graffiti primitives

(a) (b) (c)

Figure 6: Variations of strokes for the same spine and width. (a)
Polygonal stroke. (b) Curved stroke from the smoothed spine (in
red). (c) Smoothed outline from the polygonal stroke (in red).

Figure 7: Examples of trajectories generated with different combi-
nations of tied Gaussians.

We begin with a polygonal spine defined by a sequence of ver-
tices and a simple rectangular prototype. We then define variably
smooth strokes by considering the vertices of the deformed proto-
type as a motor plan [SHKF04] for a synthetic motion that follows
their configuration. Different types of strokes and stylisations can
be produced by varying the kinematics of the motion as well as the
shape of the prototype used to generate the stroke. This allows for
a large range of stylistic variations of a stroke. They resemble graf-
fiti art visually and also mimic the process typically followed when
constructing graffiti letters. Furthermore, spines usually consist of a
small number of vertices, making them easy to author interactively
or procedurally.

Curve generation. The proposed method can be implemented with
a variety of curve generation and smoothing methods depending on
the application domain of choice. Because of the shared goal of
achieving graffiti aesthetics, we use the curve model from Berio et
al. [BCFL17]. It drives the evolution of a dynamical system with a
controller that tracks the spatial layout of a series of control points.
The tracking precision is defined by pairing each control point with
a covariance matrix, which results in a sequence of multivariate
Gaussians. A higher variance produces a smoother trajectory. Forc-
ing all the covariance ellipses to share the same orientation allows
to produce different stylisations of the trajectory with a small num-
ber of parameters (Fig. 7).

Smooth stroke types. We define three kinds of smooth strokes:

• Squared end strokes are defined with a prototype made by two
parallel and similarly oriented lines. The stroke is then produced
by tracing each side of the stroke with two separate motions, and
connecting the trajectory ends with two straight line segments.

• Rounded strokes are defined with a rectangular prototype in our
approach. The stroke is then produced with a single looping mo-
tion that follows all the vertices of the resulting skeletal stroke
and returns to the beginning. To generate this motion we append
three copies of the n vertices of the skeletal stroke and duplicate
them in order, creating a sequence of 3n points. These points
are the input to the motion plan described before, producing an
open trajectory that goes around the outline three times. We then
consider the subset of the generated trajectory corresponding to
the middle n vertices. Because the endpoints of the middle seg-
ment may not meet (Fig. 8a), we join them with a line segment
and smooth the area around the join (Fig. 8b) by linearly blend-
ing a small window of vertices in the corresponding region. The
roundness at the stroke ends can be parametrically controlled by
adjusting the covariance matrices of the control points at the ends
of the stroke (Fig. 8c).

• Closed strokes are defined with a prototype made by two paral-
lel lines and a closed polygonal spine. A closed stroke is then
produced with two looping motions that follow each side of the
deformed prototype The looping motions are generated with the
same approach used for rounded strokes.

Some graffiti styles alternate smooth parts of a stroke with polyg-
onal ones. To do so, we generate smooth trajectories for subsets of
the envelope and the connect them into a single stroke (Fig. 9).

4. Apparent layering and overlaps

Graffiti often contains intricate overlaid and intertwined parts with
non-global layering (Fig. 2). These compositions can be evocative
of a 3D projection, but rarely follow the rules of projective ge-
ometry, representing an abstraction or caricature of such rules. An
analysis of the geometry of "pictorial space" [Koe12] in graffiti is
beyond the scope of this paper. However, we can exploit the stroke-
based structure to develop a 2D interface that allows self-overlaps
(Sec. 4.2) and non-global layering (Sec. 4.3).

4.1. Partitions

Our layering and self-overlap rendering method relies upon subdi-
viding strokes into a series of partitions. Each partition corresponds
to a contiguous portion of the spine and represents a potential layer
with a depth value. Not all depth assignments are possible; for ex-
ample in Fig. 10 partition 1 cannot come between partitions 3 and
4 in depth order. Sec. 4.3 discusses how we prevent impossible
assignments. Partitions are also assigned integer indices, in order,
from the beginning of the spine to the end.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

54

D. Berio, P. Asente, J. Echevarria & F. Fol Leymarie / Sketching and layering graffiti primitives

(a) (b)

(c)

Figure 8: Rounded strokes. (a) The curve generated for 3n skeletal
stroke vertices. The curve ends do not meet perfectly at the join (at
the left end of the stroke), so we perform smoothing (b). (c) The
orange circles depict the covariance ellipses for the vertices of the
stroke, with the emphasised ellipses denoting the covariances at the
stroke ends. Decreasing the variance of these (right) decreases the
roundness at the stroke ends.

Figure 9: A smooth stroke with squared ends (left) and a piece-wise
smooth version of it (right)

(a) (b)

1
1

22

33
4

4

Figure 10: Partition shapes (color coded) for a (a) polygonal and
(b) smooth stroke.

The skeletal stroke algorithm allows a straightforward mapping
from points on the spine to corresponding points on the stroke out-
line. These portions of the outline form the outside edges of parti-
tion shapes (Fig. 10). For outside corners with bevels, we assign the
bevel edge to the outline of both adjacent partition shapes, and for
inside corners with retrograde segments, we assign the loop area to
both, as shown in Fig. 10a. This ensures that the partition shapes
fully cover the area of the stroke, sometimes producing small re-
gions where adjacent partition shapes overlap.

For polygonal strokes and spines the subdivision into partitions
is trivial: each partition corresponds to a spine segment and the par-
tition shapes are given by the outline segments mapped to a given

(a) (c) (d)(b)

Figure 11: Different kinds of fold cases. (a), corner in a polygonal
stroke. (b), curvature extrema in a stroke with a curved spine. (c),
flattened fold in a smooth stroke. (d), fold in a smooth stroke. The
retrograde portions are marked in red.

spine segment. For a polygonal spine with a smoothed stroke the
partition shapes are given by mapping polygonal spine vertices to
corresponding vertices in the smooth stroke outline. The smoothing
method we use [BCFL17] allows this mapping because the trajec-
tory generation produces an equal number of time steps for each
control point. Each segment of the outline can track its time step
and thus its control point. This can be extended to other curve gen-
eration methods as long as a mapping is possible between the con-
trol points and the resulting curve. Finally, for an arbitrarily curved
spine the partitioning is based on an estimate of curvature extrema
and corners along the spine.

4.2. Fold culling

Deforming a prototype according to the proposed method often re-
sults in a shape that contains self-folds. Most traditional implemen-
tation of skeletal strokes consider this an issue and suggest meth-
ods to overcome it [Ase10; HL94; LA15]. In our application, we
exploit this property to generate soft strokes (as discussed above)
and to achieve stylised folding/overlap effects that are often seen in
graffiti art, as well as comic drawings.

We identify folds with a procedure similar to the method pro-
posed by Asente [Ase10] and find portions of the stroke outline that
present retrograde motion. For a polygonal spine, these are trivially
given by outline segments that are part of a concave portion of the
outline and connect two vertices belonging to two different parti-
tions (Fig. 11a). For a curved spine, these are given by the outline
points that map to points of the spine with radius of curvature less
than the corresponding stroke half-width (Fig. 11b). For the case
of a smoothed envelope, we first identify a series of potentially ret-
rograde portions by finding the smoothed points that map to retro-
grade portions of the polygonal envelope. However, our smoothing
technique is sufficiently free that it does not always maintain the
retrograde segments, so there may not be a fold anymore (Fig. 11c).
To determine whether there is a fold, we check if the midpoint of
a potentially retrograde portion is contained in both adjacent parti-
tion shapes, in which case the portion is considered retrograde (Fig.
11d).

Once all retrograde portions have been identified, we traverse the
outline on each side until we reach a common point of intersection.
We then cull the retrograde portion of the side with lower depth.
The remaining side is marked as partially visible according to a
user configurable parameter ∈ [0,1] that interpolates the visibility
of the side relative to its length (Fig. 12).

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

55

D. Berio, P. Asente, J. Echevarria & F. Fol Leymarie / Sketching and layering graffiti primitives

(a)

1.0

0.5

0.0

(b) (c)

Figure 12: Stylised folds, showing the effect of the fold-rendering
parameter.

4.3. Layering

The partitioning scheme allows us to compute a layering of one or
more strokes analogously to Igarashi and Mitani’s method for 3D
shapes on a plane [IM10]. We compute a planar map from the com-
bination of all partition shapes, where each partition corresponds to
a layer. Each edge of the resulting planar map is assigned to an edge
of a partition shape and thus can be assigned the corresponding
partition index. For each interior face of the planar map we then
compute a partition list P that indicates which partitions overlap
the region defined by the face. This can be easily done by choosing
a point inside the face and testing which partition shapes contain
the point. We then sort the partition list according to an ascending
depth order, and iterate over each face edge. An edge is marked as
visible if the partition it belongs to is the same as the higher one in
the depth-sorted partition list.

Resolving impossible layer orders. The procedure above is effi-
cient and can handle many types of complicated layering structures.
At the same time, there can be combinations of partitions and depth
values that have no consistent layering solutions, especially in the
neighbourhood of spine vertices (Fig. 10a). To resolve these cases,
we use a list graph structure [IM10; MP09], which has a vertex for
each internal face of the planar map and an edge for each pair of
faces that are adjacent and share a common partition.

Impossible overlaps can be detected by examining the connected
components of the list graph and checking for inconsistencies in the
layer ordering across the corresponding faces. For each connected
component we compute a list of partitions assigned to it and sort
it by increasing depth. By construction, two partitions with indices
pi and p j are adjacent in the stroke if |pi− p j| = 1. A connected
component of the list graph contains an impossible overlap if any
adjacent pair in the list is not contiguous in the depth sorted list. If
an impossible order is detected, we proceed in a manner similar to
[IM10] and compute the maximum area covered by each partition
and consider all permutations that do not contain impossible orders.
We then choose the permutation with the lowest number layer of
swaps, weighted by the area of each layer.

(a) (b)

Figure 13: Additional layering effects. (a) A stroke is combined
with the outline of a letter "A". The letter is assigned a single parti-
tion and depth value. (b) A union operation is used to add an arrow
head to a stroke.

Mixing strokes and arbitrary vector inputs. This layering
method relies on a partitioning of the input given by our stroke rep-
resentation. However, we can also combine strokes with arbitrary
shapes (Fig. 13a) as long as each is treated as a single partition
with a unique depth value, in which case the method operates as
a vector counterpart of the one proposed by McCann and Pollard
[MP09] for bitmap inputs.

Unions. In addition to the depth ordering, we can also easily han-
dle unions between one or more layers. To do so we define a set of
union pairs {pi, p j} between partitions, and cull an edge if any pair
of partitions assigned to it are assigned to a union. As an example
application of unions, we can add arrowheads to a stroke (Fig. 13b)
by simply generating an arrowhead shape and then specifying an
union between the arrow head and the partition corresponding to
the end of a stroke. The same approach can be used to append arbi-
trary caps to the strokes with an effect similar to the one proposed
by Jakubiak et al. [JPF06].

5. Results and applications

The combination of the parametric stroke model and the proposed
folding and layering methods lets us easily render intertwined
strokes in a way that would be difficult to achieve with traditional
vector graphics methods. The stroke representation can be con-
structed and edited with a simple interface and is well suited for
the rapid generation of compositions and renderings that mimic the
appearance of graffiti art.

Performance and interaction. The stroke generation and layering
procedures can be used interactively and let a user quickly produce
and explore variations of graffiti compositions. To test the perfor-
mance of the method we generated patterns of increasing complex-
ity, similarly the one shown in Fig. 18. On a commodity laptop, we
achieve frame rates suitable for interactive editing as long as the
number of curve samples is fewer than 1000 (Fig. 14). For example
the letters in Fig. 16 have about 400 points each and take less than
30 milliseconds for layering and rendering. The main bottleneck
of the system is currently the curve generation method [BCFL17].
When generating closed curves the performance hit is even higher,
since we repeat curve points 3 times. The pattern in Fig. 18 is gen-
erated with a single closed stroke, has 7488 vertices and takes 10
seconds for curve generation and 0.2 seconds for layering. For in-
teraction and preview purposes we can limit the number of curve
samples, allowing for interactive editing of complex patterns like
the one shown in Fig. 1c, which was produced interactively with
our user interface.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

56

D. Berio, P. Asente, J. Echevarria & F. Fol Leymarie / Sketching and layering graffiti primitives

Figure 14: Performance of the method for increasing number of
curve samples and spine segments.

Figure 15: Layering interactions: the user can swap depth order-
ing (top right) or create unions (bottom left) with a click. The fig-
ures also show extrusions and an additional thick outline around
the merged strokes (bottom right), two common effects in graffiti.

The interface to our method is simple: the user creates a stroke
by clicking to define a sparse sequence of spine vertices. The user
can then vary the shape of a stroke by adjusting stroke parame-
ters such as the amount of smoothing. The width of a stroke can
be adjusted globally with a set of sliders, or locally by dragging
perpendicularly to a spine edge. The layering interface lets a user
perform layer swaps in a manner similar to the one described by
Igarashi and Mitani [IM10]. Clicking on an overlap area brings the
bottommost partition to the top. Unions can also be created simi-
larly, by clicking on an overlap area with a different tool. (Fig. 15)

Fills and rendering effects. We generate colorful compositions by
exploiting the faces of the planar map generated during the layer-
ing process. Randomly offsetting the faces and assigning each face
a color from a user-specified palette gives results similar to those
often seen in graffiti art (Fig. 17d). We can use the same palette

Figure 16: Graffiti letters ("A" and "R") generated and rendered
with our method.

to smoothly fill areas in ways that mimic the diffused use of spray
paint. This can be simply done by using the union of all outlines
to mask a raster fill. In the examples given here we generate the
fill by randomly alpha-blending smooth gradient bitmaps over the
the interior of the outlines (Fig. 17c). To increase the realism of
the rendering we can add highlights to parts of the outline that are
approximately perpendicular to a given light direction. This, com-
bined with an extrusion effect captures a visual effect that is often
seen in conventional instances of graffiti art. Fig. 16 shows results
that combine all these effects.

Extrusion. One effect that is often seen in graffiti art is a simple
oblique isometric extrusion of the composition as a whole; see Fig.
2, top. Our method to construct these is as follows:

1. Rotate the entire composition so that the extrusion can be done
directly downward, in the negative y direction.

2. Create a planar map from the rotated composition and extract
the edges.

3. Split each edge at corners and at extrema in the x direction. The
result is a set of straight and curved segments that intersect each
other only at their endpoints. Each segment has x coordinates
that monotonically increase or decrease.

4. Perform a topological sort of the segments, with the ordering
function being that segment s1 is greater than segment s2 if some
point on s1 and some point on s2 have the same x coordinate,
different y coordinates, and the point on s1 has a larger y coor-
dinate. This formalizes the idea that s1 is greater than s2 if s1 is
higher than s2 in the y direction.

5. Construct a total order from the partial order produced by the
topological sort.

6. For each segment, construct an extrusion face by offsetting the
segment vertically by the extrusion depth and connecting the
ends of the original and offset segments. Stack these faces with
the last – the one from the edge with the smallest y coordinate –
on the top of the stacking order.

7. Place the extrusion faces below the rotated composition, and ro-
tate everything back to the original orientation.

The extrusion faces can then be stroked and filled as desired. Fig-
ures 1, 15, 16, and 17 show our results. The extrusion can be mod-
ified by choosing areas to subdivide more finely, creating an effect
similar to that in Fig. 2, top.

Fig. 15 also includes a thicker outline around the union of all the
strokes, another common effect in graffiti art (Fig. 2, bottom).

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

57

D. Berio, P. Asente, J. Echevarria & F. Fol Leymarie / Sketching and layering graffiti primitives

(a) (b) (c) (d) (e)

Figure 17: Interactive construction of a graffiti letter "R". (a), stroke outlines and spine polygons. (b), layered outlines. (c), fill in gradients.
(d), geometric effects using planar map faces and highlights. (e), extrusion.

Figure 18: Weaving pattern generated by constructing an Eulerian
path over the planar graph in dashed red.

Figure 19: A plotter drawing a pattern generated by our system on
a notebook.

Generative applications Specifying a stroke with a sparse se-
quence of control points is a simple user interaction procedure. The
same sparse representation is also convenient in a procedural mod-
elling applications, in which a procedural system can operate at a
high level by specifying sparse sequences of control vertices and
then various stylisations of the output can be explored parametri-
cally. For example, a simple procedure can generate stylized knots
or weave patterns. We first generate a 2D lattice (Fig. 18, dashed
red) and compute an Eulerian path or cycle along the lattice. We
then construct a single stroke along the path, making sure that the
depth values of crossings are interleaved. The results are evoca-
tive of more abstract forms of graffiti art and sketchy renditions of
weaving patterns.

Figure 20: Left: Recreated version of the logo for the 1970s
band ELOY showing text stylized in a similar way to graffiti.
Right: Graffiti-inspired fashion. Photo by Antonio de Moraes Bar-
ros Filho/WireImage/Getty Images.

Machine drawings

The output of our method is suitable for being realized with a
drawing robot or plotter. Once the primary printing tool in the early
days of computing, plotters have today regained popularity as a
creative tool for computer graphics because of their affordability
and their ability to create vector drawings using a variety of phys-
ical drawing mediums. The output of our method is suitable for
constructing tool paths for such machines. Furthermore, since we
maintain the path ordering defined at the stroke level, the motions
of the machine are visually consistent and often evoke the sequence
of movements that would be followed by a human when producing
a drawing (Fig. 19). This same property could be used to generate
stroke animations from the output of our system.

6. Limitations and future work

We presented a system and interface that permit the generation of
convincing synthetic graffiti with simple, flexible stroke represen-
tation. Since its beginnings in the 60s, cross-pollination between
graffiti and other areas in graphic design and illustration has been
a constant [Ans15]. As an example, typographic styles of the 60s
and 70s had, and still has, a big influence on graffiti letter design
(Fig. 20, left). In turn, current instances of graffiti art can be seen
on record covers, in advertisements and in fashion (Fig. 20, right).
The computational recreation of graffiti’s main stylistic features is
a valuable addition to the toolset of digital creatives, and makes our
system a useful tool across the 2D design space.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

58

D. Berio, P. Asente, J. Echevarria & F. Fol Leymarie / Sketching and layering graffiti primitives

Figure 21: Layering of strokes with a more complex stroke pro-
totype. On the left, our self-overlap procedure fails because folds
occur within the stroke, and not just along the boundary. On the
right, we shrink the ribs along the bisector, as in Hsu et al. [HL94]
and as discussed in Sec. 3, resulting in a visually consistent output.

Figure 22: Overlaps with self-folds. We currently support this ef-
fect only through user interaction. The effect is prohibited by the
impossible layer order resolution procedure (right).

Our method generates strokes with self-overlap effects that are
typical of this art form. However, our current approach builds on
the assumption of a rectangular skeletal stroke prototype. Extend-
ing this approach to arbitrary vector inputs is an interesting exten-
sion for future studies, but doing so is not trivial. With complex
prototypes (Fig. 21, left) folded areas can occur within the stroke,
and not just along the boundary. One possible way to handle these
cases could be to estimate the spine through the computation of a
symmetry axes [BN78]. Symmetry axes also have the potential to
extend our layering procedure to arbitrary shapes. While our cur-
rent approach relies on the partitioning of the input given by the
skeletal stroke spine, the same partitioning could be computed au-
tomatically from the skeleton of the input.

In our description of the layering procedure, we have focused
on the generation of outlines. In future work we plan to handle the
layering of fill patterns and gradients defined along a stroke as well.
This can be achieved by exploiting the planar map and partition list
generated during our method.

The layering procedure combined with fold culling can automat-
ically and rapidly handle many different configurations of one or
more strokes with self overlaps. However, our current implementa-
tion of impossible layer resolution [IM10] does not permit certain
configurations that visually make sense. As an example, it may be
desirable to render a partition of a stroke that passes below a fold
produced by the adjacent partition (Fig. 22, left), but this effect
is discarded by the resolution process (Fig. 22, right). In order to
handle these cases, we currently allow the user to disable the reso-
lution step and create this effect by performing layer swaps with a
few clicks in the regions of interest. In future iterations of this work
we plan to handle these cases automatically.

References
[Ado19a] ADOBE. Adobe Animate: User Guide. 2019. URL: https://
helpx.adobe.com/animate/user-guide.html 1.

[Ado19b] ADOBE. Illustrator: User Guide. 2019. URL: https : / /
helpx.adobe.com/illustrator/user-guide.html 1.

[Ans15] ANSSI, A. Forms of Rockin’: Graffiti Letters and Popular Culture.
Dokument Press, 2015. ISBN: 9185639745 8.

[Ase10] ASENTE, P. “Folding avoidance in skeletal strokes”. Proceedings
of the Seventh Sketch-Based Interfaces and Modeling Symposium. Euro-
graphics Association. 2010, 33–40 2, 5.

[ASP07] ASENTE, P., SCHUSTER, M., and PETTIT, T. “Dynamic planar
map illustration”. ACM Transactions on Graphics (TOG). Vol. 26. 3.
ACM. 2007, 30 2, 3.

[BCFL17] BERIO, D., CALINON, S., and FOL LEYMARIE, F. “Dynamic
Graffiti Stylisation with Stochastic Optimal Control”. ACM Proceedings
of the 4th International Conference on Movement and Computing. Lon-
don, UK, 2017 4–6.

[BG89] BAUDELAIRE, P. and GANGNET, M. “Planar maps: an interaction
paradigm for graphic design”. ACM SIGCHI Bulletin. Vol. 20. SI. ACM.
1989, 313–318 2.

[BN78] BLUM, H. and NAGEL, R N. Shape description using weighted
symmetric axis features. 1978. DOI: 10.1016/0031- 3203(78)
90025-0 9.

[CC84] COOPER, M. and CHALFANT, H. Subway Art. Holt, Rinehart and
Winston, 1984. ISBN: 0030719631 1.

[DRP14] DALSTEIN, B., RONFARD, R., and Van de PANNE, M. “Vec-
tor graphics complexes”. ACM Transactions on Graphics (TOG) 33.4
(2014), 133 2.

[Fer16] FERRI, A. Teoria del writing, La ricerca dello stile. Professional
Dreamers, 2016 1.

[HH01] HU, C. and HERSCH, R. D. “Parameterizable fonts based on
shape components”. Computer Graphics and Applications, IEEE 21.3
(2001), 70–85 2.

[HL94] HSU, S. C. and LEE, I. H. H. “Drawing and animation using
skeletal strokes”. Proceedings of the 21st annual conference on Com-
puter graphics and interactive techniques - SIGGRAPH ’94 (1994), 109–
118 2, 3, 5, 9.

[IM10] IGARASHI, T. and MITANI, J. “Apparent layer operations for the
manipulation of deformable objects”. ACM Transactions on Graphics
(TOG). Vol. 29. 4. ACM. 2010, 110 2, 6, 7, 9.

[JPF06] JAKUBIAK, E. J., PERRY, R. N., and FRISKEN, S. F. “An im-
proved representation for stroke-based fonts”. Proceedings of ACM SIG-
GRAPH. Vol. 4. 2006 2, 6.

[Knu79] KNUTH, D. “Mathematical typography”. Bulletin of the Ameri-
can Mathematical Society 1.2 (1979) 2.

[Koe12] KOENDERINK, J. “Geometry of imaginary spaces”. Journal of
Physiology-Paris 106.5 (2012), 173–182 4.

[LA15] LANG, K. and ALEXA, M. “The Markov pen: online synthesis
of free-hand drawing styles”. Proceedings of the workshop on Non-
Photorealistic Animation and Rendering. Eurographics Association.
2015, 203–215 2, 5.

[MP09] MCCANN, J. and POLLARD, N. “Local layering”. ACM Transac-
tions on Graphics (TOG). Vol. 28. 3. ACM. 2009, 84 2, 6.

[Noo05] NOORDZIJ, G. The stroke. Hyphen, 2005 2.

[SHKF04] SOSNIK, R., HAUPTMANN, B., KARNI, A., and FLASH, T.
“When practice leads to co-articulation: the evolution of geometri-
cally defined movement primitives”. Experimental Brain Research 156.4
(2004), 422–438 4.

[WW06] WILEY, K. and WILLIAMS, L. R. “Representation of interwoven
surfaces in 2 1/2 D drawing”. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM. 2006, 65–74 2.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

59

