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Figure 1: Co-authorship network (VisBrazil data set) visualized with MVN-Reduce, using Classic MDS, Sammon Mapping, and different
values of the parameter w (see Eq. 2). Node colors encode attribute-based groups (from Bisecting K-Means) and node sizes encode be-
tweenness. The visualization shows the split of the network into two main communities of papers, which are bridged by papers with common
co-authors. At the same time, the nodes’ content-based similarities and dissimilarities also influence the layout.

Abstract
The analysis of Multivariate Networks (MVNs) can be approached from two different perspectives: a multidimensional one,
consisting of the nodes and their multiple attributes, or a relational one, consisting of the network’s topology of edges. In order
to be comprehensive, a visual representation of an MVN must be able to accommodate both. In this paper, we propose a novel
approach for the visualization of MVNs that works by combining these two perspectives into a single unified model, which is
used as input to a dimensionality reduction method. The resulting 2D embedding takes into consideration both attribute- and
edge-based similarities, with a user-controlled trade-off. We demonstrate our approach by exploring two real-world data sets: a
co-authorship network and an open-source software development project. The results point out that our method is able to bring
forward features of MVNs that could not be easily perceived from the investigation of the individual perspectives only.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Viewing
Algorithms

1. Introduction

Relational data sets—also called networks or graphs—are present
in many application areas, such as social network analysis, soft-
ware comprehension, biology, and medicine. Such networks are

usually depicted by node-link metaphors, an approach that high-
lights relationships (edges) between actors (nodes) and groups of
actors [BETT98]. A more general view on relational data sets leads
to Multivariate Networks (MVNs)—graphs whose nodes and/or
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edges have (multidimensional) attributes. There are many open
challenges in the visualization of MVNs [KPW14]. One of these
challenges is the effective, scalable, and interactive analysis and ex-
ploration of multiple relationships between nodes, i.e., edge-based
and attribute-based similarities.

This paper’s main research question is: can we create mean-
ingful visualizations of MVNs by reducing their high-dimensional
variable space? We address this question by incorporating node
attributes in the computation of graph layouts, so that the result-
ing drawing emphasizes both node connections and attribute-based
node similarities. Layouts are generated using Dimensionality Re-
duction (DR) methods, which are commonly employed to project
multidimensional data to lower dimensional spaces [vdMPvdH09]
(hence the name MVN-Reduce). The connectivity- and attribute-
based similarities of an MVN’s nodes are combined in a single dis-
tance matrix, based on a user-defined trade-off between the two
types of similarities. The resulting distance matrix is then used as
input to any suitable DR technique, yielding the low-dimensional
(2D) node positions. The final results are depicted using a mix of
traditional scatterplot and node-link metaphors. In summary, our
contributions are:

• a new way to visualize MVNs using DR methods which is scal-
able in both the number of nodes and attributes, is simple to im-
plement, and is nearly fully automatic;

• a user control for the trade-off between relational and multivari-
ate data aspects in the final layout; and

• a demonstration of the benefits of MVN-Reduce for the ex-
ploration of two MVNs from software engineering and co-
authorship analysis.

2. Background and Related Work

Let G = (V,E) be a graph with nodes V = {xi}1≤i≤|V | and edges
E = {(xi ∈V,x j ∈V )}. A multivariate network (MVN) extends G
by adding n attributes (or dimensions) to nodes and/or edges; the
MVN is thus both a relational and a multivariate data set [KPW14].
In this work, we consider only node attributes of quantitative (con-
tinuous) type, modelled as a matrix AV = (aV

i j)∈R|V |×n. An MVN
is then denoted as GA = (V,E,AV ), with ai = {aV

i j}1≤ j≤n being the
n-dimensional vector of attribute values of node xi.

Graph Drawing. The Graph Drawing (GD) field studies the vi-
sualization of the relational structure of graphs, i.e., how to em-
bed a graph G in 2D or 3D according to E [vLKS∗11]. GD tech-
niques can handle large graphs of millions of nodes [GKN04],
can reduce edge-crossing clutter to show the graph core struc-
ture [vdZCT16], or can use drawing styles or conventions to high-
light specific graph substructures [EGK∗02]. However, for show-
ing node and/or edge attributes, GD techniques are usually limited
to classical encodings of a few attributes into shape, color, size,
textures, or labels [Aub04, HB05]. In extreme cases, nodes them-
selves can become full-fledged visualizations of multidimensional
data [BT09,JDK10], with a trade-off between the number of nodes
and the number of attributes per node that can be shown.

Dimensionality Reduction. Multidimensional data sets can be
explored by mapping the high-dimensional data to lower-
dimensional, interactive, and easy-to-use visualizations by DR
methods, so that aspects of the high-dimensional structure of the
data are kept in the final layout. DR methods are visually scalable
and computationally efficient in both the number of observations

and dimensions, work automatically, and are usually depicted by
scatterplots [vdMPvdH09, SVPM14, SZS∗17].

Some DR methods directly use the attribute values ai as
input, such as the well-known Principal Component Analysis
(PCA) [Jol02] or, more recently, LAMP [JPC∗11]. Other methods,
known globally as Multidimensional Scaling (MDS) [CC01], take
as input a real-valued distance matrix D = (dn(xi,x j)i j), where dn

is a distance metric over Rn. Such methods can be seen as a map-
ping

P(D) : R|V |×|V |→ R|V |×2 (1)

whose goal is to preserve the original similarities between the ob-
servations ai in the final 2D layout. Several methods exist in this
class, as follows. Sammon Mapping [Sam69] uses optimization to
minimize an error (or stress) function between the original and the
final distances between every observation pair. ISOMAP [TdSL00]
uses nearest-neighbor distances to estimate the underlying ge-
ometry of the data’s high-dimensional manifold and uses classic
MDS to depict the results. Landmarks MDS [ST04] and Pivot
MDS [BP07] achieve speed-ups by using classical MDS on a subset
of representative observations and fit remaining ones by local inter-
polation. Similarly, LSP [PNML08] positions representatives by a
force-based scheme and fits the remaining observations by Lapla-
cian smoothing. Distance-based DR methods have also been used
to generate graph layouts, usually by applying P(D) directly to the
distance matrix D obtained from the graph-theoretic (shortest path)
distances between all nodes [KS80, GKN04].

Combined Layouts. Techniques for visualizing MVNs commonly
position nodes based on either attributes or relations, offering dif-
ferent visual metaphors for filtering and browsing the two perspec-
tives in single [Wat06, PW06] or multiple views [AS07, BCD∗10].
While these approaches take advantage of the unique characteris-
tics of the two semantically-different perspectives of an MVN, they
lack the potential advantages of combined 2D embeddings, such
as the easy comparison of nodes and scalability on the numbers
of nodes and attributes. In some cases the edges of the network
also carry information related to node attributes. Edges may be cre-
ated by applying thresholds to attribute similarities, such as code
clones [Han13, VT14], or be enhanced with weights based on at-
tributes of the nodes, such as categorical information [SGCP09,
MAH∗12] or common topics in communications between ac-
tors [VNCD08, GKN∗09]. These are domain-specific techniques
that may not be suitable for general MVNs with any number of
continuous (quantitative) dimensions. In GrouseFlocks [AMA08],
a GD method is modified to use attribute-based hierarchical clus-
ters automatically extracted from the data. However, as with previ-
ous techniques, it does not directly treat similarities between nodes
that are not already linked by an edge.

Our proposal (MVN-Reduce) aims to improve on previous work
described in this section by (i) considering the two distinct perspec-
tives of an MVN in a joint fashion when embedding the MVN’s
nodes in 2D, (ii) allowing the analyst to explore if and how these
two different perspectives are correlated, and (iii) taking advantage
of the advances in DR research for the visualization of MVNs.

3. MVN-Reduce

MVN-Reduce aims to generate DR layouts of MVNs that are influ-
enced by both the relational and the attribute-based similarities of
nodes. The details of how to achieve this are described next.
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Step 1: Turn relational and attribute-based similarities into com-
parable models. The relational data (G) of an MVN is modeled
as a distance matrix DE = (dE

i j), where dE
i j represents the con-

nection strength between two nodes xi and x j, derived from the
weighted shortest path distance in G between xi and x j , or any
other structural distance metric defined over a graph G. Separately,
the attribute-based distances between each pair of nodes (xi,x j) of
an MVN are compiled into a distance matrix DA = (dA

i j). The value
dA

i j reflects the similarity of attributes ai and a j, and is computed
using n-dimensional distance metrics such as Euclidean, Manhat-
tan, or cosine. These transformations are done is similar ways in
previous work [MAH∗12].

Step 2: Combine the similarities into a single model. We combine
the relational and attribute-based similarities DE and DA into a sin-
gle distance matrix D by linear interpolation:

D = Iw(DE ,DA) =
w

‖DE‖F
DE +

1−w
‖DA‖F

DA. (2)

The parameter w ∈ [0,1] is a weight that models the trade-off be-
tween connectivity and attributes, and ‖ · ‖F is the Frobenius norm
of a matrix. The Frobenius norm division ensures that the interpo-
lated values are of comparable scale, without changing the relative
pairwise distances between nodes.

Step 3: Create a low-dimensional embedding from the resulting
combined model. The resulting distance matrix D (Eq. 2) is used as
input into any DR method that accepts a distance matrix as input
(thus, of MDS type), which generates 2D node positions. Finally,
the MVN is drawn using classical node-link techniques, with op-
tional attribute encoding into node size, shape, and color.

Some aspects of Eq. 2 are important to highlight. First, the
above-mentioned normalization removes any specific requirements
on the types of distance metrics used to compute DE and DA.
Depending on the MVN, the task, and the application, differ-
ent distance metrics for both the graph’s structure and the high-
dimensional attributes can be used, such as domain-specific simi-
larities [Han13, VT14]. This will not sacrifice the generality of the
technique. Second, finding an optimal weight w is largely context-
dependent, involving factors such as the specific task being per-
formed, whether the user is more interested in the graph’s structure
or its attributes, or the specific distribution of distance values in DE
and DA for a given MVN. Hence, instead of defining a fixed w,
we provide interactive means for the user to browse the space of
possible combinations and decide, on a case-by-case basis, which
trade-off w is best for each situation.

4. Applications

In this section we present the use of MVN-Reduce for exploring co-
authorship networks and multivariate software networks, and show
which new insights MVN-Reduce helped to obtain atop what visual
exploration using classical GD and DR layouts provide.

Co-authorship Networks. The VisBrazil MVN consists of papers
(nodes) published by Brazilian visualization researchers from 2003
to 2010 [MAH∗12]. The edges represent paper co-authorship and
are weighted by the number of common co-authors. This is com-
plemented with attributes extracted from the papers’ abstracts and
represented with the classical Vector Space Model (VSM) [Sal86].

Fig. 1 shows two sets of layouts for VisBrazil created with
MVN-Reduce, using two DR techniques to project D: Classic

MDS [CC01] (top row) and Sammon Mapping [Sam69] (bot-
tom row). In both cases, DE captures the length of the shortest
path between two nodes, i.e., the graph-theoretic or geodesic dis-
tance [BETT98], and DA contains the cosine-based distances be-
tween the VSM vectors of each node, a common metric to compare
text documents [FS07]. The columns in Fig. 1 correspond to dif-
ferent values of w ranging from w = 0 (show attributes only) to
w = 1 (show connectivity only). By varying w between 0 and 1,
we smoothly change the view between attribute-only and structure-
only, which further helps tracing how nodes in the two views cor-
respond to each other. View interpolation is well known in infor-
mation visualization (see, e.g., [HTCT14]). However, an important
difference exists: we do not interpolate the 2D view P(D), but the
high-dimensional input data D. As such, all intermediate views ob-
tained when varying w from 0 to 1 correspond to valid projections.
To allow the user to easily compare how the different layouts map
content-based similarity, the set of nodes was partitioned into three
color-coded groups based on their attribute values, using the Bisect-
ing K-Means algorithm [SKK00]. Additionally, to allow the com-
parison of how the layouts encode the MVN’s topology, the nodes’
sizes reflect their betweenness centrality [Bra01]. Edges are drawn
with colors that linearly interpolate those of their endpoint nodes.

The leftmost layouts (w = 0) show well-defined and separated
content-based groups, but are highly cluttered regarding edge-
crossings. As w increases, we see a “split” in the network, as
some nodes move to form tightly-connected communities in the
left and right regions of the layout. At the same time, a subset of
nodes forms a “bridge” between the communities, including most
of the nodes with the highest betweenness values in the MVN. This
matches the expected behavior of nodes with high betweenness—
to connect many other nodes through shortest paths. The original
attribute-based groups are still visible up to w = 0.75 even after
the split: Group 1 (purple) is divided into two, occupying the lower
parts of the two communities; Group 2 (green) stays mostly on the
left (apart from two high-betweenness nodes); and Group 3 (cyan)
occupies the upper part of the layout, mostly on the right side. The
split gets clearer as we approach the rightmost layout (w = 1). This
is not, however, a good overall view of the MVN, as nodes from
the three (initially visible) content-based groups have collapsed into
each other in the layout’s cluttered view.

The second row of Fig. 1 presents the results of using the
nonlinear DR method Sammon Mapping. Nonlinear DR meth-
ods are known to generate results that are better adapted to
each data set’s own high-dimensional nonlinear manifold struc-
tures [TdSL00, RS00, vdMPvdH09]. As such, the results of MVN-
Reduce applied to VisBrazil are improved, as the resulting layout
and node groups are less cluttered. The flexibility of MVN-Reduce
in allowing the use of any distance-based DR method makes it pos-
sible for the analyst to explore the available techniques and take
advantage of such improved results.

Summarizing, the main contributions of MVN-Reduce for the
exploration of the VisBrazil data set are: (i) the combined views
given by 0.25 ≤ w ≤ 0.75 make it possible to identify, at differ-
ent levels of detail (given by w), the main characteristics of both
attribute- and edge-based similarities between nodes of the MVN;
and (ii) the nodes’ positions respect, at the same time and with vary-
ing trade-offs, the arrangement of the graph as two separate (but
bridged) strongly-connected co-authorship communities (which is
a feature of the network topology [MAH∗12]) and the content-
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Figure 2: Layouts of the caffe data set created with the LSP projection technique and Euclidean distances, with 0.0 ≤ w ≤ 1.0. The three
visually-coded metrics are: Coupling between objects (CBO), Depth of Inheritance Tree (DIT), and Number of Attributes (NOA).

based similarities that make it possible to distinguish the color-
coded groups, which is a feature0 of the nodes’ attributes.

Multivariate Software Networks. In this section we use MVN-
Reduce to explore the active open-source C++ project caffe, a deep
learning framework [JSD∗14]. The nodes are classes and their at-
tributes are 37 code metrics frequently used in software mainte-
nance, including object-oriented measures (e.g., structural com-
plexity and coupling) and descriptive measures (e.g., total number
of classes, methods, and attributes) [LM06]. The edges are derived
from method calls and represent the strength of the two-way depen-
dencies between classes: the weight of an edge (xi,x j) is the sum
of the number of method calls from xi to x j and from x j to xi.

One common way to visually explore source code is to use a GD
method to create a 2D layout of classes according to their depen-
dencies, which helps software analysts to find groups of tightly-
connected nodes that form the core components of a project. How-
ever, such a view shows only system structure but offers no insight
on how classes are related in terms of similar metric values. With
this problem in mind, we show how MVN-Reduce can help us an-
swer the following question: “How can a software analyst find de-
pendency groups in source code and further investigate how they
behave internally regarding quantitative metrics?”

Fig. 2 shows layouts for the caffe data set created with MVN-
Reduce using Euclidean distances (DA), shortest-path distances
(DE ), and the nonlinear DR method Least Square Projection
(LSP) [PNML08]. The values of three selected metrics are visu-
ally encoded: Coupling Between Objects (CBO, encoded in color),
Depth of Inheritance Tree (DIT, encoded in node shape), and Num-
ber Of Attributes (NOA, encoded in node size). In Fig. 2(a), nodes
are spread according to their CBO values from top-left to bottom-
right, as shown by the color gradient along this diagonal dashed
line. A gap clearly separates two bands of nodes located on the two
sides of the diagonal, corresponding to the two different DIT values
in the data set: DIT = 0 below the diagonal and DIT = 1 above it.
Additionally, the nodes in the tail-like structure in the bottom of the
layout have high CBO and low DIT values, but vary significantly
with respect to their NOA values. On the other hand, Fig. 2(d),
with w = 1, shows characteristics of the network topology. Three
tightly-connected node groups—labeled A, B and C—are visible,
with Group A containing mainly low-CBO nodes and Group B the
nodes in the NOA “tail” in Fig. 2(a).

Looking now at the intermediate views, we see that Fig. 2(b)
shows the same three connectivity-based groups found in Fig. 2(d).

This shows the ability of MVN-Reduce in answering the research
question: most of the complexity of Group B is lost in Fig. 2(d),
since its nodes are laid out in a very small area. The layout in
Fig. 2(b), however, was able to unfold this group into a more
meaningful presentation regarding its attributes, while still keep-
ing it separate from the other two structural groups (A, C). For
instance, the NOA “tail” completely disappeared in Fig. 2(d); an
analyst using this classical structure-only view would not have dis-
covered such a unique attribute-based distribution of nodes. The
tail, however, is visible in Fig. 2(b). Similarly, Fig. 2(b) allows us
to identify a small node subgroup in B with DIT = 1, which is
indistinguishable in the structure-only view (Fig. 2(d)). Regarding
Group A, Fig. 2(b) shows that it is split quite evenly into nodes with
DIT = 0 and DIT = 1 and that most edges are between nodes with
different DIT values, something we also see in the attribute-only
view on the left. When w ≥ 0.71, this characteristic of the MVN
is no longer clear (see Figs. 2(c+d)). We conclude that the layout
in Fig. 2(b), with w = 0.5, is the best view to answer the research
question among the presented ones, as it visually separates tightly-
connected groups and also shows attribute-value distributions.

5. Conclusion

We have presented MVN-Reduce, a method that generates node-
link views of Multivariate Networks (MVNs). The core of MVN-
Reduce is the unification of the concepts of connectivity-based and
attribute-based similarity of nodes of an MVN in a single real-
valued distance matrix. This matrix is used with existing DR meth-
ods to create 2D layouts that reflect a continuum of views between
an attribute-only and a structure-only one. Users can interactively
change the mix of information reflected in the view, thereby allow-
ing both control of what the view shows and a smooth transition
between different views for visual linking purposes. MVN-Reduce
is simple to implement, generic, and easy to use. Future work will
consider (i) using more than two perspectives (structure and at-
tributes), leading to the exploration of an MVN along additional
dimensions; (ii) exploring the automatic suggestion of DR methods
and parameter settings based on the input data set; and (iii) evaluat-
ing the technique more extensively with user studies, comparative
analyses and applications with larger and more complex data sets.
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