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Abstract

Many interesting processes can be represented as time-dependent datasets. We define a time-dependent dataset as a sequence of
datasets captured at particular time steps. In such a sequence, each dataset is composed of observations (high-dimensional real
vectors), and each observation has a corresponding observation across time steps. Dimensionality reduction provides a scalable
alternative to create visualizations (projections) that enable insight into the structure of such datasets. However, applying
dimensionality reduction independently for each dataset in a sequence may introduce unnecessary variability in the resulting
sequence of projections, which makes tracking the evolution of the data significantly more challenging. We show that this issue
affects t-SNE, a widely used dimensionality reduction technique. In this context, we propose dynamic t-SNE, an adaptation
of t-SNE that introduces a controllable trade-off between temporal coherence and projection reliability. Our evaluation in
two time-dependent datasets shows that dynamic t-SNE eliminates unnecessary temporal variability and encourages smooth
changes between projections.

Categories and Subject Descriptors (according to ACM CCS): Human-centered computing – Information visualization; Comput-
ing methodologies – Dimensionality reduction and manifold learning

1. Introduction

Time-oriented data visualization is a widely researched subject.
According to [AMST11], current techniques can be categorized as
abstract or spatial, univariate or multivariate, linear or cyclic, in-
stantaneous or interval-based, static or dynamic, and two or three-
dimensional. Our work is concerned with abstract, multivariate, and
instantaneous time-oriented visualization.

The visualization of (high-dimensional) multivariate data is an-
other vast subject [LMW∗15]. In this context, dimensionality re-
duction (DR) has been successfully applied to compute projections:
representations of high-dimensional datasets in low-dimensional
spaces (typically 2D) that retain the structure of the original data.
Such structure is related to local density, relationships between ob-
servations, and presence of clusters [LWBP14, LV05]. When com-
pared to other high-dimensional data visualization techniques (e.g.,
parallel coordinates, subspace clustering), DR is notably more scal-
able (visually and computationally) with respect to the number of
dimensions and observations [LMW∗15, VdMH08].

We define a time-dependent dataset as a sequence of datasets
captured at particular time steps. In such a sequence, each dataset
is a set of observations, and each observation has a corresponding
observation across time steps. In simple terms, each observation
evolves with time (or any other discrete parameter). Consider the
task of visualizing a time-dependent dataset. If a DR technique is
applied independently for each time step, the resulting sequence of
projections may present variability that does not reflect significant
changes in the structure of the data. We refer to this issue as tem-
poral incoherence, which significantly impairs the visualization of
temporal trends. In this paper, we will show that this issue affects
t-SNE [VdMH08], a widely used DR technique, which achieves

high-quality results in many applications [VdMH08]. Furthermore,
temporal incoherence will affect any DR technique that is sensitive
to relatively small changes in their inputs [GFVLDB13].

In this context, we propose dynamic t-SNE: an adaptation of t-
SNE that allows a controllable trade-off between temporal coher-
ence and spatial coherence (defined as preservation of structure at
a particular time step). Previous work on this trade-off has been re-
stricted to the context of dynamic graph drawing [XKHI13, LS08],
even though there are many examples of time-dependent high-
dimensional data visualizations based on DR [JFSK16, BWS∗12,
ABPdO12]. As will become clear, our approach can be easily ex-
tended to other optimization-based DR techniques.

This paper is organized as follows. Section 2 introduces our nota-
tion and briefly summarizes t-SNE. Section 3 explains the necessity
for a controllable bias towards temporal coherence, and presents
our proposed solution. Section 4 presents a preliminary evaluation
of this proposal. Finally, Section 5 summarizes our contributions.

2. t-SNE

A dataset D = x1, . . . ,xN is a sequence of observations, which are
D-dimensional real vectors. The goal of t-SNE is to compute a se-
quence of points (projection) P = p1, . . . ,pN where the neighbor-
hoods from D are preserved, considering that each pi ∈ Rd corre-
sponds to xi ∈ RD. Typically, d = 2 and D� d.

We will let di, j = ||xi− x j|| denote the Euclidean distance be-
tween xi and x j. Analogously, ri, j = ||pi−p j||.

Firstly, consider a random process where the probability of
choosing the next x j given the current xi is defined as
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except for i= j, when P(X ′ = j | X = i) = 0. Each parameter σi > 0
is chosen in such a way that the perplexity κ = 2H[X′|X=i] matches a
pre-defined value, where H[X ] denotes the entropy of X . In simple
terms, P(X ′ = j | X = i) is high whenever x j is near xi relative to
the observation density near xi.

Consider also a distinct random process where the probability of
choosing a pair (xi,x j) ∈ D×D is defined as

P(X ′ = i,X = j) =
P(X ′ = j | X = i)+P(X ′ = i | X = j)

2N
.

Intuitively, P(X ′ = i,X = j) is high whenever P(X ′ = j | X = i) or
P(X ′ = i | X = j) is high.

In Rd , the probability of choosing a pair (pi,p j) ∈ P ×P in yet
another random process is defined as

P(Y ′ = i,Y = j) =
(1+ r2

i, j)
−1

∑k ∑l 6=k(1+ r2
k,l)
−1 ,

except for i = j, when P(Y ′ = i,Y = j) = 0. Clearly, P(Y ′ = i,Y =
j) is high whenever pi and p j are close.

T-SNE aims at minimizing the following cost C with respect to
P [VdMH08]:

C = ∑
i

∑
j 6=i

P(X ′ = i,X = j) log

[
P(X ′ = i,X = j)
P(Y ′ = i,Y = j)

]
.

For our purposes, it suffices to note that C corresponds to the
Kullback-Leibler divergence between P(X ′,X) and P(Y ′,Y ), which
heavily penalizes P(X ′ = i,X = j)� P(Y ′ = i,Y = j), i.e., placing
neighbors in D far apart in P .

The gradient of C with respect to a point pi ∈ P is given by

∇piC = 4∑
j
(pi−p j)

P(X ′ = i,X = j)−P(Y ′ = i,Y = j)
1+ r2

i, j
.

Geometrically, ∇piC is a combination of vectors pointing in the
direction pi−p j, for every j. Each vector pi−p j is also weighted
by whether p j should be moved closer to pi to preserve neighbor-
hoods from D, and by whether p j is close to pi.

The cost C is usually minimized with respect to P by
(momentum-based) gradient descent: from an arbitrary initial P ,
for a number of iterations, each pi ∈ P is moved in the direction
−∇piC. For more details, we refer to [VdMH08].

3. Dynamic t-SNE

Consider the task of creating a sequence of projections
P[1], . . . ,P[T ] for a time-dependent dataset D[1], . . . ,D[T ], where
each xi[t] ∈ D[t] corresponds to xi[t + 1] ∈ D[t + 1]. Although we
will say that the sequence of datasets represents a time-dependent
process, this task is meaningful whenever there is correspondence
between observations at different steps.

We will let C[t] denote the usual t-SNE cost for dataset D[t] and
projection P[t], as defined in the previous section. It is possible to
apply t-SNE individually for each dataset in a sequence using at
least four different strategies:

1. Initializing P[t] independently and randomly, for all t.
2. Initializing P[t] with the same random sequence, for all t.
3. InitializingP[1] randomly, andP[t+1] with theP[t] that results

from minimizing C[t], for all t > 1, or reversely.
4. Combining datasets from all time steps into a single dataset D,

and computing a single projection P .

However, each of these strategies has significant drawbacks.

Strategies 1 and 2 often result in a sequence of projections with
major changes in positioning of corresponding points in adjacent
time steps (temporal incoherence). This issue cannot be corrected
by rigid transformations (e.g., rotations, translations), and makes
tracking the evolution of the data more challenging (see Sec. 4.1).

Strategy 3 is viable in some cases. However, it lacks a mech-
anism to enforce temporal coherence after initialization. At the
other extreme, the initial bias may be difficult for gradient descent
to overcome, because of the diminished effect on ∇pi[t]C[t] of a
point that is distant from pi[t]. Furthermore, because t-SNE usually
takes many iterations to converge, the optimization of C[t] starts
at a likely advantaged state when compared to the optimization of
C[t′], for all t′� t. In this case, the evolution due to the optimiza-
tion process can be mistaken for temporal evolution. As an extreme
example, consider a particular sequence of 100 identical datasets,
each with 2000 observations in R512. Figure 1 shows some pro-
jections that result from strategy 3, which are clearly misleading.
Notice how there is significant apparent evolution between time
steps 1 and 50 (103 and 5×104 gradient descent iterations, respec-
tively). In fact, the configuration still changes between 5×104 and
105 iterations, albeit more slowly. Running t-SNE for this many
iterations (for each projection) is impractical, and tweaking the pa-
rameters to achieve faster convergence is not trivial. Although it
suffices to realize that there is no actual temporal evolution in this
time-dependent dataset, the experimental details are described in
Sections 4 and 4.2. In summary, the major issue with strategy 3 is
the lack of control over how the optimization is biased.

t = 1 t = 25 t = 50

Figure 1: Strategy 3 results on a sequence of identical datasets
(last CNN hidden layer fixed at epoch 1, MNIST test subset).

Strategy 4 can be dismissed in many cases. Firstly, when the
distance matrix for D and all σi are given as inputs, and the tar-
get dimension d is seen as a constant, t-SNE has time complex-
ity O(N2) for N observations. Thus, strategy 4 quickly becomes
intractable. Secondly, it also introduces significant clutter, which
cannot be eliminated by filtering points per time step, since that
introduces misleading void spaces. Finally, depending on context,
combining structures across different steps may be inappropriate.

Dynamic t-SNE, our proposal, is an alternative that overcomes
the drawbacks of the previous strategies. The dynamic t-SNE cost
C tries to preserve the neighborhoods from D[t] in P[t], for each
t, but also penalizes each point for unnecessarily moving between
time steps. This new cost introduces a hyperparameter λ ≥ 0 that
controls the bias for temporal coherence, and is defined as
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Intuitively, each point is penalized in proportion to the to-
tal squared length of the line segments formed by its movement
through time. This penalty is similar to the one proposed by [LS08]
for dynamic graph drawing using multidimensional scaling (MDS).
Although it would be possible to penalize each movement in Rd

in proportion to the corresponding movement in RD, that would
have undesirable consequences. For instance, any transformation
that moved observations significantly while preserving most pair-
wise distances would justify significant changes in the projection.
This is undesirable because the t-SNE cost depends solely on dis-
tances, which makes a projection convey only relative positioning.

It is easy to show that the gradient∇pi[t]C of C with respect to a
point pi[t] ∈ P[t] is given by

∇pi[t]C =∇pi[t]C[t]+
λ

N
vi[t],

where ∇pi[t]C[t] is the usual t-SNE cost gradient (with respect to
pi[t]) when the dataset D[t] is considered separately, and vi[t] is
defined as

vi[t] =


2pi[t]− (pi[t−1]+pi[t +1]) if 1 < t < T ,

pi[t]−pi[t +1] if t = 1,
pi[t]−pi[t−1] if t = T .

Just as ∇pi[t]C[t], each vector vi[t] also has a geometrical inter-
pretation. For 1 < t < T , the vector vi[t] has opposite direction to
any vector that points from pi[t] to the midpoint between pi[t− 1]
and pi[t + 1]. Thus, in gradient descent, the parameter λ controls
the trade-off between moving each pi[t] in a direction that tries to
preserve neighborhoods from D, and moving each pi[t] in a direc-
tion that minimizes the total squared length of line segments in the
polyline (pi[t−1],pi[t],pi[t +1]).

4. Evaluation

We implemented t-SNE and dynamic t-SNE in Python, us-
ing Theano [BLP∗12], Numpy [VDWCV11], and scikit-learn
[PVG∗11] †. Theano allows writing mathematical expressions that
can be automatically translated into optimized (CPU or GPU) code
and evaluated. Our implementation uses automatic differentiation,
which can be highly valuable for adapting t-SNE to a particular
application. For instance, altering the symbolic expression that de-
fines the cost does not require manually finding (possibly involved)
partial derivatives analytically, nor changing the optimization pro-
cess. Dynamic t-SNE requires roughly the same computational
time as executing t-SNE independently for each time step (Strate-
gies 1-3). Using an Intel i7-2600 at 3.4 GHz with a GeForce GTX
590, both (GPU) implementations require approx. 6 minutes per
time step for the time-dependent dataset in Sec. 4.1.

The remainder of this section presents our preliminary experi-
mental evaluation of dynamic t-SNE. The implementation details
and hyperparameter choices are very similar to those of publicly
available implementations [VDM16]. We use momentum-based
gradient descent for minimizing C, with a learning rate η = 2400
and momentum coefficient µ = 0.5, which change to η = 250 and

† Available in https://github.com/paulorauber/thesne.

µ = 0.8 at iteration 250. The optimization is run for 1000 iterations,
with a perplexity κ = 70. We sample the initial coordinates of each
point from a Gaussian distribution with zero mean and standard de-
viation 10−4. The binary search for each σi lasts 50 iterations. For
dynamic t-SNE, every projection P[t] is initialized equally.

4.1. Multivariate Gaussians

We create the multivariate Gaussians dataset specifically as a con-
trolled experiment for dynamic t-SNE. Firstly, we sample 200 ob-
servations from each of 10 distinct (isotropic) 100-dimensional
multivariate Gaussian distributions with variance 0.1. We com-
bine the resulting 2000 observations into a single dataset D[1].
Each multivariate Gaussian has a distinct mean, which is cho-
sen uniformly between the standard basis vectors for R100. Given
D[t], the dataset D[t + 1] is created as follows. Each observation
x[t +1] ∈D[t +1] corresponds to an observation x[t] ∈D[t] moved
10% of the remaining distance closer to the mean of its correspond-
ing multivariate Gaussian. In simple terms, each of the 10 clusters
becomes more compact as t increases. We consider T = 10 datasets.

The sequence of images in Fig. 2a shows dynamic t-SNE re-
sults for λ = 0, which corresponds to strategy 2 (as defined in Sec.
3). Each point pi[t] is colored, for illustration purposes, according
to the distribution from which xi[1] was sampled. Notice the large
variability in visual cluster positioning between time steps, even
after the clusters become well-defined. Because the process that
originates the data simply makes the clusters gradually more com-
pact, this variability is misleading. We preserve the scatterplot scale
between time steps, which is also a significant source of variability.

In comparison, consider the results shown in Fig. 2b, for λ = 0.1.
Notice how each cluster stays at a similar relative position during
all steps, and only becomes more compact in later steps. When the
projections are inspected step by step, it becomes easier to notice
the movement of projection outliers, which is obscured when λ= 0.

Because each point is penalized for moving between projections,
clear visual separation between clusters in later projections is also
able to induce better separation in earlier projections. In simple
terms, given a similar spatial coherence in two alternative projec-
tions for time step t, the projection that is more temporally coherent
with the projection for time t + 1 is preferred by the cost function.
There is a trade-off: a large λ will induce unwanted bias, whereas
a small λ will cause misleading temporal incoherence. The major
benefit of dynamic t-SNE is precisely the control over this trade-
off. Although the choice of λ depends on context, we recommend
first comparing λ = 0 with the results of an arbitrary low value.

4.2. Hidden layer activations (SVHN CNN)

The time-dependent dataset D[0], . . . ,D[T ] considered in this sec-
tion is composed of datasets of neural network activations. We de-
veloped dynamic t-SNE partially to overcome visualization prob-
lems encountered in this context. An activation vector a[t] ∈D[t] is
a D-dimensional observation that represents the outputs of D neu-
rons in a particular layer of an artificial neural network given a par-
ticular input. Such activation vector can be seen as an alternative
representation of the input, learned by the network through an op-
timization process. Visualizing activation vectors allows valuable
insight into how a network learns and operates, which is consid-
ered highly valuable by practitioners [ZF14, YCN∗15, EBCV09].

In this particular case, each network input belongs to a subset
of 2000 test images from the SVHN dataset [NWC∗11], a tradi-
tional image classification benchmark, and is assigned to one of
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Figure 2: Dynamic t-SNE results on Multivariate Gaussians.

ten classes (according to the digit seen in the image), which we
use to color the projections. For each t, an activation a[t] ∈ D[t]
is a 512-dimensional observation, and corresponds to the last hid-
den layer activation of a convolutional neural network (CNN) af-
ter t epochs of training (given a particular input image). The time-
dependent dataset represents the evolution of the learned represen-
tations through 100 epochs. Although the interested reader may
consult [RFFaT16] for details on the experiments that originated
this dataset, these details are not strictly necessary to understand
this section. Earlier in the text, the projections shown in Fig. 1 cor-
respond to a similar dataset based on 2000 MNIST [LCB98] test
images, and 100 copies of the same dataset after one training epoch.

Figures 3a and 3b compare the results of dynamic t-SNE for
λ = 0 and λ = 0.1, respectively. Notice that the projections for
step t = 0, which correspond to network activations before training,
are noticeably different from those that follow. Clearly, the early
epochs of training have a significant effect on the learned repre-
sentations, which coincides with most of the increase in validation
accuracy (not shown). Although both sequences show significant
variation between steps t = 25 and t = 100, the remarkable distinc-
tion is that the projections change smoothly when λ = 0.1. For an
example, compare the transition between steps 24 and 25 in Figs.
3a and 3b. This phenomenon can be seen consistently through the
whole sequence. The visual separation between clusters does not
seem to improve considerably after the early epochs, although it is

hard to state whether there is significant variability in the structure
of the data. Because λ = 0.1 does not seem to introduce a mislead-
ing bias in comparison to λ = 0, more evidence could be obtained
by increasing λ even further.

a)  = 0 b)  = 0.1

t 
=

 0
t 
=

 2
4

t 
=

 2
5

t 
=

 1
0
0

Figure 3: Dynamic t-SNE results on SVHN CNN.

5. Conclusion

In this paper, we have shown how dynamic t-SNE can be applied to
create sequences of projections with increased temporal coherence,
which facilitates tracking the evolution of high-dimensional time-
dependent data. The main advantage of dynamic t-SNE over t-SNE
is the control over the trade-off between temporal coherence (be-
tween successive projections) and spatial coherence (with respect
to high-dimensional neighborhoods). This control depends on a sin-
gle hyperparameter λ, which has a simple interpretation, and does
not introduce a significant computational overhead. This approach
can be easily adapted for other optimization-based DR techniques.
Our preliminary experiments show promising results in eliminating
unnecessary variability between projections.

Although we implemented dynamic t-SNE as an adaptation of
traditional t-SNE, the Barnes-Hut approximation is significantly
more computationally efficient [VDM14]. Future works that em-
ploy dynamic t-SNE for large datasets should consider a similar
optimization. The current implementation has the advantage of be-
ing highly flexible with respect to cost functions.
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