
Eurographics Conference on Visualization (EuroVis) (2014) Short Papers
N. Elmqvist, M. Hlawitschka, and J. Kennedy (Editors)

FluidDiagrams: Web-Based Information Visualisation using
JavaScript and WebGL

Keith Andrews1 and Benedict Wright2

1Institute for Information Systems and Computer Media (IICM), Graz University of Technology, Austria
2Institute for Software Technology (IST), Graz University of Technology, Austria

Abstract
Much attention has been focused on the provision of information graphics and visualisations inside a web browser.
Currently available infovis toolkits produce graphical output by either injecting SVG nodes into the DOM or
using the JavaScript Canvas 2D API. FluidDiagrams is a prototype information visualisation framework written
in JavaScript which uses the WebGL 3D JavaScript API for its output, falling back to Canvas 2D as necessary,
via the Three.js library. Six visualisations are currently implemented: bar chart and line chart, scatter plot and
parallel coordinates for multidimensional data, and cone tree and hyperbolic for hierarchies.
Anecdotally, visualisations using SVG nodes in the DOM for output can become rather sluggish when display-
ing more than a few dozen items. Visualisations using Canvas 2D exhibit similarly slow performance. WebGL
utilises hardware acceleration where available and promises much better performance for complex visualisations,
potentially in the order of many thousands of items without becoming unresponsive.
A comparison of parallel coordinates visualisations with 100 records in 20 dimensions compared three imple-
mentations: FluidDiagrams (WebGL), FluidDiagrams (Canvas 2D), and D3 (using SVG nodes). They achieved
62, 6, and 10 frames per second respectively. The FluidDiagrams (WebGL) implementation was able to render
1,000 records in 20 dimensions at 18 frames per second, compared to 1 and 6 respectively.

Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Graphics Utilities—
Graphics Packages

1. Introduction

As applications of information visualisation migrate from
company and university research labs into business applica-
tions and more everyday use by the general public, a need to
be able to provide visualisations embedded inside web pages
and web applications is emerging.

Implementations of visualisations inside the web browser
rely on one of three underlying technologies to produce
graphics: Java applets, Flash, or JavaScript. Java applets
[GJS∗13] are clunky and often require the user to install
a Java plugin, which are not available for mobile web
browsers. Flash [Ado10] also requires a browser plugin,
which comes pre-installed on many desktop browsers, how-
ever support for Flash on mobile browsers has been discon-
tinued. This leaves JavaScript [Fla11] as the technology of
choice for new developments requiring graphics which are

to be run inside a web browser, particularly in the light of
the ever-expanding use of mobile web browsers.

2. Browser-Native Graphics Technologies

Given the assumption that JavaScript is the technology of
choice for web-based visualisations, there are essentially
three ways to draw graphics natively inside the web browser
with current JavaScript and web standards:

• SVG injection: Scalable Vector Graphics (SVG) [W3C11,
DFS12] nodes are inserted (injected) into the Document
Object Model (DOM) [W3C14] using JavaScript and are
then interpreted and drawn by the web browser.

• Canvas 2D: The HTML5 Canvas 2D Context [W3C13,
Gea14] allows developers to create graphics directly to an
area of the web page using a set of 2D drawing primitives.

• WebGL (Canvas 3D): WebGL [Khr13] is an immediate

c© The Eurographics Association 2014.

DOI: 10.2312/eurovisshort.20141155

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eurovisshort.20141155


Keith Andrews & Benedict Wright / FluidDiagrams

mode 3D rendering API, providing a 3D Context for the
HTML5 Canvas element. WebGL is based on the widely
used standard for 3D graphics, OpenGL ES 2.0 [ML10].

3. JavaScript Graphics Libraries

There are also a number of JavaScript graphics libraries
which build on top of one or more of the browser-native
graphics technologies mentioned above and provide simple
graphics primitives such as line, circle, square, sphere, or
cone, and transformations. They include:

• Raphaël: Raphaël [Bar14] is a JavaScript library which
provides basic 2D graphical primitives such as line, rect-
angle, and circle. They are drawn by injecting correspond-
ing SVG nodes into the browser DOM.

• Pixi.js: Pixi [Gro14] is a 2D drawing library which ren-
ders using WebGL for fast performance, with a fallback to
Canvas 2D if WebGL is not available. Primitives include
line, rectangle, and ellipse.

• Three.js: Three.js [Cab12b] is a powerful JavaScript 3D
rendering library, which uses WebGL where available and
also has fallbacks to Canvas 2D and SVG injection. A 3D
scene graph is constructed by adding primitives such as
cubes and spheres and applying textures.

4. InfoVis Toolkits Using JavaScript

A number of infovis toolkits implemented in JavaScript
which provide fully interactive charts and visualisations
have also emerged:

• gRaphaël: gRaphaël [Bar12] is a simple JavaScript library
which provides four basic 2D charts: bar chart, pie chart,
line chart, and dot plot. It draws by SVG injection using
the Raphaël library.

• JIT: The JavaScript InfoVis Toolkit (JIT) [Bel14] pro-
vides a suite of information visualisations and generally
draws its graphics using the standard JavaScript Canvas
2D Context. JIT also provides some support for WebGL
inside a 3D Canvas.

• D3: Data-Driven Documents (D3) [Bos11, BOH11] is a
widely-used suite of information visualisations drawn by
SVG injection. It also supports animated transitions be-
tween related visualisations.

5. FluidDiagrams

FluidDiagrams [AW14] is a new, web-based information vi-
sualisation framework which uses JavaScript and WebGL
(and Canvas 2D) through the Three.js library. To take advan-
tage of any available graphics hardware, FluidDiagrams uses
WebGL by default for all rendering, both 2D and 3D. Canvas
2D is used as a fallback, in case WebGL is not available. Flu-
idDiagrams demonstrates that responsive, high-performance
information visualisations inside web pages are achievable.

The internal architecture of FluidDiagrams is shown in

FDVisualisationFDParser

ConcreteParser

FluidDiagrams FDVisualisationFactoryFDParserFactory

ConcreteVisualisation

FDEventHandler MyEventHandlerThree.JS

Figure 1: The internal architecture of FluidDiagrams.

Figure1. A parser factory FDParserFactory determines which
kind of input parser is used. Currently, parsers are available
for tabular data in CSV and hierarchical data in JSON for-
mat.

A visualisation factory FDVisualisationFactory determines
which visualisation is used for the current dataset. Visualisa-
tions themselves are implemented using the primitives pro-
vided by the underlying Three.js library. Three.js then does
the required drawing using either WebGL or Canvas 2D. The
SVG performance of Three.js proved insufficient for our ap-
plications and hence is not currently used in FluidDiagrams.

6. FluidDiagrams Visualisations

Six visualisations have so far been implemented within Flu-
idDiagrams. Interactions typical for each visualisation are
also provided: for example hovering over a data point in a
Bar Chart and filtering records and reordering and inverting
axes for Parallel Coordinates.

The FluidDiagrams Bar Chart (Figure 2) and Line Chart
(Figure 3) illustrate simple information graphics. In FluidDi-
agrams, however, 2D visualisations are also constructed with
3D graphics primitives (with z = 0) so as to take advantage
of WebGL’s superior perfomance wherever available.

The FluidDiagrams Hyperbolic browser (Figure 4)
[LRP95] and Cone Tree (Figure 5) [RMC91] visualisations
are for visualising information hierarchies. As before, the
2D Hyperbolic browser is constructed with flat 3D graph-
ics primitives. The Cone Tree, being a 3D visualisation, uses
actual 3D graphics primitives.

The FluidDiagrams Parallel Coordinates (Figure 6)
[Ins85] and Scatter Plot (Figure 7) visualisations are for
multi-dimensional (tabular) data. Again, flat 3D graphics
primitives are used to construct these 2D visualisations.

7. Performance Comparison

To investigate the anecdotally higher performance of infor-
mation visualisations using WebGL, a performance compar-
ison was run. Even though the FluidDiagrams visualisations

c© The Eurographics Association 2014.

44



Keith Andrews & Benedict Wright / FluidDiagrams

Figure 2: FluidDiagrams Bar Chart.

Figure 3: FluidDiagrams Line Chart.

have not yet been explicitly optimised for performance, clear
performance advantages can be observed.

The FluidDiagrams Parallel Coordinates implementa-
tions running WebGL and Canvas 2D were compared to
a D3 implementation [Bos13] using SVG injection. Five
datasets were randomly generated to contain 10/50 (di-
mensions/records), 10/100, 20/100, 20/1000, and 20/10000
dimensions and records. Figure 8 shows the FluidDia-
grams Parallel Coordinates visualisation with the compari-
son dataset of 20 dimensions and 100 records.

The comparison was carried out on a desktop PC with a
2.8 GHz Quad Core Intel I5 processor, 8 gb of RAM, and an
Nvidia GeForce GTX 460 graphics card. Firefox 27.0.1 was

Figure 4: FluidDiagrams Hyperbolic browser for hierar-
chies.

Figure 5: FluidDiagrams Cone Tree.

used as the browser and the Stats.js package [Cab12a] was
used to record frame rates in frames per second.

The results of the performance comparison are shown
in Figure9. WebGL rendering performance is consistently
much higher than both Canvas 2D and SVG injection. The
FluidDiagrams Parallel Coordinates WebGL implementa-
tion is able to handle several thousand records of 20 dimen-
sions without becoming unresponsive.

8. Concluding Remarks

FluidDiagrams is a new web-based information visualisa-
tion toolkit. It demonstrates the practicality and potential
performance gain attainable by using WebGL for underly-
ing graphics output.

The graphics library used by FluidDiagrams, Three.js,
contains numerous features (mostly pertaining to 3D graph-
ics rendering) which are not needed in most information vi-

c© The Eurographics Association 2014.

45



Keith Andrews & Benedict Wright / FluidDiagrams

Figure 6: FluidDiagrams Parallel Coordinates visualisa-
tion.

Figure 7: FluidDiagrams Scatter Plot visualisation.

sualisations. In addition, its support for SVG injection ren-
dering was sometimes very slow (and hence is not used in
FluidDiagrams). We are currently experimenting with a cus-
tom slimline graphics library called FluidDiagrams Graph-
ics Layer (FDGL), which translates the small set of 2D and
3D primitives necessary for most information visualisations
(line, polygon, circle, text cube, sphere, cone, group, etc.)
into corresponding calls to WebGL, Canvas 2D, SVG for
DOM injection, and SVG for file export. We are also experi-
menting with Pixi [Gro14] as a potential underlying graphics
library for a future version of FluidDiagrams.

FluidDiagrams is available as open source code under the
liberal MIT licence from the project web site [AW14].

Figure 8: The FluidDiagrams Parallel Coordinates visuali-
sation with one of the comparison datasets, in this case with
20 dimensions and 100 records.

62 62 62 

18 

2 

24 

12 
6 

1 0 

30 

20 

10 
6 

0 
0

10

20

30

40

50

60

70

10/50 10/100 20/100 20/1000 20/10000

FP
S 

Dimensions / Records 

FD WebGL

FD Canvas

D3 (SVG)

Figure 9: Performance comparison results for Parallel
Coordinates visualisations using WebGL (FluidDiagrams),
Canvas 2D (FluidDiagrams), and SVG injection (D3) re-
spectively in terms of average frame rate in frames per sec-
ond (fps).

c© The Eurographics Association 2014.

46



Keith Andrews & Benedict Wright / FluidDiagrams

9. References

References
[Ado10] Adobe: ActionScript 3.0 for Adobe Flash Professional

CS5. Adobe, June 2010. 1

[AW14] Andrews K., Wright B.: Fluiddiagrams, 2014. URL:
http://projects.iicm.tugraz.at/fluiddiagrams/. 2, 4

[Bar12] Baranovskiy D.: gRaphael, Aug. 2012. URL: http:
//g.raphaeljs.com/. 2

[Bar14] Baranovskiy D.: Raphael, Feb. 2014. URL: http:
//raphaeljs.com/. 2

[Bel14] Belmonte N. G.: JavaScript InfoVis Toolkit, 2014.
URL: http://thejit.org/. 2

[BOH11] Bostock M., Ogievetsky V., Heer J.: D3: Data-
driven documents. In Proc. IEEE Information Visualization Con-
ference 2011 (InfoVis 2011) (Oct. 2011), IEEE. URL: http:
//vis.stanford.edu/files/2011-D3-InfoVis.pdf, doi:
10.1109/TVCG.2011.185. 2

[Bos11] Bostock M.: D3 Data-Driven Documents, Nov. 2011.
URL: http://d3js.org/. 2

[Bos13] Bostock M.: D3 Parallel Coordinates Example, Nov.
2013. URL: http://bl.ocks.org/mbostock/7586334. 3

[Cab12a] Cabello R.: stats.js JavaScript Performance Monitor,
Sept. 2012. URL: https://github.com/mrdoob/stats.js/.
3

[Cab12b] Cabello R.: Three, Aug. 2012. URL: https://
threejs.org/. 2

[DFS12] Dailey D., Frost J., Strazzullo D.: Building Web
Applications with SVG. Microsoft Press, July 2012. 1

[Fla11] Flanagan D.: JavaScript: The Definitive Guide, 6 ed.
O’Reilly, May 2011. 1

[Gea14] Geary D.: Core HTML5 Canvas: Graphics, Animation,
and Game Development. Prentice Hall, May 2014. 1

[GJS∗13] Gosling J., Joy B., Steele G., Bracha G., Buckley
A.: The java virtual machine specification, Java SE 7 edition.
Oracle, Feb. 2013. URL: http://docs.oracle.com/javase/
specs/jls/se7/jls7.pdf. 1

[Gro14] Groves M.: Pixi.js, Feb. 2014. URL: http://pixijs.
com/. 2, 4

[Ins85] Inselberg A.: The plane with parallel coordinates. The
Visual Computer 1, 4 (Dec. 1985), 69–91. doi:10.1007/
BF01898350. 2

[Khr13] Khronos: WebGL specification 1.0. Khronos Group
Working Draft, Nov. 2013. URL: http://www.khronos.org/
registry/webgl/specs/latest/1.0/. 1

[LRP95] Lamping J., Rao R., Pirolli P.: A fo-
cus+context technique based on hyperbolic geometry for
visualizing large hierarchies. In Proc. CHI’95 (Den-
ver, Colorado, USA, May 1995), ACM, pp. 401–408.
URL: http://sigchi.org/chi95/Electronic/documnts/
papers/jl_bdy.htm, doi:10.1145/223904.223956. 2

[ML10] Munshi A., Leech J.: OpenGL ES common
profile specification version 2.0.25. Khronos Group, Nov.
2010. URL: http://www.khronos.org/registry/gles/
specs/2.0/es_full_spec_2.0.25.pdf. 2

[RMC91] Robertson G. G., Mackinlay J. D., Card S. K.:
Cone trees: Animated 3D visualizations of hierarchical informa-
tion. In Proc. SIGCHI Conference on Human Factors in Com-
puting Systems (CHI’91) (New Orleans, Louisiana, USA, May
1991), ACM, pp. 189–194. doi:10.1145/108844.108883. 2

[W3C11] W3C: Scalable vector graphics (SVG) 1.1. W3C Rec-
ommendation, Aug. 2011. URL: http://w3.org/TR/SVG11/.
1

[W3C13] W3C: HTML Canvas 2D Context, Level 2. W3C
Working Draft, Oct. 2013. URL: http://www.w3.org/TR/
2dcontext2/. 1

[W3C14] W3C: DOM4. W3C Last Call Working Draft, Feb.
2014. URL: http://www.w3.org/TR/dom/. 1

c© The Eurographics Association 2014.

47

http://projects.iicm.tugraz.at/fluiddiagrams/
http://g.raphaeljs.com/
http://g.raphaeljs.com/
http://raphaeljs.com/
http://raphaeljs.com/
http://thejit.org/
http://vis.stanford.edu/files/2011-D3-InfoVis.pdf
http://vis.stanford.edu/files/2011-D3-InfoVis.pdf
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
http://d3js.org/
http://bl.ocks.org/mbostock/7586334
https://github.com/mrdoob/stats.js/
https://threejs.org/
https://threejs.org/
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
http://pixijs.com/
http://pixijs.com/
http://dx.doi.org/10.1007/BF01898350
http://dx.doi.org/10.1007/BF01898350
http://www.khronos.org/registry/webgl/specs/latest/1.0/
http://www.khronos.org/registry/webgl/specs/latest/1.0/
http://sigchi.org/chi95/Electronic/documnts/papers/jl_bdy.htm
http://sigchi.org/chi95/Electronic/documnts/papers/jl_bdy.htm
http://dx.doi.org/10.1145/223904.223956
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://dx.doi.org/10.1145/108844.108883
http://w3.org/TR/SVG11/
http://www.w3.org/TR/2dcontext2/
http://www.w3.org/TR/2dcontext2/
http://www.w3.org/TR/dom/

