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Abstract

Operational weather forecasters face the challenge of having to process and interpret a large amount of available information.
Therefore, condensation of extensive information is required. Research and development of forecasting techniques will on the
one hand improve the forecast quality and on the other hand lead to an increased amount of data. A new extensive and valuable
data set will emerge from the SINFONY project at Deutscher Wetterdienst (DWD). It aims at a seamless forecast of upcoming
convective events from actual time up to some hours by combining observation-based nowcasting techniques and numerical
weather prediction (NWP) ensembles into a single system. In this context, a group of products will comprise features ("cell
objects") that were extracted from three-dimensional radar measurements and NWP ensemble simulations.

A user-oriented intuitive visualization of the new meteorological data is crucial for weather warning and forecasting. Before
including new data into forecast operation, extensive tests and evaluations have to be performed. It therefore requires a careful
iterative development process with continuous evaluation by the users.

To facilitate this process, an initial visualization mock-up is created, which will be used to prototype and refine visualization and
data product concepts. The browser-based nature of the tool allows to quickly share an interactive design with the users which,
in turn, will help to have in-depth discussions and to collect visualization requirements, before the final concept is implemented
into the meteorological workstation.

This paper presents the first use-case for this approach: The development of a concept to visualize object-based severe convec-
tive events based on matching observed and simulated features.
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1. Introduction
The uncertainties in the prediction of future atmospheric states can
be assessed by using forecasting ensembles generated by numeri-
cal weather prediction (NWP) models. This technique utilizes the
perturbations of input parameters and/or other uncertain model pa-
rameters to generate a number of simulations resulting in a prob-
abilistic forecast of the future atmospheric state [GR05, WMO12].
It provides the likeliness of an event to occur at a certain location
based, for instance, on the number of ensemble members predicting
its appearance [KCKD12]. Experiments have shown that weather
forecasts generated by ensemble prediction systems (EPS) outper-
form those relying on a single, deterministic prediction [GTPB11].
However, the state of the atmosphere at a certain point in time
and very-short-term weather forecasts in the range of 0 — 2 hours
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ahead of this time are challenging for NWP-EPS systems. This is,
amongst other reasons, due to model spin-up effects and the ac-
curate assimilation of recent observations into the current physical
state of the simulations [SXW*14]. For this very-short-term fore-
cast, so-called nowcasting techniques (at DWD mostly based on
remote-sensing observations) are used, which are based on image
processing techniques to detect motions in timeseries of recent past
and actual 2D observation maps (so-called "composites"). These
motion vectors are used to linearly advect the observed features
into the future. For short forecast lead times, this provides a high
forecast skill at high spatial resolutions [SXW* 14, KCKD12].

The project SINFONY (Seamless INtegrated FOrecastiNg sYs-
tem) at DWD aims at combining both methods - nowcasting and
NWP-EPS - into a single system to enable a seamless prediction of
upcoming convective events in a time scale of several hours. This is
especially critical to forecasting severe weather elements, such as
thunderstorms or strong winds. In this context, information of high
time and spatial resolution is key to be able to warn the general
public well ahead of time.
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The data products developed in the course of this project are
expected to be more complex and significantly more voluminous
than most of the currently used operational data sets. For instance,
it is planned that nowcasting techniques provide a probabilistic
short-term forecast based on an ensemble system. Furthermore, the
planned products aim at combining nowcasting-EPS with NWP-
EPS to improve the forecast of deep convection events.

Conceptualizing visualization techniques for new data products
requires a thorough and continuous evaluation by the forecasters,
who use them in their daily routines. Therefore, to facilitate the it-
erative refinement of a visualization design, an initial visualization
suggestion has been rapidly set-up in a web-browser. This allows to
quickly share an interactive visualization mock-up to spawn goal-
directed discussions, before the final evaluated visualization can
be implemented into the operational meteorological workstation,
called NinJo [HHO09].

To showcase the initial implementation state of the mock-up, this
paper presents a concept for a visual comparison of intense convec-
tion areas - referred hereafter as features - predicted by the deter-
ministic nowcasting with those simulated by the NWP-EPS. This
results in a visualization tool showing local ensemble spread, while
simultaneously highlighting groups of members matching a now-
casting feature best.

The remainder of this paper is structured as follows: Section 2
illustrates related work in the visualization of uncertainties in the
context of ensemble simulations. After that, we describe the charac-
teristics of the data set, for which we aim to develop a visualization
strategy. Section 4 describes an initial concept for the visualization
of this data, which is discussed in Section 5. Finally, we draw a
conclusion in Section 6.

2. Related work

According to Obermaier and Joy [OJ14], and as cited by Bot-
tinger et al. [BPR*15], ensemble visualization techniques can be
classified into feature-based and location-based approaches: While
feature-based approaches are applied to objects found in each mem-
ber, location-based approaches focus on analyses at "fixed loca-
tions" [OJ14]. The latter also corresponds to traditional techniques,
where the results of an EPS are presented as a grid-based product.
Here, each grid-cell is associated with a measure summarizing the
results of all members, such as mean value, spread, or a probabilis-
tic statement about how many members exceed a certain thresh-
old [RKSW15].

This categorization can be applied to both ensemble visualiza-
tion in climate and weather forecast. For instance, in the context
of climate ensemble analysis, Bottinger et al. [BPR*15] make use
of the location-based approach: They apply different visualization
techniques to combine a predicted variable, skill and ensemble
spread simultaneously in a single display for summarizing views
upon the uncertainties. In contrast, Hiittenberger et al. [HFBG17]
aim at showing the contribution of individual ensemble members to
delineated areas of member disagreement, by combining a Pareto
set analysis with a glyph-based region-summary.

The work described in this paper can be assigned to the group
of feature-based ensemble visualization methods for weather fore-
casting applications. A classical example for a visualization tech-
nique in this category are so-called spaghetti plots: Here, isocon-
tours of all involved ensemble members are plotted together on

a single display to show their spatial divergence or correspon-
dence [RKSW15, FKRW17]. This method is also used by Pot-
ter et al. [PWB*09] in their Ensemble-Vis framework, along-
side with other views onto an ensemble data set. Also Sanyal et
al. [SZD*10] make use of spaghetti plots, although they combine
them with glyphs and ribbons that further illustrate uncertainties
within the simulation domain or specifically along isocontours.
Ferstl et al. [FKRW17] cluster the time series of isocontours in a
spaghetti plot, and use the results to show the temporal develop-
ment of uncertainties.

While the isocontours underlying these methods are frequently
close to each other (or, at least, do not vary so much between single
time steps), the features in the data set used in this paper might
change a lot within short time spans, such that these techniques
might be difficult to apply.

Not specifically related to ensemble visualization, but still rele-
vant for the work described in this paper is the object-based com-
parison of precipitation forecasts with corresponding observations
that was addressed by Wang et al. [WFZ*15]. Following a verifi-
cation method described by Lakshmanan and Kain [LK10], Wang
et al. approximate rain bands in both forecasts and observations us-
ing Gaussian Mixture Models and enable their simultaneous spatio-
temporal analysis. However, they do not compare ensemble mem-
bers to the observation, but they rather use a product averaging the
available members.

3. Characteristics of the underlying data products

3.1. Nowcasting data

Nowcasting applications are developed to obtain the best possible
forecasts for the coming minutes up to the next few hours. These are
based on remote sensing observations at a high spatial and temporal
resolution, with new forecasts generated in rapid succession (rapid
update cycle). They are particularly valuable in meteorologically
unstable situations that are often associated with severe weather
events, such as thunderstorms.

The data provided by the DWD radar network is essential to de-
tect deep convection. It is comprised of 17 polarimetric Doppler
C-Band radars (Fig. 1) that deliver three dimensional data every
five minutes. These data are used by the nowcasting techniques
at DWD to detect, track and forecast deep convection, which are
identifiable thanks to their high radar reflectivities. A reflectivity
threshold is typically applied to identify the core of the thunder-
storm or convective cell. The currently operational detection tech-
nique is called KONRAD (KONvektive Entwicklung in RADarpro-
dukten, [LanO1]), which uses a single fixed reflectivity thresh-
old of 46 dBz and takes into account only the two-dimensional
near-ground radar reflectivity data. To take advantage of the three-
dimensional character of the data, a new technique called KON-
RAD3D has been developed. Besides that, KONRAD3D applies
an adaptive threshold scheme to detect the existence of a convec-
tive cell in the radar data. This method allows the detection of cells
at individual thresholds, depending on their development phase
[HMG™04]. Each detected cell can be considered a meteorological
feature with its particular attributes like, e.g., geographical location
(centroid), size, motion vector, maximum reflectivity, or vertical
extent. In this paper, the convective cells detected based on radar
data will be referred as observed features.

© 2018 The Author(s)
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Figure 1: Radar Network at DWD.

3.2. NWP-ensemble data

At DWD, the ensemble forecasting system COSMO-DE-
EPS [TGB17] is based on the numerical weather forecast model
COSMO and currently includes 20 ensemble members, producing
new forecasts every 3 h. Initial conditions for these forecast mem-
bers are created by the KENDA-system (Kilometer-scale ENsem-
ble Data Assimilation, [SRR*16]), which draws ensemble forecasts
closer to the observations at hourly intervals by a sophisticated
4D Localized Ensemble Transform Kalman Filter (4D-LETKF)
method. The grid spacing of COSMO-DE-EPS is 2.8 km and the
domain covers whole Germany, Benelux, Switzerland, Austria and
parts of the other neighboring countries.

For the SINFONY project, the COSMO-DE-EPS has been
adapted to provide forecasts up to only +6 hours but providing new
forecasts every hour. In addition, it provides simulated radar vol-
ume data with the same structure and time resolution as the actual
radar observations (each 5 minutes), thanks to an efficient Modu-
lar VOlume scanning RADar Operator (EMVORADO) that is cou-
pled to the COSMO model framework [ZBJ16]. This allows for
the use of KONRAD3D to detect the convective cells simulated by
the NWP-ensemble. These cells are referred hereafter as simulated
features. The use of the same method for feature identification facil-
itates the comparison and further analysis of the identified features
in both observation-based nowcasting and NWP.
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3.3. Dataset

The SINFONY project focuses on severe summertime convec-
tive events. For the experimental phase, convective events that
occurred between May 26 and June 26, 2016, are analyzed (see
Fig. 2). Within this period, May 29, 2016, is of special interest
due to the heavy rain registered during that day in several parts of
Germany, including the well-known Braunsbach-flood in Southern
Germany [BBC16].

This case has been selected for the first product mock-up
presented here, choosing the 17:00 UTC forecast but showing
the graphics at 17:15 UTC to mask out the unavoidable model
spin-up time. This is also the time of day, at which the re-
gion around Braunsbach experienced heavy precipitation [ZJB16].
KONRAD3D has been applied to both radar observations and
NWP-EPS simulations to retrieve the observed and simulated fea-
tures, respectively. A total of 136 features were identified in the
observed radar data.

In order to compare both simulated and observed convection fea-
tures, a maximum distance threshold of 50 km around each ob-
served feature was established to ensure that simulated cells are
nearby the observed convective cells. Simulated objects beyond this
threshold are removed from the dataset. After visualization require-
ments have been discussed, it could be possible that this threshold
is modifiable by the user.

4. Visualization concept

4.1. Data analysis techniques

A clustering technique has been used as a first attempt for the com-
parison of simulated with observed features. Data clustering is a
data exploration technique that allows objects with similar charac-
teristics to be grouped together in order to facilitate their further
processing [PDNO4].

One of the most popular clustering algorithms is K-Means, a
method first described by [Ste56]. Its popularity resides in the
ease of implementation, simplicity, efficiency, and empirical suc-
cess ([Jail0]). A limitation is, however, that the number of clusters
(k) has to be pre-specified. As stated by [PDNO04], to find the ap-
propriate number of clusters for a given dataset is generally a trial-
and-error process, which can become difficult due to the subjective
nature of deciding what constitutes a "correct" clustering.

Despite this limitation, the K-Means algorithm was chosen for
our case study as a first approach to group the simulated features
based on their similarities to the observed objects. The parameters
chosen to carry out the multivariate clustering analysis are: (a) max-
imum (radar) reflectivity, (b) minimum (radar) reflectivity, (c) ge-
ographical location (centroid) and (d) size of the feature (so-called
matching parameters). In order to facilitate the interpretation of the
product visualization, only three clusters will be taken into consid-
eration (k = 3). The clustering has been done as follows:

1. Given an observed feature, the simulated features that are within

a 50 km radius are selected for clustering.

2. The difference of the matching parameters from the simulated
features compared to observed feature.

3. The K-Means method is then applied based on the difference
values, which were previously scaled.

A new clustering is carried out to each group of simulated fea-
tures that are around an observed feature (at a maximum distance
of 50 km).
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Figure 2: Reflectivity composite based on observed radar measurement (left) and based on the simulated radar data from the deterministic

forecast of the NWP-EPS (right) for May 29, 2016 at 17:15 UTC.

4.2. Feature-based ensemble visualization

4.2.1. Mock-up overview

The ideas described in the following two subsections are imple-
mented into an interactive browser-based mock-up that was created
using Python 3.6 and Bokeh 0.12.14 [Bok14]. Bokeh was specif-
ically designed to enable the quick generation of interactive plots,
and was thus a suitable choice for the implementation of our initial
visualization concept.

An overview over current state of the mock-up is shown in Fig-
ure 3. It comprises three panels, whereas the two plots on the right
side are connected to the large map display. The connection is one-
sided: When a user selects an observed feature on the map by click,
the plots to the right are updated according to the data associated
with that feature.

4.2.2. Visualizing ensemble spread

During the clustering process, the ensemble members are treated
independently, i.e. the same ensemble member can have more than
one simulated feature in the same cluster. As a result, each observed
feature corresponds to a set of simulated features predicted by the
ensemble. The distribution of these features around an observed
convective cell then shows the local ensemble spread.

This concept is depicted in Figure 3(a). Here, the black feature
corresponds to the observed feature, while the colored polygons
in its surrounding show the location of its simulated counterparts.
They are colored according to cluster membership, making use of
a categorical color scheme taken from ColorBrewer [HB03]. Here,
the blue cluster refers to the simulated features that match the se-
lected observation best. The simulated features corresponding to
the second-best match are shown in pink, while those belonging to
the group of worst matches are colored green.

In addition to showing the cluster membership of an individual

simulated feature by its color, its opacity reflects the mean of the
four scaled differences with respect to the matching parameters.
Hence, the lower the correspondence between simulated and ob-
served feature is, the more transparent it will appear on the map —
an additional visual cue that highlights the relative importance of a
simulated feature within the entirety of the ensemble.

The mean opacity of all features belonging to one cluster is also
plotted in a histogram to the right of the map display (Fig. 3b).
This further depicts the employed classification, and thus, this plot
simultaneously serves as a legend for the colors given to the poly-
gons on the map.

Since the numerous features shown on the map partially over-
lap each other, their ordering is important. Occlusion of polygons
cannot be avoided in the current setup, so we decided to plot the ob-
served features on the very top. To visually distinguish them from
the simulated features, they are filled in a dark-gray color, which
changes to black once the feature was selected. These are followed
by simulated features, which are again ordered according to their
cluster membership — ordered from top to bottom following the
global opacity value assigned to the corresponding cluster.

On the example shown in Figure 3, we focus on the area around
Braunsbach, Baden-Wiirttemberg, Germany. The simulated coun-
terparts of the selected observed feature represent the high convec-
tive developments that were actually affecting this region (see also
Fig. 2).

Figure 4 illustrates the distribution of the feature clusters
dispersed around a selected observed feature near Magdeburg,
Saxony-Anhalt, Germany (17:15 UTC). While the observations
are approximated by the NWP-EPS, this example also shows the
spread of the extracted KONRAD3D cells, as well as the distri-
bution of the individual cluster members within a radius of 50 km
around the selected cell.

(© 2018 The Author(s)
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Figure 3: The main map display (a) shows the distribution of simulated convective cells corresponding to an observed feature (in black), at
17:15 UTC. The different colors of the simulated features show their cluster affiliation. The plot in (b) provides a summary of the difference
between the features affiliated with a specific cluster and the observed feature. The blue cluster shows the best correspondence to the
observation, while the green cluster is the least similar. Finally, the temporal evolution of the features shown on the main map is plotted
in (c). Each line corresponds to one of the polygons on the map. The black line depicts the development of the maximum intensity of the

observed cell.

4.2.3. Visualizing the temporal evolution of simulated features

In addition to showing the spatial distribution of the simulated fea-
tures at a single point in time, the mock-up also provides the op-
portunity to follow their development over time, starting with the
time step for which the clustering procedure was performed (in this
case 17:15 UTC). The current concept provides two different views
onto the temporal dimension of the data. The first view is connected
to the polygons visualized on the map (Fig. 3(a)), whose temporal
development can be followed through time by operating the time
slider below the map. The second view is a time series plot, which
is located to the right of the map: Here, the maximum intensity in
dBZ over time is shown for each simulated feature visible on the
map (Fig. 3(c)).

Besides showing the the maximum intensity associated with
each feature around an observed feature on the map, the time se-
ries plot also gives the user an idea of the life cycle of each simu-
lated cell, which can be compared to that of the observed cell. In
this way, a first approach to forecasting the intensity can be carried
out. In the example shown in Figure 3(c), it can be seen that the
maximum intensity of the selected observed cell exceeds those of
all simulated cells within the first two hours of simulation. How-
ever, the intensity of the observed cell falls below KONRAD3D’s
thresholding scheme earlier than some of the simulated cells.

(© 2018 The Author(s)
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5. Discussion and future work

In this short overview, a first approach to visualize object-based
data from nowcasting and NWP-Ensemble is described. The fea-
tures detected with KONRAD3D are plotted in an interactive map
to allow the user the identification of areas with severe convection
over Germany. Each observed feature is associated with a number
of simulated features within a 50 km radius that are classified in
three clusters using the K-Means multivariate clustering method.
This classification simplifies the identification of features that best
match a given observed feature. It also provides an estimation of
the similarity between observed and simulated features, based on
the matching parameters. Thus, the first cluster contains the fea-
tures that are more similar to the observation, whereas the third
cluster groups those features that differ the most from the observa-
tion. Once an observed feature is selected, the user can look at the
evolution of the surrounding features over time and even compare
their maximum reflectivities. This option can be seen as a good ap-
proach to visualize life cycle of the convective features. It has to be
noticed, however, that the clustering method is only applied to the
features available at a single reference time. This restricts the in-
terpretation of the visualization, since it does not take into account
new convective events that might have been forecast for later time
steps, nor those forecast before the reference time.

It is expected to extend the clustering method to other time steps
so that new convection events can be considered. Furthermore, ad-
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Figure 4: A feature near Magdeburg, Saxony-Anhalt, Germany,
was selected, which was also observed at 17:15 UTC. This exam-
ple shows the ensemble spread around the surrounding observed
cells, and also illustrates how the cluster membership of simulated
features follows the distance to the feature in focus.

ditional information that might be useful for potential users will be
implemented in the mock-up tool, such as the number of features
belonging to each cluster or the NWP-EPS member that forecast
them. Additional parameters, e.g. lifetime of simulated cells, could
also be included in the K-Means multivariate analysis to get a more
accurate classification. It is also desired to explore alternative tech-
niques to the K-Means method. For instance, the dbscan method
introduced by [EKSX96] can be used to identify clusters of any
shape, grouping together points that are closely packed together
(points with many nearby neighbors). The points that lie alone in
low-density regions are marked as outliers. An additional advan-
tage of this method is that it does not require a pre-specified number
of clusters.

6. Conclusion

The project SINFONY aims at combining probabilistic nowcasting
methods and NWP-EPS into a single system to enable a seamless
prediction of upcoming convective events in a time scale of several
hours. The wealth of the dataset provided by the project has to be
interpreted and adequately used to be of benefit for various appli-
cations. An effective use of these data will enhance our capabilities
to predict convective features.

The experimental platform used here could be applied to concep-
tualize the data product and corresponding visualizations, before a
thoroughly discussed and refined version is implemented into the
meteorological workstation NinJo. The ability of the browser-based
nature of the mock-up to be shared amongst a larger audience has
the potential to help spawning these discussions.

This first approach takes advantage of the KONRAD3D now-
casting technique to detect convective features from radar data and
the NWP ensembles. In order to easily interpret the ensemble of
simulated features, a multivariate clustering analysis was carried
out. It classifies the simulated features in three clusters based on
their similarities with the observed features. Condensed additional
information about these clusters are displayed adjacent to an inter-
active map of the feature locations.
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