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Abstract

In this paper, we introduce STOAViz, a visual analytics tool for analyzing the saturated thickness of the Ogallala aquifer.
The saturated thicknesses are monitored by sensors integrated on wells distributed on a vast geographic area. Our analytics
application also captures the trends and patterns (such as average/standard deviation over time, sudden increase/decrease of
saturated thicknesses) of water on an individual well and a group of wells based on their geographic locations. To highlight
the usefulness and effectiveness of STOAViz, we demonstrate it on the Southern High Plains Aquifer of Texas. The work was
developed using feedback from experts at the water resource center at a university. Moreover, our technique can be applied on
any geographic areas where wells and their measurements are available.

1 Introduction

Water is the basic element that humans rely on for all living
and manufacturing activities. According to the National Ground
Water Association report in 2016 [NGW16], we extract around
982 km® of water per year from the ground. This number serves
as a good indicator of the need of water in daily life. Therefore,
monitoring ground water, sustaining aquifer capability, and analyz-
ing its changes are highly desirable by decision makers. Venki et
al. [VUS17] discussed two types of errors in well management:
improper removal of wells and redundancy of insensitive wells.
Moreover, as the number of wells increases, it becomes more and
more challenging for specialists to visualize and analyze such a
large amount of well monitoring data which comes in real time.

In this paper, we propose a visual analytics tool for analyzing the
saturated thickness of the Ogallala aquifer, called STOAViz. Satu-
rated thickness is the vertical thickness of the hydro-geologically
defined aquifer in which the pore spaces of the rock forming the
aquifer are filled with water [JASO0]. The main contributions of
this paper are:

e We provide a data analytics tool for visualizing and analyzing a
large number of well data distributed on a vast geographic area.
Our approach is implemented as a web application which can
track user location in real time.

o We integrate time series features for detecting trends/patterns of
monitored data at wells. This provides policy makers to come up
with quick decisions.
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e We demonstrate our application in the Southern High Plains
Aquifer of Texas and conduct an informal user study at a wa-
ter resource center.

The rest of this paper is organized as follows: We discuss the
related work in the next section. Then we provide an overview of
visualization tasks and describe implemented components in our
system. We discuss our implementation and availability of our tool
in Section 4. We provide the expert feedback from our user study
and discussion in Section 5. Finally, we conclude our paper with
future plans.

2 Related Work

This section does not intend to survey all visualization tools for
geospatial temporal visualizations [BDA*14]. Instead, we discuss
some related tools. A simple approach to visualize temporal data
on a 2D map is to attach the time series graphs directly on top of
each geolocation [AA04]. This easily becomes too clustered for
larger time series, especially when geolocations are not equally
distributed. Showing summary statistics [DW13], such as average,
standard deviation, or trends [SRA0S5] on a choropleth map resolves
this concern. However, this comes back to the trade-off between de-
tails and simplifications.

Numerous recent visualization ideas have been proposed to ad-
dress the challenges of big spatial and temporal data analytics.
Keim et al. [KPS04] suggest a three step process for information
visualization: overview first, zoom and filter, and then details-on-
demand. CrimeViz [RRF*10] utilizes this framework but also com-
bines with mashup techniques to integrate additional visual ele-
ments on top of google map for crime analysis. Similarly, Ramakr-
ishna et al. [RCM13] present another software mashup which can
handle a large spatio-temporal data set with 2.5 million records us-
ing hexagon binning.

Keim et al. [Kei02] propose a classification of information vi-
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Figure 1: Major stages in STOAViz visualization: data cleansing and processing, visualization, and interaction.

sualization and visual data mining techniques which is based on
the data type, the visualization technique, and the interaction tech-
nique. Soon after, Andrienko et al. [AAGO3] provide an in-depth
analytical review of exploratory spatio-temporal visualizations.
The authors also categorize existing visualization-based techniques
into two different types based on: (1) what types of spatio-temporal
data they are applicable to; (2) what exploratory tasks they can
potentially support. Even though many techniques use spatial lo-
cation, color, shape, and size to encode information, they do not
generate useful insights by just using simple statistical summaries,
such as average or standard deviation [AA04].

McCaffrey et al. [MJH*05] discuss various digital technologies
for geological visualization and show a complete workflow from
the initial data acquisition stage to the final project output. Wu et al.
[WXO04] introduce feature-based representation to visualize three
dimensional geological data. Hewagamage et al. [HHI99] present
spatial temporal visualization technique using spirals on geograph-
ical map. GeoTime [KWO0S5] enables users to track events, objects,
and activities via a single interactive three dimensional view. Mov-
ing beyond traditional 2D displays, Mathiesen et al. [MMAT12]
applies Augmented Reality with generic smart phones and tablets
to view existing geological data sets.

Mohamed et al. [MLA13] discuss the use of interactive visual-
izations for knowledge discovery in order to support decision mak-
ing in medical domains. In the water resources domain, Venki et
al. [VUS17] combine ArgGIS 10.5 [Env16] with R integration [R
C13] for well data visualization and analysis. This requires strong
technical skills from analysts and present limitations on interactive
capabilities while analyzing multi-dimensional data.

3 STOAViz Stages

STOAViz aims to provide a high-level overview of satu-
rated thickness of Ogallala aquifer. This tool also stretches out
unusual patterns of water level such as sudden monthly in-
crease/decrease [HS04, DW13] and overall trends [BPS*07]. This
section explains STOAViz stages in detail. Figure 1 shows a
schematic overview of STOAViz:

1. Processing: We first clean and preprocess the monthly data col-
lected from well integrated sensors from 1995 to 2016. At the
end of the Processing stage, we have time series data, spatial in-
terpolated data, and well metadata. (see Section 3.1)

2. Visualization: There are multiple linked views in our STOAViz

visualization: the saturated thickness contour map, the google
map, the standard time series graph, and the horizon
graphs [HROS] (see Section 3.2).

3. Interaction: Users can click on a well or location on the map.

The selected well (and other neighboring wells) are plotted in the
time series view. Users can further request a comparison chart to
visualize individual well data and compare to its county average
time series (see Section 3.3).

The STOAViz implements five low-level analysis tasks that
largely capture users’ activities when working with a given
dataset [AES05, KPS04, AAGO03]:

e T1: Provide an overview of large number of well data.

e T2: Retrieve and display well details on demand.

e T3: Group wells based on their geolocations.

e T4: Filter and sort wells by their time series features [HS04].
e T5: Detect suspicious or abnormal wells.

3.1 Input datasets

We use the saturated thicknesses calculated at over 5,200 wells
between the years 1995 and 2016 in the Southern High Plains
Aquifer of Texas for visualization purposes. Saturated thickness in
an unconfined aquifer is calculated using the equation: Saturated
thickness (ST) = Land surface datum (LSD) - Water level (WL) -
Bottom elevation of the aquifer (BT). LSD and BT are measured
with respect to mean sea level (MSL), and WL is below ground
surface.

3.2 STOAViz overview

Main visualization components of STOAViz include the saturated
thickness contour map, the google map, the standard time series
chart, the horizon graphs, and the average comparison chart. All
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of these components share the same encodings: wells are drawn
as filled circles whose radius is computed based on user selection
strategy/feature. Selected wells are highlighted in different colors
while other wells are in black with lower opacity.

The Contour map is plotted based on the well measurements
and their interpolated data for areas where these measurements are
not available. This map provides an high-level overview of water
supply capability for a given geographic area (visualization task
T1) as depicted in Figure 2. In particular, the darker blue regions are
areas with a high volume of water supply while the lighter brown
regions have thinner saturated thicknesses. Wells are overlaid on
top of this contour map. Colored circles are wells with “highest
monthly drop” on their time series.

Moreover, if a user has location tracking enabled via browser or
mobile phone, a flickering filled circle is displayed to represent the
current position of the user. This will help the user to figure out how
much water capability exists in that area.

Figure 2: Saturated thickness contour map of Ogallala in 2013.
The green marker indicates user’s current location.

The google map The contour map serves as a starting point. As
users select a well/location on the contour map, all of the neighbor-
ing wells (or all wells in the selected county) are plotted (visualiza-
tion task T3) in the google map for further inspections. All google-
map navigation capabilities, such as zooming in/out and panning,
are also supported within this view. Figure 3 shows an example
when a user mouses over a well (at the end of red arrow). All in-
formation (well ID, GPS location, county, and measured saturated
thickness over time) are displayed in a popup window (visualiza-
tion task T2). This view is also linked to time series visualizations
(the standard line graph or horizon graphs, based on user choice).

The time series line graphs for selected wells is depicted in

Figure 4. We use the same color encoding across different views in

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

Map Satellite

Well data:
id 2325614

Point (58, 175)

actve true

county  Lubbock

position (33580278, -101.916389)

1999-06 94
2000-01 83
2001-01 94
2002-01 94
2003-01 83
2004-02 91
2005-01 95
2006-02 83
2007-01 83
2008-02 93
2009-02 94
2010-01 82
2010-12 94
2012-01 80
2013-02 89
2014-01 88

radius  2.306122448979592

Figure 3: Visualizing wells on google map (satellite view). The
popup window displays well details on mouse over.

STOAViz. When a user mouses over any well at the bottom legend,
the selected well’s line chart is highlighted while others are faded
out.

County: Hartley

T T T T T T T T T T —
1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
Year

© well 712401

Figure 4: The standard line graphs for wells with a selected well in
Hartley county. This selected well is further examined in Figure 6.

The horizon graphs Users can switch to horizon graphs (instead
of standard line graphs) as depicted in Figure 5. This graph pro-
vides a different perspective in viewing well time series [JME10].
In particular, the time series is split into bands using a uniform in-
terval. The interval and band colors are the same as on the contour
map (see the right color legend of Figure 2). The split bands are
now collapsed so that the higher bands layer on top [HRO8]. The
filled well time series chart becomes a horizon graph that takes up
much less space [YAU]. (How much less depends on how many
split bands that we want.)

The blank time intervals on the horizon graph are time periods
when well measurements are not available. Blue bands represent
high volumes of water supply. The wells in Figure 5 have been
ordered based on how much water they lost within two consecu-
tive months (visualization task T4). Upon mousing over any wells,
a comparison graph of this well to the average time series is dis-
played. The comparison graph is described in the next section.
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Figure 5: The horizon graphs of the same 20 wells as in Figure 4.
Darker blue are thicker saturated thicknesses.

3.3 Interaction

All views in STOAViz are linked. In other words, as users make
a different selection on one view, others are updated accordingly.
Moreover, users can request to show the comparison graph of a se-
lected well to county/neighbor average time series. A bipolar color
band is used to highlight differences: green for above and orange
for below the county average. As depicted in Figure 6, the saturated
thickness of well 712401 in Hartley county is becoming thinner and
thinner (after 2008, the saturated thickness is constantly below the
county average). Policy makers in Hartley county may want to take
actions to stop this decreasing trend.
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Figure 6: Well 712401 in Hartley county (light blue) and county
average comparison (black line): green for above and orange for
below the county average.

4 Implementation

STOAViz is implemented as a web application utilizing the
D3.js library [BOH11] and the Google map API [Inc]. This
is an open source project. Source code, video, web demo, and
project documentation are available on our Github repository
at https://github.com/iDataVisualizationLab/
SaturatedThickness.

5 Evaluation and discussion

We solicited qualitative responses about STOAViz from two ex-
perts at a water resource center: one post-doc researcher and one as-
sociate professor. Both have at least nine years of experience in this
research domain. The informal study started with a quick descrip-
tion (around 10 minutes) of the main components and their func-
tionalities to familiarize users to the main GUI of STOAViz. Then
the experts are free to use STOAViz before providing feedback. Both
of them agree that the contour map provides a high level overview
and can serve as the starting point for their well selection while the
google map provides details of wells. (They can turn on the satellite
images to inspect well location and county, see Figure 3.) More-
over, the average graph is useful to see how the saturated thickness
at a particular well behaves compared to others in the same county.

For the time series visualizations, they indicated that they are fa-
miliar with the line graphs but not the horizon graph. However, they
both got the main idea of horizon graphs after a short explanation.
Each expert has different interests and selected different features to
inspect the time series data of wells. One selected wells with high
variance of saturated thickness over time (depicted in Figure 3).
She indicated that with horizon graphs, she can quickly compare
patterns of a large number of wells. It makes sense that neighbor-
ing wells on the map have similar patterns. Moreover, missing data
(well measurements are not available for certain period of time) can
be discerned quickly.

The other expert selected “highest monthly drop” and detected
an suspicious drop of water within a month (visualization task T5).
He then used the Google map and grasp all wells within that county
and many of them have similar drop on that month. He also com-
mented that “for a smaller selection of wells (fewer than 5), I would
like to use standard line graph since I can read the monthly val-
ues easily. For a larger number of wells, line graph becomes too
cluttered. Therefore, horizon patterns are much easier to compare,
especially for wells with higher saturated thicknesses (blue areas).”

Besides the positive feedback, the experts also pointed out
some limitations of STOAViz. For example, they suggested that the
Google map and contour map should be automatically updated via
interactions with the time series visualizations. These features have
been incorporated in the final product on our Github repository.

6 Conclusion and Future work

In this paper, we present STOAViz, a visual analytics tool with
a case study of the Southern High Plains Aquifer of Texas. The
tool utilizes state of art spatial-temporal visualization techniques to
support various linked views of saturated thicknesses monitored by
a large number of wells distributed on a vast geographic area.

For future work, we will extend the application with Nanocubes
integration [LKS13]. Nanocubes provides real-time visualization
of billions of multidimensional spatial-temporal data expand zoom-
ing and other map viewing experiences. While the current version
of STOAViz is limited to one layer of underground water (the satu-
rated thickness contour map in Figure 2), we eventually target a 3D
STOAViz which allows users to visualize and interact with different
dynamic layers of underground water in a virtual reality environ-
ment.
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