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Abstract

We present a novel algorithm for interpolating discrete cloud data of numerical weather forecasts over time. The
interpolation provides a continuous natural transition of the cloud properties over time intervals of several hours.
A diffusion-free advection scheme transports cloud properties through the wind field. The algorithm is designed
to be embedded in a rendering loop and provides the basis for employing cloud modeling techniques for creating
temporal cloud animations of the future weather.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—

1. Introduction

Clouds provide important visual clues for the perception of
weather. Numerical weather predication (NWP) models sup-
ply detailed forecasts of future atmospheric conditions, but
they do not model clouds explicitly. For presenting the ab-
stract data to a lay audience, like, e.g., in TV weather shows,
usually simplified 2D projections are used [SSK93]. A more
recent approach creates realistic 3D clouds for presenting
the future weather conditions in an intuitively understand-
able way [HHS07]. Their visualization allows fly-throughs
but is restricted to static clouds.

We pick up their results and study the animation of clouds
based on NWP data. This problem comprises two sub-
problems: First, the low-resolution NWP data has to be in-
terpolated in time and space. In a second step, the spatially
and temporally continuous cloud representation can be input
to cloud modeling and visualization algorithms for creating
realistic cloud images. In this work we focus on cloud inter-
polation on the basis of NWP data and introduce a diffusion-
free temporal cloud interpolation scheme which consistently
transforms the clouds over time.

1.1. Clouds in Numerical Weather Prediction

NWP data is usually provided as a set of 2D scalar fields
where each field represents a certain forecast parameter on a
layer of a 3D grid at a certain point in time. The grid either
spans the whole Earth (e.g. 1760 × 880 × 64 [GFS13]) or

a specific region of interest (e.g. Central Europe at 421 ×
461×50 [COS13]). The geographic context of the numerical
grid is given by a map projection (e.g. Mercator or Gaussian)
and a certain level type (usually pressure, terrain-following
or hybrid levels). The horizontal resolution ranges from 1
to 50 kilometer, the vertical resolution ranges from around
100 meters near the ground to 1 kilometer at the top of the
troposphere.

Due to the coarse spatial resolution clouds, as we see them
in the sky, are not directly represented. Rather they are de-
scribed by their overall properties within a grid cell in terms
of cloud coverage or overall cloud water content. The de-
tailed geometry of the clouds is not provided. Only a coarse
classification (convective and non-convective) indicates the
type of clouds present in a cell of the NWP grid. The over-
all structure of the clouds is given by the spatial distribu-
tion of cloudy grid cells. Vertically adjacent cloudy cells can
be regarded as a connected cloud volume containing clouds
which span several levels.

The NWP model simulates atmospheric processes such as
the transport of state variables by the flow (the so-called ad-
vection). Clouds are usually not advected by the simulation,
but are rather derived in place from other forecast parame-
ters. This is reasonable since clouds show a very inhomoge-
neous distribution, and interpolating cloud data during ad-
vection – inevitable on numerical grids – would smear out
the data and alienate its information content. In addition,
clouds are conceptually a result of atmospheric conditions
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which let water vapor become visible. Some sources that
create this condition are advected by the wind (e.g., water
vapor, temperature), while others are not advected (e.g., oro-
graphic lifting, evaporation sources).

1.2. Clouds in Nature

Clouds appear under certain atmospheric conditions when
water vapor condenses and forms droplets or ice crystals. In
the majority of cases this stems from cooling if air is lifted,
caused by the decrease of pressure with height [Stu00].
Hence, clouds are created in ascending air and dissolve in
descending air.

Clouds are embedded in the atmospheric flow and, thus,
travel along with the wind. Flow patterns which create up-
ward or downward motion can move faster or slower than the
actual wind [Stu00]. That is, while clouds on a small scale
(as seen in the sky) travel with the wind, the large patterns of
clouds (like frontal cloud systems) do not necessarily move
at the same speed. This discrepancy is possible since the
clouds are subject to a constant development, showing cloud
formation, deformation and dissolution, while being embed-
ded in the atmospheric flow.

1.3. Cloud Interpolation for Visualization

NWP data is provided at intervals of three or six hours.
A smooth animation of clouds over time is not possible at
this resolution, but requires a temporal interpolation between
consecutive forecast data times. The data provides the over-
all cloud coverage, a basic cloud type, a wind field, and some
parameters which allow to derive certain cloud properties.
The information “which cloud area refers to which area in
the next data time” is not provided by the NWP data. This
makes the temporal interpolation of cloud data difficult.

The usual way to create temporal cloud animations for the
media is to interpolate the data fields pixel-wise by blend-
ing one data field into the next [SSK93]. Superimposed, ani-
mated noise and fast blending can be used to mask the obvi-
ous shortcoming. Still, such animations are unrealistic since
they ignore the wind field completely, see Fig. 1.

Hence there is a strong demand for a practical yet more
realistic solution. We stress that the interpolation necessarily
involves a heuristic component. Our approach follows the
following two key principles: (1) Compliance to the discrete
NWP data at all given time stamps, and (2) a natural tran-
sition between two consecutive time stamps that takes into
account the wind field. We achieve this by interpolating the
cloud properties along wind trajectories and smoothly trans-
forming the clouds along their path.

2. The Interpolation Algorithm

The cloud properties given by the NWP data represent the
overall cloud pattern which moves according to the pro-
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Figure 1: A cloud coverage field representing, e.g., a frontal
cloud system (a). Interpolation based on advection (b) vs. a
pixel-wise, linear interpolation (c).

cesses simulated by the NWP model. Our interpolation al-
gorithm, on the other hand, yields entities for visualization
which move along with the wind. These entities represent
containers for visible clouds and are called cloud cells in
the following. The interpolation algorithm creates the link
between these two representations. It creates cloud cells re-
sembling the NWP cloud properties at the begin of the inter-
val. The cloud cells are displaced according to the wind and
on their way they converge to a state resembling the NWP
cloud properties at the end of the time interval; see Fig. 3.

The transition of cloud properties along wind trajectories
requires a transport of the properties with the flow from start
time t1 to the end time t2 of a time interval.

2.1. Advection

Advection has been studied extensively in computational
fluid dynamics. The three main approaches are characterized
by their underlying spatial structure: grids (semi-Lagrangian
approach [Bri08]), meshes (finite-volume method [Wen08])
and particles (smoothed particle hydrodynamics [DC96]).
Advection on grids is subjected to numerical diffusion
caused by repeated interpolation and is therefore not a good
choice for the inhomogeneous cloud data. Meshes would be
practical since we could use the initial regular grid and ad-
vect its vertices by the wind field. However, to compare val-
ues of the advected, deformed mesh at time t2 to the regular
grid of the next data time would require averaging due to
the partial overlap of mesh cells, which is again undesirable.
Particles transport flow properties without causing numeri-
cal diffusion [ZB05]. Hence we choose particles to transport
the cloud properties consistently over time (and over time
interval boundaries).

Particles are seeded within cloudy regions of the NWP
data. The 3D cloud coverage field is sampled discretely (to
avoid interpolation) and a particle is placed if a non-zero
cloud coverage is encountered. The sampling resolution is
chosen independently of the data grid resolution, eventually
super-sampling the data grid. The cloud parameters provided
by the NWP data at time t1 determine a particle’s initial state.
Its final state is evaluated by tracing the particle through the
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(a) Forward and backward particle tracing.
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(b) Interpolation along trajectories.

Figure 2: (a): Trajectories of particles seeded at t1 traced
forward to t2 (left), and at t2 traced backward to t1 (right).
(b): Interpolation of cloud properties along trajectories.

wind field until the end of the data time interval and sam-
pling the NWP data fields at time t2 at its final position;
see particles A and B in Fig. 2(a). Seeding particles only in
cloudy regions at time t1 does not account for clouds created
after time t1; see particle C in Fig. 2(a). Therefore particles
are also seeded at time t2. A sampling grid is used to bin
the particles traced from t1 at their final position at t2. New
particles are seeded in empty bins where a non-zero cloud
coverage is encountered at the sampling positions. The tra-
jectories of the new particles are calculated by tracing them
back to t1. For the advection we use a time step of a few
minutes as common in atmospheric sciences. Based on the
trajectories and the initial and final state we can interpolate
the cloud properties along the trajectories; see Fig. 2(b).

2.2. Cloud Cells

Cloud cells represent containers for visible clouds of a cer-
tain type. The particles transport the clouds’ properties and
are assumed to be valid within an NWP model level and
within a certain radius; see Fig. 3(a). Cloud cells are created
by grouping particles of the same cloud type; horizontally
in case of cloud layers and vertically in case of convective
clouds. Initially each particle represents a cloud cell. Cloud
cells on consecutive model levels which show a minimum
horizontal overlap are merged to a single cloud cell. We use
a slab cut ball [LAM09] as the bounding volume of a cloud
cell; see Fig. 3(b). Cloud cells provide a cloud base and top
that change consistently over time. They are displaced along
the trajectories of the particles they enclose. On their way
they may split up, e.g., due to different wind directions on
different levels, and form new cloud cells carrying further
on the cloud parameters of their initial cloud cell.

Details of the cloud volume, as needed for visualiza-
tion, have to be created by cloud modeling techniques

for each type of cloud (e.g. [EMP∗03] for stratiform
clouds, [DKY∗00] for broken cloud layers or [Ney97,BN04,
DKNY08] for convective clouds). These techniques can be
applied for populating the cloud cell up to the cloud cover-
age given. The cloud cells store the cloud modeling param-
eters either implicitly (e.g. procedural noise parameters) or
explicitly (e.g. bounding shapes) and the transition of the pa-
rameters for creating a continuous animation; see Fig. 3(c).

The transition of the clouds depends on the cloud type.
Cloud cells changing the cloud type within a time interval
either transform one cloud type into the other or dissolve the
initial cloud and create a new cloud. For example, a broken
cloud layer can be transformed into an overcast cloud layer
by steadily extending the cloud patches. A convective cloud,
on the other hand, grows vertically, starting at a fixed cloud
base, independently of other clouds.

The transformation of clouds can be linked to parameters
which are known to influence the cloud formation or dissolu-
tion. We propose two parameters: The vertical wind velocity
(provided by the NWP data) and an orographic lifting pa-
rameter (positive or negative), derived from the horizontal
wind field and the orography. The latter can be used to cre-
ate spatially fixed clouds by choosing a fast cloud formation
and dissolution rate and a dense particle distribution.

2.3. The Rendering Loop

The interpolation algorithm is designed to be embedded in
a visualization process that allows arbitrary views and tem-
poral animations. For improving the overall rendering per-
formance we restrict the computation to the necessary parts

t1 t2 t3

(a) Particles (black dots) with their radius of influence and slab height
(black boxes) within their NWP model level (dashed lines).

(b) Cloud cells (black frames) displaced according to particle trajecto-
ries and with consistently developing cloud bases and tops.

(c) Detailed cloud volume modeled within the cloud cells.

Figure 3: Cloud representations: (a): Cloud properties
given at data times t1, t2 and t3 are interpreted as a volume
containing convective clouds. (b): Cloud cells describing a
vertically growing, later a dissolving cloud volume. (c): Pos-
sible output of a cloud modeling technique.
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Figure 4: Particle trajectory calculation.

required by the current viewing frustum and light position;
see the video in the complementary material [Web14].

The particles’ trajectories are calculated by seeding, and
forth and back tracing of particles as outlined in Fig. 4. The
particle positions are stored for all rendering times within
a data time interval and are re-used in consecutive frames.
Additional computation on the trajectories is only required if
a modified camera or light source bring in new tiles or when
entering a new data time interval. Cloud cells are updated for
each frame based on the current particle positions.

The cloud cells’ bounding volumes can be used for a
coarse lighting (e.g., for initializing an iterative lighting pro-
cedure) or for intersection tests in case of raytracing. The
interpolation algorithm is independent of the actual lighting
and rendering techniques employed. See, e.g., [HH12] for a
recent survey of cloud lighting and rendering techniques.

3. Results and Discussion

The advantage of an advection-based interpolation over a
pixel-wise, linear interpolation is exemplified in the videos
available in the complementary material [Web14]. Linear in-
terpolation creates a caterpillar-like cloud movement with
large areas showing partial cloud coverage instead of a com-
pact, moving cloud field; see Fig. 5. Accounting for the wind
field not only yields compact cloud fields consistently mov-
ing in space, but it also reveals the complex atmospheric flow
with varying winds at different levels; see Fig. 6

Employing particles for the interpolation of flow prop-
erties is generally applicable and better suited for inhomo-
geneous properties than grid- or mesh-based methods. The
extraction of entities for visualization (here cloud cells) is,
however, very application-specific since it incorporates an
interpretation of the coarse, abstract data. The grouping of
particles, e.g., is motivated by the observation that clouds
grow vertically from a cloud base upwards.

While our algorithm is independent of the projection or

the resolution of the NWP data, the extraction of cloud types
and parameters for cloud modeling requires a specific inter-
pretation for each NWP model. This is due to the different
scales of atmospheric processes captured by the NWP mod-
els and the different cloud parameters provided.

Taking the maximum cloud coverage of particles within
a cloud cell for creating the cloud base and using the cloud
coverage in the upper part as a degree for how many of the
cloud columns reach the top incorporates a relaxation of the
data carried by the particles; see Fig. 3(c). This provides a
better representation of the process captured by the NWP
model than achieved by taking the data literally, e.g., by ex-
tracting an iso-surface of the cloud coverage distribution.

Our algorithm only distinguishes convective and non-
convective clouds for classifying and grouping particles.
Finding further visual cloud types [HH12] by taking into
account other NWP model parameters (e.g., height, vertical
velocity, wind speed and wind shear) or the geometry of con-
nected, cloudy NWP grid cells and formulating meaningful
transitions between those types remains future work.

Our interpolation along trajectories need not provide the
expected cloud movement in all situations, though. Blocking
of frontal clouds on mountain ranges, e.g., could be achieved
by a dense particle distribution and a steered interpolation of
the cloud properties. A robust approach to detecting such
situations in the NWP data is, however, not obvious.

Summarizing, our algorithm is a first but important step
towards closing the gap between real-world NWP data and
established cloud modeling techniques. This opens the path
for creating temporal cloud animations based on NWP data
which are meteorologically sound, thus providing a major
improvement for cloud animations used in the media.

Acknowledgements

Work supported by the Austrian FFG Grant #830029.

Figure 5: Linear (l.) vs. advection-based (r.) interpolation.

Figure 6: A convective cloud cell (red) dissolving and
spawning diverging cloud cells which are gradually trans-
forming to a non-convective cloud layer (white).
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