International Conference on Artificial Reality and Telexistence
Eurographics Symposium on Virtual Environments (2021)
J. Orlosky, D. Reiners, and B. Weyers (Editors)

Deep Learning on Eye Gaze Data to Classify Student Distraction
Level in an Educational VR Environment

Sarker M. Asish &, Ekram Hossain &/, Arun K. Kulshreshth “’, and Christoph W. Borst
University of Louisiana at Lafayette

Abstract

Educational VR may increase engagement and retention compared to traditional learning, for some topics or students. However,
a student could still get distracted and disengaged due to stress, mind-wandering, unwanted noise, external alerts, etc. Student
eye gaze can be useful for detecting distraction. For example, we previously considered gaze visualizations to help teachers
understand student attention to better identify or guide distracted students. However, it is not practical for a teacher to monitor
a large numbers of student indicators while teaching. To help filter students based on distraction level, we consider a deep
learning approach to detect distraction from gaze data. The key aspects are: (1) we created a labeled eye gaze dataset (3.4M
data points) from an educational VR environment, (2) we propose an automatic system to gauge a student’s distraction level
from gaze data, and (3) we apply and compare three deep neural classifiers for this purpose. A proposed CNN-LSTM classifier
achieved an accuracy of 89.8% for classifying distraction, per educational activity section, into one of three levels.

CCS Concepts

* Computing methodologies — Deep learning; Virtual reality; * Applied computing — Education,

1 Introduction

Recent consumer devices can provide immersive virtual real-
ity experiences with sufficient quality and affordability for home
or school use. Potential benefits of VR for education include in-
creased engagement and motivation of students, better communi-
cation of size and spatial relationships of modeled objects, and
stronger memories of the experience. In a real classroom, teachers
have a sense of the audience’s engagement and actions from cues
such as body movements, eye gaze, and facial expressions. This
awareness is significantly reduced in a VR environment because a
teacher can’t see students directly. Additionally, students get dis-
tracted in VR due a variety of reasons such as noise in the real
environment around the student, distractions from other avatars, or
checking external tools [YB21].

We previously explored gaze visualizations to help teachers
monitor students’ attention when guiding VR field trips [RAF*20].
However, continual visualization of gaze from many students is
not practical because a teacher would monitor many cues in a VR
classroom while teaching. A solution is to automatically filter stu-
dents based on attention level and visualize details only for students
who may need extra consideration, allowing a teacher to monitor a
large class with less effort. Broussard et al. [BRKB21] proposed a
teacher interface, for a remote VR class, to show information about
student actions, attention, and temperament. Its information display
could sort or filter students based on student importance derived
from attention level. It incorporated attention detection based only
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on gaze angle to target objects. Improved automatic distraction de-
tection is needed for such interfaces.

Gaze-data has been used in the past for detecting engagement
levels [DOWH12,NI10], stress [JA18], confusion [SC20], and cog-
nitive abilities [BLG*20] in non-VR educational applications. A
few other previous studies [BMTM20, APGVG10, Ayr06] support
the hypothesis of an existing relationship between gaze features and
distraction. Most of the previous VR research has not examined the
level of distraction during a class environment. The relationship
between gaze features and distraction is complex due to individ-
ual variability. Therefore, the traditional statistical methods of data
analysis are not suitable to handle such complex data.

We propose a deep learning system that identifies the distraction
level of a student based on gaze data in VR. We designed an edu-
cational VR environment with various components (avatar, audio,
text slides, and animations) to assist learning. We collected gaze
data of participants using this VR environment, to train three ma-
chine learning models to detect distraction level (low, mid or high).
We tested the resulting classification accuracy. Our system could
detect distraction level of a student on a per-session basis and is a
step towards developing a realtime distraction detection system.

2 Related Work

Educational VR has been mostly used for procedural motor skill
training in fields such as aviation and medicine [GC04, OD17]. In
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(a) An avatar describing a solar panel.
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(b) An avatar explaining the cooling process.

Figure 1: Educational VR environment to explain how a solar field generates power. An avatar explains different components using audio,

animations and text slides.

the last decade, immersive VR has been studied in other educa-
tional contexts, such as safety training [BC17], and training public
security personnel [BMC15]. VR has provided new opportunities
for visualizing and interacting with abstract learning content (e.g.,
molecular structures [WMT*19]) as well as simulation applications
that would be hazardous to practice in real life (e.g., hazardous sit-
uation) [MNI11].

Recent research, specifically in the field of psychology and
human-computer interaction, suggests that text and audio based
learning is effective depending on the task. According to Modality
Principle, on-screen speech is superior to on-screen text for learn-
ing [Butl4] in terms of complex graphic representations that in-
clude dual-channel processing in working memory. Sarune et al.
[BMTM20] found that reading text from a virtual book is superior
to listening for learning, specifically for knowledge retention, but
found no significant differences for knowledge transfer. In some
cases, VR leads to a higher sense of presence and keeps users en-
gaged with educational content [MTM19,MOM19,RBD18]. How-
ever, text-based presentation could lead to higher cognitive load and
less learning in VR [MTM19].

Psychological research found that many students use their cell-
phones to browse the internet or shop online while attending a class
[MPL*18]. Students may also use a cellphone for social media
or other non-academic activities while learning in the classroom,
likely reducing knowledge retention. Research suggests that in
complex or multitasking environments, attention can be diminished
by shifting from one activity to another [DBL*20,SM12,RSG*15].
Additionally, students could easily be distracted in a VR environ-
ment as the entire space is open to look at and there may be many
interesting objects that catch a student’s attention [GBMT13].

Eye gaze has been studied for decades for a wide range of appli-
cations [Duc02] such as medical (e.g., eye surgery [MEK*01]) and
business (e.g., analysis of shopping trends [KLD15] ). D’Mello et
al. [DOWHI12] studied student engagement levels with eye track-
ing data, using gaze pattern to identify engagement levels of a stu-
dent and to re-engage them by directing attention towards an an-
imated tutoring agent. Gaze has also been used to improve user
satisfaction with assistive Al agents by detecting affective states
like stress [JA18], engagement [NI10], confusion [SC20], and cog-
nitive abilities [BLG*20]. Rahman et al. [RAF*20] suggested var-

ious gaze visualizations for monitoring distracted students. Their
results show that the accuracy of detecting distracted students was
significantly lower for multiple students compared to when only
one student was present in the class. This suggests that manual
monitoring of student gaze data in a class is a challenging task
for a teacher. Although eye tracking in VR has been used suc-
cessfully to measure attention, most of the previous VR research
did not examine the level of distraction during a class environ-
ment. Many educational VR studies fail to capture run-time pro-
cesses that occur during a VR educational session as they mainly
focus on evaluating post immersion learning with few isolated mea-
sures [BMTM20, APGVG10, Ayr06]. These studies supported the
hypothesis of an existing relationship between EEG or gaze fea-
tures and distraction. However, the use of gaze features and their
relation to distraction are complex due to individual variability.
Therefore, traditional statistical methods of analysis are not suit-
able to handle such complex. The use of deep learning techniques
has been applied in recent years, e.g., [Hea21].

In our study, we present multiple information sources in a VR
field trip by combining audio to explain objects, an avatar to point
at objects, a slideshow to highlight key terms, and graphical ani-
mations to visualize device operations. We examined self-reported
data on user’s impression of the experience and applied deep learn-
ing to detect distraction level in this environment.

3 Educational VR Environment

Our VR environment was a Virtual Energy Center [BRC16] (see
Fig. 1) used for virtual field trips. we used it as a VR class to ex-
plain the functionality of components necessary for the power pro-
duction . An avatar explained the process and components using
pre-recorded audio instructions, slides, and animations. All these
components work synchronously to explain the subject matter. Ad-
ditionally, relevant solar field components were highlighted to help
students focus on the component being discussed.

The environment presented several informational cues (avatar,
animations, audio, and slides) simultaneously that have been found
to improve learning. Liang-Yi [Lial1] found that avatars boost stu-
dents’ learning. Our environment has a teacher avatar to point at ob-
jects and animations that help students look at the component being
explained. Such animations have been used in the past to visualize
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the internal components of an object [RMFW?20]. In our environ-
ment, animations were used to visualize internal operations of solar
devices. Audio cues explained several aspects of the solar panel.
Baceviciute et al. [BMTM20] found that audio is not superior to
reading text in terms of knowledge retention. However, that study
did not use the combination of the audio with other educational as-
sets like slides, avatars, or animations to present the information. In
our study, text slides were used to capture key terms of a particular
component and mathematical concepts/equations. Our preliminary
tests suggested that these slides were helpful for knowledge reten-
tion since mathematical concepts/equations are not easy to follow
if just explained verbally.

4 Method Overview

As described by the following sections, we collected gaze data
from our VR environment to test machine learning models.

4.1 Participants and Apparatus

We recruited 21 study participants (16 male and 5 female) from
the university. Their ages ranged from 19 to 35 years (mean 25.9).
10 had prior experience with a VR device.

The experiment used a Vive Pro Eye connected to a desktop com-
puter (Core i7 6700K, NVIDIA GeForce GTX 1080, 16 GB RAM,
Microsoft Windows 10 Pro). We used Unity 3D v2018.2.21f1 soft-
ware to implement the VR experience. Data was logged at 120hz,
synchronized to eye tracker reports. Deep learning classification
scripts were written in Python 3.8.8 with sklearn, TensorFlow and
Keras libraries.

4.2 Experiment Design

Distractions can be internal or external. Internal distractions may
be psychological or emotional. External distractions include au-
ditory, visual, or physical noise. It is difficult to control internal
distractions in an experimental setup. So, we focused mainly on
external distractions. Social media notifications, mobile ringtones,
and external conversations/sounds are three major student distrac-
tions [DKB*15,ASD17]. We simulated these distractions in our ex-
periment. We also considered that tapping a VR user’s body could
be a relevant external distraction for VR. However, due to strict
COVID protocols, contact was excluded from the experiment. Re-
garding internal distractions, we relied on participant self report
(see Table 4 described later).

In the distractions phase, external distractions appeared ran-
domly and are described below:

e Social Media: We requested the participants to turn on all so-
cial media (Facebook, Twitter, Instagram etc.) notifications as
the sounds could create distraction [MPL*18]. We did not con-
trol this distraction. Participants got these notifications from their
own social media accounts.

e External Conversations/Sounds: We produced external conver-
sations in three ways. First, we played a conversation between
two people from a YouTube video. Second, a dialogue unrelated
to the educational content played randomly (picked from Table
1) with an intent to shift attention. Prior research found that such
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Table 1: Dialogues used to shift the attention to an unrelated task
to create a distraction

Dialogues to shift attention

QI Think about your last conversation with your family.

Q2 Think about a current work challenge you are facing.

Q3 Think about a bird you saw recently.

Q4 Think about anything that crosses your mind.

dialogues create distractions of up to 15 seconds [KM19]. Third,
we played door closing and opening sounds similar to a real class
door sound. For each session containing distractions, these dis-
tractions appear every 45 seconds.

e Mobile Ringtone: We played a pre-recorded mobile ringtone
(through the headset speakers) and we also called the partici-
pant’s mobile phone once.

The labeling of data points [HDH*20, MMP*20] with ground-
truth is an important step for training a machine learning model.
Some cybersickness-related studies [MMP*20,1LJ*20] had partic-
ipants report a sickness level every 30, 45 or 60 seconds. However,
these did not validate the levels, leading to human errors that could
affect training data quality. For detecting distractions, asking for
feedback every 30, 45 or 60 seconds would undesirably distract
participants beyond the intended distractions. To avoid this, we di-
vided our VR tutorial into several logical sessions (ranging from
100 seconds to 282 seconds) that could have different distraction
levels. A participant may also have a different distraction level at
the beginning and the end of a session. For this, each session was
divided into two sections: the beginning section (first half) and the
ending section (later half). At the end of each session, participants
were asked to report, for both the sections, their distraction level
(low, mid or high) and if they were drowsy.

The experiment had two phases with the same educational con-
tent. Each phase was divided in four sessions, each covering a small
topic. In phase-I, there were no external distractions. In phase-II,
we created the three external distractions. Participants, in the role
of students, tried both phases in random order. Each session ended
with 2 educational quiz questions and each phase (with same ed-
ucational content) had a different set of quiz questions. Thus, the
participant answered a total of 16 quiz questions (2 phases x 4 ses-
sions x 2 questions per session). Because the participants were not
experts on solar panels, the quiz questions were designed to be easy
to answer by attentive students. The purpose of the quiz questions
was to help gauge if the participant was distracted, under the as-
sumption of some correlation between correct quiz answers and
attention. This was considered in data point labeling.

Our experiment had three questionnaires: a pre-questionnaire,
a post-session-questionnaire and a post-questionnaire. The pre-
questionnaire consisted of distractability questions from a cogni-
tive failure questionnaire (Table 2) to assess general distraction
level in the last six months [WKSO02], based on regular activi-
ties. Participants answered these questions as 5 point Likert items.
The post-session questionnaire (Table 3) was filled out at the end
of every session to assess the distraction level (for beginning and
end sections of each session), engagement level, and drowsiness.
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Table 2: Pre-Questionnaire. Participants answered Q1-Q7 as 5-
point Likert-like items. Q8 and Q9 were short text type.

Pre-Questionnaire Questions

Q1 Do you say something and realize afterwards that it might be taken as insulting?
Q2 Do you fail to hear people speaking to you when you are doing something else?
Q3 Do you lose your temper and regret it?

Q4 Do you leave important letters/emails unanswered for days?

Q5 Do you find yourself suddenly wondering whether you’ve used a word correctly?
Q6 Do you daydream when you ought to be listening to something?

Q7 Do you start doing one thing at home and get distracted into doing something

else (unintentionally)?

Q8 Do you check your mobile in a regular classroom? If yes, how often, provide an

approximate time interval like every 5 or 10 minutes?

Q9 ‘What are the common distractions for you in a regular classroom?

Table 3: Post-Session Questionnaire. It was filled out at the end of
every session in each phase

Post-Session Questionnaire
How distracted were you while watching this lesson at the be- low/mid/high
ginning of the session?
How distracted were you while watching this lesson at the end low/mid/high
of the session?
Were you feeling any drowsiness during the task? yes/no

Upon completion of all the sessions, participants filled out a post-
questionnaire (Table 4), modified from [JCC*08], to gauge their
overall experience. The total experiment duration was 45 to 60 min-
utes, but the VR portion including quizes lasted 29 to 45 minutes.

4.3 Data Collection Procedure

Due to COVID-109 risks, participants wore lower face masks in
combination with disposable VR masks. Headsets were disinfected
per participant. Participants were briefed about the study process
and they provided signed consent. Subsequently, the participant
was seated at the station, 2 meters away from the moderator. Par-
ticipants filled out the pre-questionnaire. They then put on the VR
headset and the integrated eye tracker was calibrated by software.
Participants went through the two phases, each consisting of 4 ses-
sions of the VR tutorial, in random order. They answered quiz ques-
tions and post-session questions (Table 3) after each session in each
phase (session duration from 100 seconds to 282 seconds). After
the end of the two phases, they filled out the post-questionnaire
(see Table 4) about their experience. Our experimental workflow is
summarized in Fig 2. We also asked our participants if they have
any feedback about our VR tutorial and which components of the
presentation distracted them or helped them for learning.

Raw gaze data collected throughout the sessions included times-
tamps, eye diameter, eye openness, eye wideness, gaze position,
and gaze direction. The gaze sampling rate was 120Hz. Each frame
included a flag used to discard readings reported as invalid by the
tracker. For example, closing the eyes results in invalid gaze direc-
tion. Invalid data points were discarded for training the machine
learning model. Eye diameter and eye openness were used to esti-
mate drowsiness. We assumed that if a participant closed their eyes

Table 4: Post-Questionnaire. Participants answered Q1-Q11 as 7-
point Likert-like items. Q12-Q15 were multiple choice questions.

Post-Questionnaire Questions

QI To what extent did the VR class hold your attention?

Q2 How much effort did you put into attending the VR class and quiz?

Q3 Did you feel you were trying your best?

Q4 To what extent did you lose attention?
Q5 Did you feel the urge to see what was happening around you?
Q6 To what extent you enjoyed the VR class and quiz exam, rather than something

you were just doing?

Q7 To what extent did you find the VR class challenging?

Q8 How much knowledge you could retain after VR class over solar panels?

Q9 To what extent did you enjoy the graphics and the animation?

Q10 How much would you say you enjoyed the VR class?

Q11 To what extent did you feel drowsiness?

Q12 ‘Which one helped you to understand the lessons?

a) audio b) slides c) avatar d) animations

QI3 Which one helped you to recall information to answer quizzes?

a) audio b) slides c) avatar d) animations

Ql4 ‘Which component(s) distracted you except our simulated distractions?

a) audio b) slides c) avatar d) animations

Q15 Did you feel any other distraction during VR class except our created distraction?

a) Mind Wandering b) Internal Stress ¢) Others

Two Phases
4 Sessions

Randomly

Pre-Q VR Setup Selected Quiz &
VR class Study
and and ith | without session Personal Post Q
Briefing Calibration With 'withou Assesment

Distraction

rJ

Figure 2: Experiment Workflow

for more than two seconds continuously, they were drowsy. Addi-
tionally, we recorded a distance value, calculated as the distance
between the Vive Eye’s reported gaze origin and the highlighted
object’s position. This was intended to indicate how far from the
highlighted object or avatar the participant was looking (see limita-
tion in 6). This would give an indication of how attentive they were
to relevant environment content.

4.4 Ground-Truth Construction and Validation

‘We considered three distraction levels for classification: low, mid
and high. The participant’s feedback at the end of each session
was used in combination with quiz answers for labeling the data
points associated with each section (beginning or ending) of a ses-
sion. Our data labeling algorithm is described in Figure 3. If they
answered both quiz questions correctly and rated their distraction
level as low, associated data points were labeled as low distraction.
If the quiz answers were not both correct and they rated distraction
as high, associated points were labeled as high. If they answered
both quiz questions correctly and rated their distraction as mid or
high, drowsiness was considered. Reported drowsiness resulted in
a "high" label and, otherwise, the label was "mid". If the quiz in-
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Distraction Score:
Low, Medium, High

‘ Drowsiness: Yes/No ‘ Distraction Level

[ Data Collection | [Quiz Performance |
> Low
All Correct
Answers Mid or High
User All Wrong/
P Partially Low or Mid
Correct -
Answers > High

Figure 3: Data Labeling Algorithm

cluded one or two wrong answers, and reported distraction was low
or mid, the label was again assigned as mid or high depending on
reported drowsiness. Based on this method, the data distribution for
both phases is shown in Figures 4 and 5. These figures show that
we were successfully able to create distractions, since there were
notably more distracted points in phase-II.

Distribution of distraction level in the VR Class
(Without created distraction)

90000
75000
60000
45000
30000
15000

Number of Data Points

12 3 45 6 7 8 9 10111213 141516 17 18 19 20 21
Participants

o low = mid ® high

Figure 4: Data distribution for Phase I (no external distractions).

Distribution of distraction level in the VR Class
(With created distraction)
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o |
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Participants Hlow " mid W high

Number of Data Points

Figure 5: Data distribution for Phase Il (with external distrac-
tions). We counted mid and high level data points for each partic-
ipant and noticed that 12 participants (out of 21) reported signifi-
cantly higher level of distraction in this phase (indicated by yellow
and red color in the Figure).

4.5 Data Pre-Processing

The earlier-described eye tracker data was used for machine
learning classifiers (e.g., CNN, LSTM). We split the dataset into
training (70%) and test (30%) sets. Training sets are used to train
classifiers and test sets are used to test classifier accuracy.

Before training, we pre-processed the data to potentially improve
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classifier accuracy. The data was first cleaned by replacing all in-
valid (“NaN”) values with zeros. For distraction classes (low, mid,
and high labels), we found that the number of data points associ-
ated with each class was vastly different. The data was biased more
towards low distraction. This skewed data would bias a classifier
toward the low class. To avoid the bias and provide the same num-
ber of points per label, we up-sampled the data [DZW™ 14, PS17]
for mid and high distraction classes by randomly creating dupli-
cate copies of the data points within those classes. After this, we
had 2831274 data points in the training set with 943758 data points
for each class. Our test set had 1038331 data points. If we instead
down-sampled our data to creating an equal count per class, some
useful classification data could be lost.

We normalized data with min-max normalization and standard-
ization. Min-max normalizes the data range to [0, 1] as follows:

Data;—Data,,;,

Datan = Datayg,—Datapy,

and data standardization is computed as:

_ Data;j—Data,yg
Data, = standard deviation

We tried each technique separately for the entire dataset of all
participants. We found that classifiers had a better accuracy with

standardization. So, we chose standardization for our analysis.

4.6 Feature selection

We used the chi-squared test [TKA19] to identify the best fea-
tures from our dataset. This gave the 9 most important features as:
timestamp, left eye diameter, right eye diameter, distance value (as
in 4.3), left eye openness, right eye openness, left eye wideness (an-
other type of openness measure), right eye wideness, and drowsi-
ness. A correlation matrix for these features is shown in Figure
6). We found that eye diameter, eye openness, and eye "wide" fea-
tures are highly correlated with each other. We used the Extra Tree
(ET) algorithm for feature extraction [KS20]. It gave a low score
for drowsiness, and only three participants had detected drowsiness
(for a short time). So, we did not use this feature.

4.7 Distraction Classification Models

We considered three deep learning models for our system: CNN,
LSTM and CNN-LSTM. The CNN-LSTM model is our proposed
model to combine the best features of the other two models.

CNN: We used the CNN model [ZLC*17] because it can learn
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Figure 6: Correlation matrix with heatmap indicates which fea-
tures are most related to others

Table 5: Proposed CNN-LSTM architecture to classify the distrac-
tion level of students

Layer | Type Output # | Drop| Activation
shape param out

1 ConvlD (8, 128) 512 - ReLU
Batch (8, 128) 512 - -
Normalization

3 MaxPool (4, 128) 0 - -

4 ConvlD (4, 128) 49280 - ReLU

5 Batch (4, 128) 512 - -
Normalization

6 MaxPool (2, 128) 0 - -

7 LSTM (128) 131584 ReLU

8 Dropout 128 0 0.2 -

9 Flatten (128) 0 - -

10 Dense 64 8256 - ReLU

11 Dense 32 2080 - ReLLU

12 Dense 3 99 - Softmax

to extract features from a sequence of observations and can classify
raw time series data. The convolution kernel size [AM20] was 3,
the batch size was 512, and the number of filter maps for the CNN
was 128 (see Table 5 except the LSTM layer-7).

LSTM: We used LSTM because it would capture both temporal
and spatial features of the gaze data. We set the batch size to 512
with hyper-parameter tuning. The model iterated over 200 epochs
during training. After the first LSTM layer, we used a dropout layer
of 50% to deal with overfitting. We used ReLU as the activation
function for the first LSTM layer and the third dense layer. The
last dense layer had three outputs for the three classes of distracted
students whereas the activation function was softmax.

Pre-Questionnaire Mean Ratings
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Figure 8: Mean ratings for the post-questionnaire questions

CNN-LSTM: We propose an improved model by merging lay-
ers from CNN and LSTM [SVSS15]. As the CNN layers are used
for feature extraction from gaze data, the LSTM layer is used for
temporal feature learning. The proposed model comprises of two
Conv1D layers, one LSTM layer, and two fully connected dense
layers (Table 5). The number of filters was 128 for the first two
Convl1D layers, with the kernel size of 3. We used max pooling as
the pooling operation with pool size 2. After the max pool oper-
ation, the output shape was reduced to (2, 128) and then the next
LSTM layer is used for feature learning. We used the Adam op-
timizer [KB14] with a learning rate of 1 X 1073 and categorical
cross-entropy as the loss function.

5 Results

Mean ratings for pre-questionnaire (Table 2 ) are plotted in
Figure 7. We noticed that the majority of participants report dis-
tractibility in social situations. Similarly, mean ratings for the post-
questionnaire (Table 4) are summarized in Figure 8. Most partic-
ipants report trying their best to be attentive in VR but they got
somewhat distracted. Moreover, most of them enjoyed the experi-
ence and were happy with the graphics/animations.

The accuracy and loss for the three models are summarized in
Table 6. The CNN model had a lower accuracy and higher loss than
the other models. The LSTM model had a significant improvement
over the CNN model in terms of accuracy and loss. The CNN-
LSTM model had the highest accuracy of 89.8% with a loss of
26.27%, an improvement over both the CNN and LSTM models.
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CNN ROC-AUC for Distraction Detection

LSTM ROC-AUC for Distraction Detection
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Figure 9: The ROC-AUC curves for the three classification models. The class numbers 0, 1 and 2 corresponds to the three distraction classes,

low, mid, and high, respectively.

Table 6: Average accuracy and loss of CNN, LSTM and CNN-
LSTM models on Test Data

Name Accuracy % Loss %
CNN 86.90 32.49
LSTM 88.40 29.58
CNN-LSTM 89.81 26.37
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Figure 10: Accuracy vs Epoch on the test data for classification

The learning history on the test samples shows that CNN-LSTM
converges to higher accuracy and lower loss faster than the other
models (Figure 10 and 11).

The ROC-AUC curves for the three models are shown in Fig-
ure 9. The CNN model had an AUC of 98% for the high distrac-
tion class, which signifies that, 98% of the time, the model was
able to distinguish between the high and other two classes (low
and mid). The ROC-AUC curve for the LSTM model shows small
improvement over the CNN model in the AUC score for the low
and mid distraction classes. The CNN-LSTM model had the best
performance for the three classes. This result suggests that the pro-
posed CNN-LSTM model was able to distinguish between all three
classes effectively.

The precision, recall and F1-scores for the three models are re-
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Figure 11: Loss vs Epoch on the test data for classification

Table 7: Precision, recall and FlI-score of the CNN, LSTM and
CNN-LSTM models for the classification of distraction label

Name Class precision % recall % F1-score %
CNN low 0.88 0.85 0.86
mid 0.87 0.88 0.87
high 0.85 0.89 0.87
LSTM low 0.91 0.85 0.88
mid 0.88 0.90 0.89
high 0.85 0.91 0.88
CNN- low 0.90 0.89 0.90
LSTM
mid 0.91 0.89 0.90
high 0.88 0.91 0.90

ported in Table 7. With an F1-score of 90%, the CNN-LSTM model
performed best of the three models.

Testing was also conducted on the generalizability of our model
to new variations of the educational environment. For this, we
trained the model on data from three sessions and then tested clas-
sifier accuracy on data from the separate fourth session. Because
each session had a different duration, the percentage of data points
used for the test set was different for each case (Session 1: 26%,
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Table 8: Precision, recall and F1-score of the CNN-LSTM model
for the classification of distraction label using 3 sessions for train-
ing and the remaining session for testing. The session used for test-
ing is shown in column 1.

Session Class precision % recall % F1-score %
1 low 0.66 0.62 0.64
mid 0.51 0.64 0.57
high 0.66 0.54 0.59
2 low 0.58 0.54 0.56
mid 0.58 0.73 0.65
high 0.58 0.40 0.47
3 low 0.62 0.74 0.67
mid 0.58 0.52 0.55
high 0.64 0.50 0.56
4 low 0.48 0.52 0.50
mid 0.63 0.53 0.57
high 0.60 0.66 0.63

Session 2: 15%, Session 3: 16%, and Session 4: 41%). The results
are shown in Table 8. It is not surprising that the accuracy was lower
(ranging from 48% to 66%) when the test data was completely new
to the model.

We asked participants for comments or suggestions about the
VR tutorial, which component(s) distracted them, and which com-
ponent(s) helped them learn. Out of 21 participants, 18 indicated
that audio helped them learn, 16 indicated slides as helpful, 15 indi-
cated animations as helpful, and only 7 indicated the avatar as help-
ful. Surprisingly, 5 participants mentioned that the avatar distracted
them, even though most participants mentioned that all these com-
ponents work in sync and helped them to learn.

6 Discussion

Our results show that the CNN-LSTM model provides the best
accuracy (Figure 10) and lower loss (Figure 11). We also mea-
sured the AUC and ROC values of the three classifiers to evaluate
how good they were in distinguishing between the three distraction
classes (Figure 9). The results suggested that the proposed CNN-
LSTM model was able to distinguish between the three distraction
classes more effectively than the other two models. Our work is
a step towards an automatic real-time distraction level detection
system for educational VR. We believe that such an automatic sys-
tem could help manage a large guided class (30-50 students). For
inattentive students, the system could trigger some action (such as
pointing towards the object of interest [YKB19]) to bring their at-
tention back without any manual intervention from the teacher.

Our experiment had some limitations. For detecting distraction
level, ground-truth construction in an educational setup is challeng-
ing. Usually, educational sessions are long (more than 5 minutes).
Frequently asking participants for their distraction level is not de-
sirable due to its additional distracting effect. So, we divided our
VR tutorial into several smaller sessions and asked the participant,
at the end of each session, to rate their distraction level at the begin-
ning and at the end of the session. This provided coarse granular-
ity: in a 2-minute session, this gives more than 7000 data points per
label. This could have affected our results. An alternative method
for data labeling is to use known timing of controlled distraction

events that last for a short duration (5-20 seconds for example).
This would provide finer granularity for labeling and could poten-
tially improve the accuracy of our system. Another limitation is
the size of our dataset and type of participants. Due to COVID-19
protocols, we could not invite many participants or types of par-
ticipants (we had 21 participants). Our test for generalizability of
the model (Table 8) showed that our current model had a lower
accuracy when tested on a new data set from a different session.
We found that the computed distance feature (see 4.3), which was
intended to be the distance between the looked-at point and the
target/highlighted object, was miscalculated throughout our stud-
ies and was similar to a local gaze displacement magnitude based
on Vive Eye’s reported gaze origin. Nonetheless, it provided some
value (see 4.6). We expect that the corrected distance or relative an-
gle to target objects would likely improve results. Additionally, we
could consider features characterizing fixations and saccades from
eye tracking data [GR16]. Further research is needed to test this.

Student privacy is an important concern when sharing eye-gaze
data of students with the teacher. In our study, eye-tracking data was
collected from participants who gave permission to use their data
within a standard informed consent model. The recorded data was
anonymized. However, given that demographic information may be
discerned from gaze data [LP14], great caution must be taken when
handling it, especially if it has been gathered from minors (school
students). If such a VR-based system is used for a real classroom,
one must ensure that the students understand the meaning of eye
tracking (perhaps by having them review example visualizations)
and get permission from the students (and their parents, for minors)
to track or record their eye gaze. Special care has to be taken for any
longer-term storage to provide security, address legal requirements,
and avoid any misuse of gaze data.

7 Conclusions and Future Work

‘We proposed a deep learning system to automatically detect the
distraction level of students in a VR classroom. We tested three
classification models (CNN, LSTM and CNN-LSTM) and found
that the CNN-LSTM model had a better accuracy (89.81%) in clas-
sifying three distraction levels (low, mid and high). Here, we con-
sidered only eye-tracker data for detecting the distraction level.
However, distraction level cannot be measured merely from eye
gaze, as there are other factors involved (like physical and men-
tal well being) that could affect distraction level. A student could
be listening attentively even when not looking at certain objects,
or vice versa. In the future, we would like to consider more met-
rics and sensor data (EEG, heart rate, skin conductance, etc.) for
detecting distraction. Additionally, it is important to develop real-
time detection methods and train/test models to work in a wider
range of VR environments.
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