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Part 2

Class Notes: Introduction to Crowd
Simulation

2.1 Velocity-based crowd simulation algorithms

A crowd is defined as a set of individual gathered in a same location because they share common goals.
In a crowd, each individual has interactions with his neighbors. These interactions can be of many kind
and can be influenced by a large set of factors which relate to individual properties or the milieu, such
as for example physical, psychological, social or environmental factors. Crowds in motion are most
often studied. Crowds moving in public places and buildings or social events are typical study cases.
In moving crowds, interactions are of mostly physical: during their motion, individuals in crowds avoid
or follow each other, group, disperse, etc. The combination of all these interactions result into typical
large-scale emergent structures, which determine the main characteristics of crowd motions.

Simulating crowds is important for many reasons. Architects simulate crowds to make predictions
about pedestrian traffic flows and to estimate the level of service of public buildings. Animation design-
ers simulate crowds to make visually appealing scenes of battlefields, or to populate a virtual scenery.
Game designers simulate crowds to make lively scenarios in virtual cities, etc. Two major classes of
approaches can be distinguished. The macroscopic approaches directly consider the global aspects of a
moving crowd like for example modeling it as a viscous fluid.

Microscopic crowd simulation enable generating continuous and smooth trajectories for individual
agents. They are based on some local model interactions between agents. The global behavior of a
crowd is then an emergent phenomenon resulting from the combination of the numerous interactions
that agents have. A crowd simulator is then at least composed of the following elements:

1. a neighbor selection process: which determines which set of neighbor agents are interacting with
a given agent,

2. a local model of interaction: which determines how each interaction influences agents motion,

3. an interaction combination process: which integrates all the interactions a given agent is undergo-
ing

A lot of recent efforts in the graphics research has been dedicated to the design of new local models of
interactions. This class explains the novelties introduced by velocity-based models that were introduced
a tenth of years ago and which, in contrast with previous approaches, are able to simulate how humans
drive their motion by anticipating others motion. Since their introduction, many developments have
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built on this principle, which resulted into a breakthrough in the level of realism achieved by crowd
simulators.

The first part of this class is dedicated to the definition of velocity-based local model of interactions.
We also explain why those models enable agents performing anticipated reactions. In a second part, we
present one of the most popular velocity-based crowd simulation algorithm, RVO, as well as a set of
its variants. In a third part, we dedicate a large part of the class to applications. The Golaem company
describes how velocity-based models enabled more realistic simulation for the design of train coaches
or enhanced visual aspect of crowded scenes for movies. Unity3D describes how RVO benefits to
entertainment applications.

2.1.1 Introduction

The main objective of microscopic crowd simulation is to compute the macroscopic behavior of a crowd
by simulating the interactions people have together at a local scale. Pedestrian simulation is a typical
example. We expect to prediction of global traffic conditions from numerical models of the physical
interactions people have during their navigation. Basically, they avoid all the static and moving obstacles
in their neighborhood: collision avoidance is generally considered to be the most crucial interaction for
pedestrian crowd simulation, and the absence of interpenetration between simulated bodies to be a hard
constraint.

Velocity-based models corresponds to a new type of numerical models of microscopic interactions
for crowd simulation. They recently appeared in the literature, in 2007, and various solutions were de-
veloped from various fields: computer graphics, computational geometry, computer vision and cognitive
science. These fields took interest in velocity-based models for various reasons, but a common one is
the need for realistic simulation results, or at least believable ones, at all scales of the crowd, even at the
smallest one. Too many artifacts were produced by previous techniques, especially because of their lack
of anticipation: agents were often trapped in dead-lock situations or producing strange oscillating mo-
tions. Avoiding a collision with anticipation means that avoidance maneuvers are over before agents get
close to each other. Anticipation cannot result from microscopic models that formulates interaction as a
function of distance between agents (which is the case of most of simulators based on particle systems
and physically inspired models).

To allow anticipation, a velocity-based model formulates interactions not only as a function of
agents’ states (positions), but also as a function of their derivatives (velocities). The basic principle
of velocity-based models is to decompose, for each agent, the reachable velocity domain (all the global
motions an agent can perform) into two components: the admissible, and the inadmissible velocity do-
mains. The admissible velocity space is the set of velocities at which an agent can move without risk
of future collision. At the opposite, a risk of collision appears when the agent moves at a velocity be-
longing to the inadmissible domain. Obviously, the notion of collision risk is considered with notion of
time. Time-to-collision (TTC) is a classically used variable to describe the risk with respect to the time
dimension.

How to compute the admissible and inadmissible velocity domains in the situation of a crowd, when
all obstacles are constantly moving and each agent is performing adaptations independently? By work-
ing with short time-windows and by constantly updating agents’ states and decisions, we show that
velocity-based models provide convincing and smooth simulation results. Some recent efforts in models
evaluation on real data showed that this category of models is promising for realistic crowd simulation.
The objective of this paper is to provide an overview of some existing solutions. The paper is organized
as follows: section 2 situates velocity-based models among other simulation techniques, and gives a
list of existing velocity-based models, as exhaustive as possible. Based on experimental observations
of collision avoidance behaviors, Section 3 shows that velocity-based models are grounded in reality.

4



Section 4 describes 3 existing velocity -models in the objective to provide a pedagogical description
and to emphasize their singularities. Finally Section 5 further discusses differences between models and
proposes future development paths for this new category of models.

2.1.2 State of the art

Crowd simulation can be approached from two opposing perspectives. One is to consider it as a co-
herent body, which is the macroscopic approach. The other is to build the crowd from local inter-agent
interactions, which is the microscopic approach.

From the macroscopic point of view [13, 5], a crowd is modeled to behave like a fluid, thus allowing
to use fluid dynamics inspired concepts such as velocity potential fields. The main focus of this type
of approach is to obtain a coherent behavior from the crowd, leaving aside individual agents’ goals and
constraints and enforcing non-interpenetration (the primary constraint for crowd simulation) at the last
moment. Since these approaches have been designed with only global patterns in mind, many artifacts
appear at the local scale. It is for example possible to see agents moving sideways, collisions or even
residual inter-penetrations.

On the contrary, from the microscopic point of view, individual constraints and goals are most im-
portant. A global behavior is then expected to emerge as a result of these complex, local interactions.
Various methods exist to simulate these interactions.

A possibility is to discretize the space into cells as in cellular-automata and model agents as occupied
cells [12]. In this case, interactions are modeled using (often probabilistic) transition rules and their
complexity varies with the discretization. Different behaviors can be modeled this way such as the
formation of lanes when two groups cross ways for example. However, due to the necessary levels of
discretization, it becomes impractical to model complex collision avoidance strategies; this is usually
handled by forbidding agents to move to an already occupied cell.

Non discrete models, on the other hand, let agents make decisions based on several different inputs
and criteria. The first such model (Boids model) has been proposed in [11] where agents made decisions
based on three rules: separation (agents avoid overcrowding), alignment (agents steer towards a common
goal) and cohesion (agents keep close to the group). Another model has been proposed in [3, 4] as an
analogy to physics where agents were subject to forces, hence the name Social Forces model. This was
a position-based model, all forces which affected the agents were obtained based on their positions.
This allowed to model more complex collision avoidance behaviors as well as other phenomena such
as friends and store fronts where the forces would be attractive instead of repulsive as is the case for
obstacles.

In the recent years, velocity-based models emerged as an evolution of the position-based Social
Forces model. These models, also called predictive models, process more information than the position-
based ones. They are essentially able to predict the trajectory of the agents and make decisions accord-
ingly. The most popular way of doing so is to establish an admissible velocity domain which contains all
velocities that will not lead to a collision. All that remains is then to choose the velocity that is closest to
a preferred velocity (for example one that leads to the goal) thus necessitating the smallest acceleration.

The Dynamic Window Approach, proposed in [2], aimed to allow robots to avoid collisions. The
method is essentially a greedy exploration algorithm of possible velocities weighted by a cost based on
the robots’ dynamics (the cost is very high if the velocity leads to a collision). This model later inspired
the velocity-obstacle method [1]as well as the first collision avoidance approaches in the field of crowd
simulation.

Paris presented a technique to perform collision avoidance reasoning in the velocity space in[8]. The
principle is to divide the space in front of a given agent into sectors and for each of these, it establishes
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a minimum and maximum speed which form the interval of speeds that lead to a collision. The agent is
then free to choose the velocity outside these intervals that is closest to his preferred speed.

Following, van den Berg introduced the Reciprocal Velocity Obstacle (RVO) model [14]. In this
approach, pairs of agents are represented in the relative velocity space and each velocity (a point in
velocity space) that leads to a collision in a certain time window is made unavailable, thus forming a
velocity obstacle. The chosen velocity is then the closest one to the preferred velocity and outside the
obstacle. This model has since been updated with the ability to divide the avoidance effort between
agents as well as the ability to use acceleration information (leading to the newer Acceleration-Velocity
Obstacle model).

Proposed in [9], the Linear Trajectory Avoidance (LTA) model explores a set of possible moves and
associates a cost to each of them. The cost is a function of future crossing distance, which is estimated
by extrapolating trajectories given the current positions and velocities. The model was used in the
framework of video tracking of real pedestrians. It acts as a predictor for the tracker, and was proved to
significantly increase tracking quality, especially when occlusions occur.

The Tangent model proposed in [10] functions in a similar way where agents (as well as their per-
sonal area) are represented in the relative velocity space. However, here the goal is to compute the
interaction area (where both agents are the closest) and, based on its position relative to the walkers’
personal areas, a decision is made on which agent goes first and which gives way. The resulting adapta-
tion efforts are share and asymmetrical as observed in real-life scenarios.

Finally Ondrej’s Vision model aims to solve interactions based on information accessible from the
visual flow, thus simulating a perception-reaction loop [7]. The agents rely on the bearing angle and
the approximate time-to-collision to make their decisions. They are also capable of interacting with any
kind of static or dynamic obstacle as long as they ï£¡seeï£¡ it.

These earliest velocity models for crowd simulation have served as a basis for many developments
then. The remaining part of the class show the latest developments for the RVO-family of simulation
algorithms. Before that, we wonder why/how this new class of simulation algorithms may improve the
level of realism reached by simulations.

2.1.3 Experimental validation

The basic principle of velocity-based models is to compute the admissible velocity domain, i.e., the
velocities at which an agent can move without provoking collisions in the near future. Each model
proposes specific methods to compute this domain and to select a specific solution velocity. However,
all of them are based on a linear extrapolation of the current situation to check for future collisions. Do
humans perform such a prediction? Do they anticipate the future conditions of an interaction and do
they react accordingly? To a certain extent, this hypothesis made by velocity-based models is validated
by the following experiment.

We designed the experiment illustrated in Figure 2.1. The results of this experiment are completely
detailed in [6]. We asked some participants to stand at the corners of a square area (25m. large) and
asked them to walk to the opposite corner. We controlled their task with networked computers at each
corner. We synchronized participants starting to provoke the situations of probable collision between
two participants following orthogonal paths. We randomized passage orders and put occluding walls to
prevent participants from reacting before they reached their comfort speed and seesaw each other. We
recorded their trajectories using an optoelectronic motion capture system. We observed more than 400
pairwise interactions. The Eexperimental setup is illustrated in Fig. 2.1.

The variation of individual behavior, reaction delay and comfort speed actually changed the accu-
rate conditions of the crossing. Then, we could analyze the correlation between initial conditions of
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Figure 2.1: Left: illustration of the experimental setup to observe collision avoidance between two
participants. The square experimental area is represented from top (25m wide). Right: picture taken
during experiments. One can see the two participants who received a start signal following orthogonal
trajectories and avoiding each other.

interactions with the existence and the nature of avoidance maneuvers. We defined MPD, the minimum
distance at which participants would meet if they dido not perform any avoidance maneuvers, i.e., if they
continued walking straight in their direction at constant speed. In other words, we compute an estimate
of the closest approach by linearly extrapolating the participants’ trajectories from current position and
velocity. The MPD can be computed at any time: Fig. 2.2., left plot, displays an example of evolution
of MPD in time, for the whole interaction phase (the interaction phase starts as soon as participants are
able to see each other and ends when they pass at minimal distance). Time was normalized for each
experiments and grewows from 0 (beginning of interaction) to 100 (end of interaction).

Figure 2.2: Left: MPD evolution in time during the whole interaction phase. Right: mean evolution of
MPD during the whole interaction phase for groups of 40 experiments, ranked and grouped by order of
initial MPD value.

In the example of Figure 2.2, left plot, one can observe a typical situation and its evolution in time.
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At time t=0, MPD=0.2m, which means that if participants continue walking like this, a collision is
predicted (distance is between body centers). Rapidly, MPD starts progressively growing up to 0.8m.
This distance is no more critical and allows participants the avoiding collisions. The MPD value is
regulated to this value during the last quarter of interaction. How can we interpret this evolution? We
here show the clear sign of the ability of humans to predict the situation of future collisions and to react
with anticipation. Indeed, by definition, the variation of MPD can only be explained by some maneuvers
performed by walkers. We observe i) that MPD control by participants starts rapidly after they are able
to see each other, ii) that the contribution of maneuvers is positive: MPD is monotonically increasing,
iii) MPD is not exaggeratedly increased, iv) that maneuvers are over waylong before interaction is over
(interaction duration is 4 seconds on average).

We described a specific example. We ordered our 400 experiments by the initial MPD value, and
formed 10 groups of 40 experiments each. We computed the average evolution of MPD for each group.
Results are reported in Fig. 2.2., right plot. We show that, when MPD is initially low (groups 1, 2, 3,
4, 5, and 6 with MPD < 1m at the beginning of the interaction phase), MPD is controlled by avoidance
maneuvers and increased to an average of 0.8m. For other groups, no avoidance is observed and MPD
remains constant on average (still, with some fluctuations, report to [6] for details).

The conclusions of our experiment are the following. First, humans are able to predict the future
conditions of interactions with accuracy: avoidance maneuvers (i.e., variations of MPD) were observed
only when required. Second, humans are able to react accordingly, in advance, to the benefit of the
situation: the fact that avoidance maneuvers are over before people reach their closest approach proves
anticipation. These two conclusions partially validate the foundations of velocity-based models and
prove them to be closer to real human behavior in comparison with distance based models such as social
forces models or other particle models.

2.1.4 3 examples of velocity-based models

The fundamental objective of velocity based models is to compute the admissible velocity domain, i.e.,
the set of walking velocities that prevent agents from enter into collision with static and moving obstacles
in the near future, and to select a specific solution among this set. Various techniques were proposed to
compute this domain. In this part of the class we describe, discuss and compare 3 solutions that were
developed at Inria in the past 5 years. These models are denoted: the Paris model [8], the Tangent model
[10] and the Vision-based model [7]. Related papers are provided in annex to these notes.

The Paris model

The Paris model proposes a discrete approach to estimate the admissible velocity domain. Each agent’s
motion is controlled by the direction of walking θ and its walking speed s. Let us consider an example
of interaction between two agents, A and B. We describe below how the motion of A is controlled by
the model with respect to the motion of neighbor agent B.

The future positions of B are predicted from the linear extrapolation of the current position and
velocity vector (current time is time t0). In Fig. 2.3, left image, the current position and velocity of A
and B are shown, as well as the future positions of B at times t1, t2 and t3.

Several time intervals are considered. For each time interval [ti, ti+1], the angular sector covered by
the predicted motion of B and relatively to the position of agent A is computed. In Fig. 2.3, the left
image displays the angular sector covered by B between t1 and t2. The angular sector is delimited byθ1
and θ2. Agent A may enter into collision with B in the time interval [ti, ti+1] if, and only if, A moves in
a direction belonging to this angular sector.
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Figure 2.3: Illustration of the Paris model: Interaction between two agents A and B. Left: illustration of
the time interval [t1 − t2], of the angular sector [θ1, θ2] and of the speed interval [smin, smax]. Middle:
repetition of computations for successive time intervals. Right: representation of the deduced admissible
velocity space in the control space.

For each time interval and corresponding angular sector, we additionally compute smin and smax,
which are respectively the minimum speed at which A should move to pass in front of B, and the
maximum speed at which A should move to give way to B. In the example of Fig. 2.3, if A moves in
a direction θ ∈ [θ1, θ2] at a speed s ∈ [smax, smin], there is a high risk of future collision. Fig. 2.3
illustrates these bounds (colored parts of angular sectors are safe speeds).

Steps 1-3 are repeated for each neighbor agent and for each time interval. Portions of inadmissible
velocities (belonging to intervals [smax, smin] and [θi, θi+1]) are successively reported into the control
space (Fig. 2.3., right image: the space left blank corresponds to the admissible velocity domain). By
construction, the admissible velocity domain is deduced. The model uses a cost function to deduce the
best solution belonging to this domain (that minimizes deviations as well as distance to comfort speed).

As a conclusion, the Paris model iteratively computes the inadmissible velocity domain with some
approximation. Indeed, smin and smax should be functions of time, but only the worst cases values are
retained for one given time interval and one considered neighbor agent. The shorter the time intervals,
the more accurate the model. But this approximation allows the model to be efficient in terms of compu-
tation time. In the original paper, to find a trade-off between accuracy and performance, Paris suggests
to sample future time in an irregular manner: the first time intervals, which correspond to the imminent
future, are shorter than the following ones (the paper suggests: t1 = 1s., t2 = 2s., t3 = 4s., t4 = 8s.).

The model easily takes into account multiple interactions by looping steps 1-3 of the method for
several agents. Each time, a new set of constraints is added to the control space. The model is also able
to consider static obstacles: they are sampled and considered as sets of static agents. They are processed
the same way as moving agents, at the exception of speed constraints. Only smax is computed, smin has
no sense here.

The Tangent model

The Tangent model was designed to reproduce some experimentally observed interactions between two
walkers with a very high level of realism, higher than with the Paris model. In particular, the Tangent
model considers the human perception of othersï£¡ velocity, and introduces some error terms: their role
is to delay avoidance maneuvers when accurate perception is not yet obtained. Doing so, the timing
of interactions is reproduced. To our knowledge, the Tangent model is still the only one attempting
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Figure 2.4: Principles of the Tangent model. Left: interaction between agents A and B. Middle:
interactions between agent A and (B + C). Right: illustration of the resulting constraint in the control
space.

to correctly model interactions in time. The following paragraphs explain the basic principles of the
Tangent model. A detailed description is to be found in [10].

The model is described from the example of motion control for agent A during interaction with
agent B (see Fig. 2.4.). The velocity vector of B relatively to A, VB/A, is first computed. By linear
extrapolation, VB/A allows to estimate the distance at which B will pass A. When the crossing distance
is too low, A has to perform an avoidance maneuver. To this end, we define a safety distance in front
of A: we consider that the crossing distance is too low when VB/A belongs to the interaction area
represented in Fig. 2.4., left image. To model when A should react, we consider in addition a perception
error ε that decreases over time. A actually reacts when VB/A + ε belongs to the interaction area.

To avoid a future collision, the relative velocity vector VB/A must lie out of the interaction area.
Agent A can adapt this relative velocity by playing on its own velocity vector VA/W (we cannot assume
that A controls Bï£¡s motion), we remind that:

VB/A = VB/W − VA/W

where W refers to the World coordinate system. Fig. 2.4., illustrates these two components of the
relative velocity vectors. In the example Fig. 2.4, one can see that A can for example decelerate: the
VA/W component of VB/A would then be shorter and collision avoided. Equally, A could turn to the
right.

These adaptations can be better appreciated form the control space point of view. Indeed, the inter-
action area is similar to two linear inequality constraints that can be projected onto the velocity space.
Multiple interactions can then be solved as by solving a system of linear inequalities. Fig. 2.4., middle
image, illustrates an interaction between agent A and two other agents (B + C). In the right image,
we project the constraints imposed by interaction in the velocity space. This representation enables an
easy description of the situation and how to adapt the motion to avoid collisions. One can observe that
the current velocity of A will provoke a future collision with B. A could decelerate to give way to B,
but will then start interacting with C. In this specific example, one valid solution could be to turn to the
right and slightly decelerate: A would give way to B but go before C.

The tangent model can consider static obstacles with geometries described by sets of line segments,
as explained in [15]. In comparison with the Paris model, we can see some differences. The time di-
mension is taken into account: the model describes risks of future collisions, but does not explicitly
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estimate when said collisions will occur. Instead, by introducing an error term, a reaction time is simu-
lated. To solve interactions with respect to the imminence of collision risk, we actually order interaction
with respect to time-to-collision. The system of linear equalities that captures multiple interactions is
progressively built in this way until a limit number of interactions is reached or when the solution space
becomes null. Doing so, agents react to interactions having a higher risk of collision.

The Vision Model

Figure 2.5: Principles of the Vision model. Left: situation of an interaction between agent A and two
other agents (B + C). Right: visual representation from the agent A’s point of view is computed and
projected into the (α̇, ttc)− space.

The two previous models assume that agents, i.e., simulated human walkers, are able to integrate a
large quantity of information about neighborsï£¡ motions. This information is progressively projected
into the control space to deduce the admissible velocity domain. Even though the Tangent model also
models motion perception error to better simulate the timing of an interaction, real humans do not
process information this way to control their locomotion. They control their walk mainly according to
their visual perception of their environment. The objective of the Vision model, in comparison with the
two previously proposed models, is to better simulate this perception-action loop.

The neuroscience field stated that humans, during avoidance of static or moving obstacles, succes-
sively answer two questions: will a collision with the obstacle occur? When will this collision occur?
They react accordingly. The manner in which humans process their optical flow to answer these ques-
tions is still under debate but some theories state that two variables are directly exploited by humans for
motion control: first, α̇, the derivative of the bearing angle, and second, ttc, the time-to-collision. When
an obstacle is always visually perceived under the same angle (i.e., α̇ = 0), and is growing in the image
formed on the retina (ttc > 0), a risk of future collision is detected. The imminence of the collision risk
is determined by ttc as well.

The Vision model reproduces this perception action loop. The principle of the model is illustrated
in Fig. 2.5, from the example of an interaction between an agent A and two other agents (B + C), as
shown in the left image of the figure. To start, we compute a digital representation of the environment
from the perspective of agent A (right image). This representation is computed similarly to classical
graphical rendering techniques. A matrix represents the perceived image, each pixel is computed based
on rastering techniques. The comparison stops here, we do not compute the pixels’ graphical properties
(color, intensity). Instead, for each pixel pi, two values are computed: (α̇i, ttci), the time-derivative
of the bearing angle and the time-to-collision. These values are deduced from the relative position and
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velocity of the corresponding obstacle the pixel belongs to. It should be noted that an obstacle is possibly
represented by several pixels (especially when close or big), and that each value may change for each
pixel, because relative positions and velocities slightly change.

At the end of the rendering process, the notion of obstacles disappears, the agent A now interacts with
a pixel cloud with various (α̇i, ttci) values. All this visual information is projected into the (α̇, ttc) −
space. Agent motion control is performed according to a simple perception-action simulation loop:

1. Pixels with low α̇i values correspond to a risk of future collision. When such pixels are per-
ceived, the agent turns to change this situation. The goal of the agent is taken into account when
computing this anticipated reaction to avoid large deviations.

2. Pixels with low ttci values correspond to an imminent risk of collision (even with large α̇i val-
ues because of the body envelope). When pixels with such low values are perceived, the agent
decelerates. He adapts his tangential speed to the lowest perceived ttci value.

In the example of Fig. 2.5., we explain how agent A’s motion control is performed during an
interaction with two other agents (B + C). Agent B is perceived with low ttc pixels values whereas
agent C is perceived with low α̇i pixels values. Both a risk of imminent and future collision. As a
result, agent A will both decelerate and turn to solve this interaction. Pixel detection thresholds as well
as motion control laws, which constitute the core of the vision model, are detailed in the original paper.

This model has interesting properties. It is able to consider any type of obstacle, static or moving and
with any geometry, with undifferentiated processing because they are all reduced to a set of pixels. Also,
the visibility of obstacles as well as their importance relatively to the place they occupy in the perception
image is implicitly taken into account. Finally, the model was proven to be capable of simulating the
emergence of well known pedestrian patterns under some traffic conditions.

2.1.5 Conclusion

Figure 2.6: Simulation Results. Left: collision avoidance between 2 agents simulated by the Tangent
model, output trajectories (in color) are superimposed with experimental data (black): situation can be
accurately reproduced. Middle and Right: Simulation results for the Vision model. Emergent formation
of pedestrians are observed, conform to real observations.

We successively described three different velocity-based models. They propose three different meth-
ods to compute the admissible velocity domain and to finally control the agentsï£¡ motion. They can be
compared with respect to various criteria.
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First, they were designed with different objectives in mind (see Fig. 2.6). The Paris model was,
chronologically, the first velocity-based model: the objective was to enable anticipated adaptation for
crowd simulation. But when a reaction should start? The tangent model answers this question by
introducing a ï£¡motion perception errorï£¡ term in the formulation of the model. But both of these
solutions remain far from the real perception-action loop that humans use to control their locomotion,
which is modeled in the vision approach with yet unparalleled fidelity.

Second, they are based on different control spaces. The Paris model works in the orientation-
speed space (we call speed the norm of the velocity vector). The Tangent model works in the angular-
tangential-velocity space. Finally, the Vision model independently controls turning motions and speed
(respectively from the existence of a risk of collision and its imminence). Next, all these models take
into account obstacles with various geometries, which is a very important property and often neglected
in other approaches. The Paris model samples obstacles as set of static agents. The Tangent model is
able to simulate interactions between agents and line segments, which is very practical when considering
building-like environments. Finally, the vision model considers indistinguishably any kind of obstacle
(other agents or static obstacles) with any geometry, because motion control is performed from their
graphical representation.

Also, they consider time-scale in various ways. The Paris model provides both risks of collisions
and their situation in time: several time windows are successively explored. At the opposite, the Tan-
gent model computes risks of collision, with one single TTC value (based on current velocities), but
unlimitedly explores future time, as for the vision model.

Finally, both the Paris and the Tangent model need additional techniques to filter, order and select
interactions (from the visibility of agents, their relative positions in space, the imminence of risk of
collision, etc.). Indeed, one agent should not interact with all other agents if numerous (as real humans
who only consider a neighborhood). The effect of the used notion of neighborhood on simulation was
proven to be important in terms of emergent behaviors. The vision model is here more satisfying, as this
selection process is implicitly based on obstacle visibility and relative importance (by their size in the
perceived image). The vision model was proven to simulate the emergence of patterns of pedestrians
with phenomena similar to reality. Is this property responsible for this interesting behavior?

Other questions still need addressing concerning velocity models. New types of interactions should
be addressed. Recently, a new model for the following behavior was proposed, with a high level of
realism as evaluated from experimental data. How to combine, for example, following and avoidance
behaviors to simulate complex group behaviors, which is crucial in the aim of simulating natural looking
crowds?

The fundamental basis of velocity models should also be put again into question. A simple linear
extrapolation of trajectories based on current position and velocity is sometimes a bad prediction, espe-
cially during maneuvers (a small deviation may completely change the trajectory prediction between two
time steps): in crowded places where people constantly adapt their motion, is using a velocity model
useless? Probably not, because computations are constantly re-evaluated. But smarter predictions, at
the level of real human abilities, would probably make this new type of model even more realistic and
useful.
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and Evacuation Dynamics, pages 75–85, 2001.
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Tutorial 
Introduction to crowd simulation

Julien Pettré Nuria Pelechano

Inria Universitat Politecnica de Catalunya

Character Animation

• Character Models
• Skin and cloth models
• Rigging
• Keyframing vs. Motion Capture

3
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Character Models

• Triangle mesh representing the skin 
(+textures) and cloth

Character Models

• Triangle mesh representing the 
skin 

(+textures) and cloth
• Skeleton: hierarchy of bones
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Character Models

• Triangle mesh representing the skin 
(+textures) and cloth

• Skeleton: hierarchy of bones
• Rigging
• Skinning

Palette Skinning

• Crowd animations: usually skeletal based
• Linear blend skinning
• Dual quaternions

• Matrices stored in GPU
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Character animation

• Walk Cycle: A looping series of positions
• Shifting the animation provides the appearance of walking

• Animations can be exported with or without root displacement

How we can create new animation 
sequences from existing data?
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Blending and Time Warping

• Interpolating between animation clips:
• Blending weights
• Timing (fadeIn/fadeOut)
• Time alignment

• Time Warping:
• Interpolation within animation clips

Creating animations with Motion Graphs

• Every motion clip is a graph
• Vertex = pose
• Edge = transition frames
• Each captured animation is a graph

Motion Graphs. L. Kovar, M. Gleicher F. Pighin, SIGGRAPH 2002.Motion Graphs. L. Kovar, M. Gleicher F. Pighin, SIGGRAPH 2002.
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Creating animations with Motion Graphs

• Every motion clip is a graph
• Vertex = pose
• Edge = transition frames
• Each captured animation is a graph
• Add transitions between similar poses

Motion Graphs. L. Kovar, M. Gleicher F. Pighin, SIGGRAPH 2002.Motion Graphs. L. Kovar, M. Gleicher F. Pighin, SIGGRAPH 2002.

Available tools and SW

• Mixamo https://www.mixamo.com/

• Autodesk® Character Generator
https://charactergenerator.autodesk.com/

• Cal3D       http://home.gna.org/cal3d/

• HALCA     
http://www.lsi.upc.edu/~bspanlang/animation/avatarslib/doc
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Games Engines

• Unity: 
https://unity3d.com/

• Unreal Engine: 
https://www.unrealengine.com/

How do I get my character to walk 
through my VE?
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Animating characters

• Footstep based trajectories
• Following a given footstep trajectory

• e.g: obtained from inverted pendulum model
• Planning at the footstep level

• Root based trajectories:
• Driven by velocity vector 

• e.g: joystick input
• Driven by velocity vector and position of COM 

• e.g: typical output of a crowd simulation system
• Driven by velocity & orientation

Footstep based trajectories
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Footstep based trajectories
Following a given footstep trajectory

Synthesizing Motion Following Footsteps

• Goal
• Online animation synthesis for footsteps simulators

• Satisfy foot placement constraints
• User control over the trade-off between footstep accuracy and root

velocity

Singh S., Kapadia M., Reinman G. and Faloutsos P. Footstep navigation for dynamic crowds. 
Computer Animation and VirtualWorlds, volume 22(2‐3):pp. 151–158 (2011).
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4.2. Synthesizing Motion Following Footsteps

20/4
7

*

* Johansen R. Automated Semi‐Procedural Animation. Master Thesis (2009).

p1

p2
p3

r

0≤λ4<β
qj λ4=1
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One step at a time: animating virtual characters based on foot placement

Egges, Arjan, and Ben van Basten. The Visual Computer 26.6-8 (2010): 497-503.

Footstep based trajectories
Planning at the footstep level
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Footstep based trajectories

Planning using Footsteps

• Goal
• Computation of natural footsteps trajectories for groups of agents

• Accurate spatio-temporal foot placement
• Fast computation: from a small set of animation clips outputs a 

sequence of footsteps
• Dynamic method
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Planning using Footsteps

Planning using Footsteps
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Planning using Footsteps

• Results
• Unity Game Engine
• Over 40 agents in real-

time (Intel Core i7-
2600k @ 3.40GHz 16 
GB RAM)

• 28 motion captured
animations

• FPS results depend on
planning time

Planning using Footsteps

• Pre-computed search trees
Lau, Manfred, and James J. Kuffner. "Precomputed search trees: planning for interactive goal-
driven animation." Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on 
Computer animation. Eurographics Association, 2006.



10/03/2017

15

• Pre-computed search trees

• Pre-computed search trees
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Root based trajectories

Root based trajectories
Driven by velocity vector 
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Animation driven by velocity vector 

• Typical approach in video games to drive the animations of 
the character representing the player
R. S. Johansen, Automated Semi‐Procedural Animation, Master Thesis. 
URL http://runevision.com/thesis/ 

• Unity: Mecanim
• Blend trees: allows to create animation by blending between two 

pre-existing animations (e.g. to create an animation half way 
between walking and running)

• IK to make small adjustment (e.g. foot positioning)
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• Unreal
• Skeletal animation
• Animation Blueprints: graphs to perform animation blending, control 

bones of a Skeleton, or setup logic that will define the final 
animation pose

• Blend Spaces: allow for blending of animations based on the values 
of two inputs

Root based trajectories
Driven by velocity vector and position of COM 
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Root based trajectories: COM+velocity vector

• Most typical output from crowd simulation systems
• Problem: 

• To map the COM trajectory into a smooth animation
• To interpolate correctly between animations
• To avoid artefacts such as foot sliding
• Velocity vector vs. orientation vector: (holonomic/non-holonomic 

movement)
• Any inconsistency between the output of the crowd 
simulation and the animation will produce artefacts in the 
simulation

Avatar Locomotion in Crowd Simulation

• Mapping velocity & 
orientation into animation 
controller:

• Map velocity to steer the 
character

• Map orientation to get the 
character facing the forward 
direction

• Need to adjust spine rotation

Pelechano, N., Spanlang, B. Beacco, A. International 
Journal of Virtual Reality 10.1 (2011): 13. CASA 2011
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Reflecting the Root Motion

Crowd 
Simulation 
model

Character 
Animation 
system

Reflecting the Root Motion

• Pipeline



10/03/2017

21

Reflecting the Root Motion

Avoiding foot sliding Correcting Torso Orientation

Root based trajectories
Considering velocity and orientation
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Torso Crowds

S. Stuvel; N. Magnenat‐Thalmann; D. Thalmann; A. F. van der Stappen; A. 
Egges, in IEEE Transactions on Visualization and Computer Graphics . 2016

From left to right: the agent representation, calculation of the Voronoi
diagram, planning a path towards a goal position, and finally the 
animation of virtual characters.

Torso Crowds
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Torso Crowds

• Capture
• Simulate with Voronoi diagrams

Torso Crowds

• plan the movement of an active agent, the following steps 
are taken:

1. Find paths by exploring the vicinity in the GVD of the Voronoi cell 
containing the agent.

2. Compute a score for each path, and determine the best-scoring 
path.

3. Compute the desired agent orientation at the start of the path, 
accounting for available clearance.

• Differentiates 2 types of agens:
• Passive
• Active
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Holonomic collision avoidance for virtual crowds

• Planning movement considering 
both velocity and torso 
orientation?

R. Hughes, J. Ondřej, J. Dingliana. 2015. In Symposium 
on Computer Animation (SCA '14). 103‐111. 

Holonomic collision avoidance for virtual crowds

• Capture such movement:
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Holonomic collision avoidance for virtual crowds

Rendering Crowds
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Rendering Trade‐off

52

quality memory

performance

Overview

More polygons Less polygons One polygon Points
Mesh based Image based Point based

Original mesh

Geometric LOD

Predeformed meshes

Polypostors

Dynamic
impostors

Pre-rendered
impostors

Hierarchical
point-based

Relief impostors

Flat 
impostors

A Survey of Real-Time Crowd Rendering A. Beacco, N. Pelechano, 
C. Andujar. Eurographics - State or The Art Reports. 2016. 
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HW improvements

• Instancing
• Move computation to GPU (skinning, animation blending, and 
even simulation)

• Tesselation shaders to add 
• Limiting factors:

• GPU memory
• CPU-GPU bandwidth
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Abstract

This paper addresses the problem of virtual pedestrian autonomous navigation for crowd simulation. It describes
a method for solving interactions between pedestrians and avoiding inter-collisions. Our approach is agent-based
and predictive: each agent perceives surrounding agents and extrapolates their trajectory in order to react to po-
tential collisions. We aim at obtaining realistic results, thus the proposed model is calibrated from experimental
motion capture data. Our method is shown to be valid and solves major drawbacks compared to previous ap-
proaches such as oscillations due to a lack of anticipation. We first describe the mathematical representation used
in our model, we then detail its implementation, and finally, its calibration and validation from real data.

1. Introduction

This paper addresses the problem of virtual pedestrian au-
tonomous navigation for crowd simulation. One crucial
aspect of this problem is to solve interactions between
pedestrians during locomotion, which means avoiding inter-
collisions. Simulating interactions between pedestrians is a
difficult problem because its complexity grows rapidly with
respect to population density. Also, obtaining realistic re-
sults is challenging: humans are used to observe navigating
pedestrians in the real life and immediately detect artifacts in
simulations. We present a reactive navigation technique for
application in the domains of architecture, security, space
ergonomy, and also the entertainment industry. We expect
natural crowd motion emerging from a realistic microscopic
pedestrian simulation.

Our solution for solving interactions between pedestrians
is predictive and agent-based. Inputs are the definition of an
environment, the current state and the destination of each
pedestrian - destination is a desired direction derived from
a navigation plan. The method first checks on future inter-
actions between pedestrians: the evolution of pedestrians’
position is predicted from an extrapolation of their current
state. When needed, a long term avoidance motion is com-
puted by taking into account these predictions. Our resulting
microscopic pedestrian simulation model is calibrated and

validated using motion capture data. Data are acquired ac-
cording to two successive protocols. First, we measure inter-
actions between two participants and use the resulting data
to calibrate our model. In a second stage, we push the num-
ber of participants to the limits of our motion capture system
abilities and let them navigate among obstacles, allowing us
to compare the measured data with our simulation results.

Our first contribution is to solve major drawbacks in pre-
vious microscopic approaches, such as oscillations and jams.
We believe these drawbacks were due, firstly, to the lack
of anticipation, and secondly, to the simplicity of the reac-
tion computation technique from the observed situation. Our
second contribution is to propose a motion capture-based
calibration of the model and validation of our results. Val-
idation is generally done using hand-processed video se-
quences. Motion capture data are more accurate than those
derived from video sequences: this allows us to decompose
precisely in time and space how humans react to potential
collision with others. Particularly, we could extract a crite-
rion to detect the need for a reaction and compute adequate
corrections to the trajectory.

Section 2 states our contributions with comparison to pre-
vious approaches. Section 3 describes our method to solve
interactions between pedestrians from a technical point of
view: firstly, how it is integrated into a crowd simulator, sec-

c© The Eurographics Association and Blackwell Publishing 2007. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.
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ondly, how pedestrians perceive their surrounding environ-
ment, and thirdly, how a reactive motion is computed. Sec-
tion 4 describes the protocols and the results of the exper-
iments used to calibrate the model parameters and to vali-
date the approach. We then present some simulation results
in usual architectural configurations. Finally, we conclude
and provide perspectives to our work.

2. Related Work

One of the most important skills of a human being is her
ability to navigate inside her environment. Even if this nav-
igation task is one of the most basic behavior in real life,
it is not yet solved correctly in a virtual world. First to al-
low people to navigate, they should be able to perceive their
environment but not only in a geometric way. Studies in psy-
chology and urbanism have shown that visibility and topol-
ogy are also important in the navigation task. A structured
and informed environment has to be used for path planning
and reactive navigation of virtual humans in real time. The
simplest task, for a pedestrian walking in a street, consists
in minimizing possible interactions, which mean avoiding
static and dynamic obstacles. Goffman [Gof71] describes
techniques used by pedestrians to avoid bumping into each
other. The social link between strangers is characterized by
silence and indifference and to perform that, different be-
haviors are used. The first technique called externalization
concerns the way that people are constantly making others
aware of their intentions in order to minimize the interac-
tion. Pedestrians selectively gather externalized information
from other people by a second technique called scanning.
The third technique, called the minimization of adjustment,
expresses that people adjust their trajectory several meters
before the conflict to make it perceptible early by others
with the objective to reduce interaction and avoid coordi-
nation. Goffman introduces the notion of an oval security
region whose front distance corresponds to an anticipation
area depending on the pedestrian speed, while the width is
the accepted gap to pass beside a person or an obstacle or
to follow a wall. He also defines the law of minimal change
meaning that a pedestrian will try in its journey to reduce the
amount and the amplitude of turns. These studies illustrate
the importance of prediction and anticipation in the naviga-
tion task.

It is known that in crowd motions, pedestrian flows walk-
ing in opposite direction generate their splitting to create dy-
namically some bands of pedestrians walking in the same
direction. When the density of pedestrians becomes very
high, it is possible to approximate the overall behavior of the
crowd by using the laws of fluid evolution [TCP06]. In panic
situations, pedestrians wish to move more quickly than usual
and, forgetting all social rules, accept to be in a physical con-
tact with their neighbors. Due to this physical interaction sit-
uation, they are developing a mimetic behavior consisting in
reproducing the behavior of preceding characters in the flow.

For Yamori [Yam98], this is obligatory followed by the no-
tion of regulation, learned as a normative element by people
living together inside the same macro structure or institu-
tion. However, as emphasized by Musse et al. [MT01], some
small groups can be the motor and modify the behavior of
biggest units such as a crowd, playing the role of the core
group. Boles [Bol81] has observed the existence of a band
structure inside a crowd of pedestrians moving on a sidewalk
and explain this by its optimal configuration to regulate op-
posite flows. One of the most crucial problems to be solved,
as pointed by Yamori, concerns the relation between micro-
scopic and macroscopic structures and behaviors inside the
crowd. The goal is to explain how an individual entity is con-
strained by the institution and on the other hand how the
community impacts on the individual behavior along time.
Yamori focuses his research in the formation of macroscopic
band structures and postulate that such kind of macroscopic
structure requires a critical density of population to emerge
from the set of individual behaviors.

Macroscopic simulation has been historically the first ap-
proach to be studied to simulate the pedestrian displace-
ment, due to its low calculation cost. In this approach the
pedestrian is not treated on its own but as a component of
a more macroscopic element [Hen71, PM78]. These macro-
scopic models are often used for animation purpose, like
by Sung et al. [SGC04], to provide a globally convincing
crowd motion. Another approach called microscopic simu-
lation consists in handling the individual navigation of all
moving entities. In that case, a system allowing dynamic col-
lision avoidance is necessary to achieve consistency and re-
alism. Several approaches can be distinguished such as parti-
cle and flocking systems. Particle systems are based on phys-
ical laws describing attractive and repulsive forces that can
be associated to obstacles and moving entities. Forces ap-
plied to an entity are summed to calculate its new motion di-
rection and speed [HFV00,BMdOB03,LKF05]. This model
assimilates the displacement of an entity in the case of a high
density to the motion of a particle inside a restricted area.
I. Peschl [Pes71] justifies the use of this model in the case
of an emergency situation with a high density of population.
Particle based models allow the generation of a macroscopi-
cally plausible behavior in case of a high density, but they do
not take into account anticipation, perception, or social rules.
Moreover, close inspection of individual trajectories show
some oscillations and unrealistic behaviors such as back-
ward motion of the last people repulsed by the preceding one
in a queue and many change of orientation along the path due
to the interaction with other moving entities and static obsta-
cles. Another drawback of this approach is its requirement of
a small time-step for convergence purpose. Flocks are rule-
based systems defining the behavior of an entity according
to the behavior of the nearest entities [Rey00, BLA02]. It is
well adapted for the collective motion of a group of animals
following a leader but less for the variety of behaviors that
can be observed in a sparsely populated crowd of humans.

c© The Eurographics Association and Blackwell Publishing 2007.
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Loscos et al. [LMM03] use a fine regular grid to handle re-
active navigation and to store information about pedestrian
movements enabling the emergence of flows of pedestrians.
In the same way, Shao et al. [ST05] use a quadtree map for
the path planning and a fine regular grid for obstacle avoid-
ance.

Lakoba et al. [LKF05] argue that two points are necessary
to improve the existing models: add decision-making ca-
pabilities and compare simulation results against measured
data on pedestrian dynamics. Instead of classical models of
crowd simulation based on fluid dynamics or particle sys-
tems which are only valid in very dense crowds, S. Golden-
stein et al. [GKM∗01] have proposed a multi-layer approach
to model the behavior of crowd participants. We are also
working on a multilevel model of each human allowing us to
simultaneously take into account attraction/repulsion mech-
anisms such as in particle systems, dynamic computation of
the neighborhood for sparse crowds, the management of so-
cial rules, path planning and activity planning. In this paper,
we are focusing on the reactive navigation model and on the
use of experimental data to validate the approach and cali-
brate the model.

3. Prediction and Resolution of Interactions

3.1. Principle

Figure 1: The simulation architecture.

The problem of reactive pedestrian navigation is part of
the crowd simulation problem, and our method is included
in a global architecture as shown in Figure 1. More details
on the environment management and on dedicated path plan-
ning techniques we developed can be found in the litera-
ture [PDB05,PDB06]. The reactive navigation role is to steer
entities in a realistic manner with respect to two possibly
conflicting inputs: the goal of the considered pedestrian re-
sulting from the path planning stage, and the current state of
the environment, especially the presence of other pedestri-
ans. The output we search for are updated speed and orien-
tation allowing the pedestrian to avoid any static or moving
obstacle while satisfying constraints of realism.

Our approach to this problem is a predictive one. For each
entity, at desired rates, we search for a solution-move satisfy-
ing constraints and guaranteed to remain valid for a desired
time window (at least the period at which reactive naviga-
tion is invoked). The key-idea is to model the environment

Figure 2: Modeling the interaction between a reference en-
tity and a neighbor entity in the (x,y, t)-space. The pre-
dicted trajectory for the neighbor entity is the blue cylinder,
whereas the reachable space for the reference entity is the
violet cone. Their intersection delimited in black is a future
collision area (also projected in the plane).

as shown in Figure 2 in the (x,y, t)-space, with (x,y) the hori-
zontal plane and t the simulation time. We explore the reach-
able space of the reference entity in any direction and for a
range of speed values, and search for possible collisions with
neighboring entities. Figure 2 illustrates such an exploration
for a given reference entity speed value. As any move direc-
tion is envisioned, the reachable space is then represented
in the (x,y, t)-space as a cone whose opening angle depends
on the considered speed value. Neighboring entities are then
taken into account: they are represented as circles – whose
radii are the sum of both the reference and the considered
entity radii – moving along a predictive trajectory, computed
from the current position, speed and orientation of the neigh-
boring entity. Thus, the neighboring entity is modeled in the
(x,y, t)-space as an elliptic cylinder. Consequently, the in-
tersection of the cone and the cylinder delimits a collision
area that the reference entity shall avoid. The difficulty of
the problem is brought to mind looking at Figure 3, where
different shapes of the collision area are displayed accord-
ing to various solution speed values. Additionally, the figure
does not represent the possible presence of several neighbor-
ing entities and of static obstacles which obviously increase
the problem complexity drastically. As a result, we choose to
base our solution on a discrete-time expression of the same
modeling in order to avoid the problem complexity.

Three main steps, detailed in the next sections, allow us
to compute the best speed and orientation for the reference
entity:

1. Neighboring dynamic entities are first taken into account.
From this, we deduce some sets of speed and orientation

c© The Eurographics Association and Blackwell Publishing 2007.
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Figure 3: We explore the reachable space for the reference
entity for a given range of speed. The opening angle of the
cone changes accordingly in the (x,y, t)-space, as well as
the intersection with the predicted trajectory of the neighbor
entity (each color corresponds to a different cone opening
angle, and thus to a different reference speed value).

ranges that allow collision free motion for a future time
window.

2. In the same manner, static obstacles are considered. We
deduce new valid sets of speed and orientation ranges.

3. Previous valid solution ranges are merged, scored and
compared. The best one is returned as the solution.

3.2. Dynamic entities

Figure 4: Example of reachable space sectioning for a given
time-interval. The resulting orientation section is character-
ized by several parameters: t1, t2,θ1,θ2,V1,V2.

The objective of this first step is to compute a set of valid
speed and orientation ranges for a given reference entity

Ere f , with respect to the presence of neighbor moving en-
tities. We describe our method for a single neighbor entity
Enhb, whilst the case of several ones is detailed Section 3.4.

Time discretization. We consider the environment state at
t = t0 and propose to search the Ere f reachable area for po-
tential collision as explained previously. For that, we con-
sider successively adjacent time-intervals having different
durations: [0,k0∆t], [k0∆t,k1∆t], [k1∆t,k2∆t], [k2∆t,k3∆t],
etc. The ∆t > 0 parameter defines the precision of the dis-
cretization, smaller being the best, and should correspond to
the time needed by the entity to make one move. The k > 1
parameter is used to make the discretization non-uniform
over the anticipated time, greater being the best, allowing
the anticipation to be more precise in the near future than in
the distant one. We use ∆t = 1 and k = 2 in our model.

Reachable space sectioning. For each time-interval, we
predict the Enhb trajectory as a linear one and deduce the
Ere f orientation range (orientation section) potentially lead-
ing to a collision with Enhb as illustrated in Figure 4. We
finally get as many sections as the number of time-intervals,
each representing an orientation range for Ere f . The time-
interval [t1 t2] used to compute each section is stored.

Critical speeds computation. For each orientation section,
we compute the critical speeds V1 and V2 defined as follows:
V1 is the maximal speed allowed to avoid a collision by pass-
ing behind Enhb; V2 is the required minimal speed to avoid a
collision by passing before (in front of) Enhb. V1 and V2 have
analytical expression, as solution to the following equation:

V1 =
t2

min
t=t1

(
(
∥∥∥−−−−→Pr Pn(t)

∥∥∥−R)/t
)

V2 =
t2max

t=t1

(
(
∥∥∥−−−−→Pr Pn(t)

∥∥∥+R)/t
)

with Pn(t) = Pn + ~vn t and where ~vn is the Enhb speed vector,
Pr and Pn are respectively the positions of Ere f and Enhb at
t = t0, and finally R is the sum of the bounding circles radii
of the considered entities, eventually increased by a security
factor to avoid strict contact cases.

Figure 5: The sectioning results in overlapping orientation
ranges (left image). The merge of overlapping sections is
easily done by subdividing orientation ranges in order to get
adjacent sections (right image). The new characteristics of
each subdivision are directly deduced.
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Merging several sections. By iterating previous computa-
tion for each time-interval, we get a set of orientation sec-
tions with their own characteristics (V1, V2, time-interval
[t1 t2]). A problem is to merge overlapping sections. Sections
are finally subdivided in order to get a set of adjacent sec-
tions. Each new subsection characteristics are computed as
follow: V1new =min(V1i,V1 j), V2new =max(V2i,V2 j), t1new =
min(t1i, t1 j) and t2new =min(t2i, t2 j) with i and j indexing the
two merged orientation sections. Note that if three or more
sections overlap, this process can be reiterated successively
considering pairs of sections until all are merged.

3.3. Static entities

The second step of the reactive navigation module consists
of considering static obstacles. We handle static obstacles in
approximately the same way than dynamic entities, but the
problem is obviously simpler. In our environment database,
obstacles borders are modeled as line segments. Let us con-
sider the case of a single line segment in the vicinity of Ere f .
Our first objective is to subdivide Sobst as shown in Figure 6.
For that, we first compute P0 the nearest point from Ere f be-
longing to Sobst . We define points P1 and P′

1 if existing so that
the length P0P1 = P0P′

1 = vre f ∆t where vre f is Ere f speed,
and ∆t defined in the previous Section. Then, we define the
point P2 so that P0P2 = k1vre f ∆t, P3 so that P0P3 = k2vre f ∆t,
and finally P4 so that P0P4 = k3vre f ∆t. This set of points is
arbitrary, however, it allows us to evaluate the constrained
speeds toward the obstacle with a more accurate precision
near to Ere f .

Figure 6: Sections computation for static obstacles

A set of adjacent orientation sections are computed as
shown in Figure 6. We then compute the characteristics of
each section in a same way than done previously with dy-
namic entities. However, V1 is computed differently:

V1i =
∥∥−−−→PiEre f

∥∥/ t2i

where i indexes the considered orientation section. V1 is thus
the maximal speed at which Ere f can walk within the con-
sidered time-interval (depending on the considered section)
without colliding the obstacle, analogically to the previous
dynamic entity case. V2 is here meaningless, and we set
V2 =+∞.

3.4. Solving interactions

The third and final step of our reactive module consists of
extracting a solution-move for the reference entity. The ex-
traction is done in three successive steps. First, each orien-
tation section previously computed is weighted using a cost
function depending on sections characteristics. Second, su-
perposed sections (related to different neighboring entities
or obstacles) are merged (see Section 3.2) while accumulat-
ing costs. Third, the best section is used to compute the new
speed and orientation.

Orientation section cost. The reference entity has to
choose the best next speed and orientation according to the
environment state and its goal. The function cost reflects the
best choice among several criteria:

• Valid speed ranges (according to V1 and V2 of each sec-
tion) must be close to the entity desired speed Vdes and in
its range of achievable speeds [0;Vmax].

• Orientation section limits [θ1;θ2] must be as close as pos-
sible to the desired orientation θdes

• Required accelerations to reach the new speed and ori-
entations must be as limited as possible (limiting strictly
them is not desirable because real humans are capable of
important accelerations).

• The closer the section time-interval is in the future, the
more confident we are in its cost.

The cost associated to speed variations and distance to de-
sired speed is computed as follows:

Cdecel =

{
0 if Vdes ≤ V1

1− V1
Vdes

Caccel =

{
0 if Vdes ≥ V2

V2−Vdes
Vmax−Vdes

Cspeed = α.min(Caccel ,Cdecel)

where α ∈]0;1[ allows us to set a trade-off between speed
changes and orientation changes. The cost associated to ori-
entation changes (deviation) is computed as follows:

Cdev = (1−α)1− cos(θ)
2

where θ is the minimum difference between the desired ori-
entation and the orientation section limit angles. Note that
0 ≤ Cspeed +Cdev ≤ 1. According to t1 the lowest bound to
the time-interval of the concerned section, we finally com-
pute a prediction confidence cost:

Cpred = 1− t1
T +β

with 0 ≤Cpred ≤ 1

where T is the maximal considered time for the prediction,
and β ∈ [0;+∞] is a user-fixed parameter allowing us to get
more or less confidence in predictions (this will change the
pedestrian adaptation-time before a potential collision). The
total cost of a given section is then:

Ctotal = (Cspeed +Cdev).Cpred .Cadd

where 0 ≤ Cadd ≤ +∞ is an additive cost that can be in-
troduced to take into account external factors, e.g., walking
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close to another entity, preferential deviation to the left or
the right, etc. Neutral value is Cadd = 1.

Merging costs. Note, at this point, we have as many sec-
tionings (whole sets of orientation sections) as the number
of entities and static obstacles in the vicinity of Ere f . For
each section of each set, we now have a cost. In exactly the
same manner than presented in Section 3.2, we merge all the
weighted sections. The cost of each subsection thus created
is the sum of all the sections that were superposed and split
to create it.

The fittest subsection has the lowest cost. In the corre-
sponding range of valid speeds and orientations, we compute
the closest to the ones desired by the reference entity, which
is the final output to our reactive navigation module.

3.5. Discussion

Visibility of neighbor entities. As explained previously,
our model predicts neighbor entities trajectories in order to
decide on the best reaction to avoid them when necessary.
We demonstrate in the next Section that real humans act in
the same way, however, it is obvious they only do so for the
humans they could visually perceive. In order to get a realis-
tic reactive navigation, a perception field must be simulated.
Our model distinguish two cases. When a neighbor entity
is not seen because it is occluded by an obstacle, it is fil-
tered out of the selection. As a result, an occluded neighbor
entity has strictly no influence in the result. A limitation is
the case were two pedestrians invisible one to the other con-
verge toward the same place (e.g., at a street corner): they
stop abruptly when finally perceiving one another, whereas a
real human would anticipate this possibility and walks more
carefully. When a neighbor entity is not seen because it is
not in the field of view of the reference entity, we introduce
it in the model, but having a null speed. Indeed, we consider
that real humans feel someone is behind, but are unable to
predict any trajectory. This also avoids backward motions
provoking a collision with entities behind.

Connection with a locomotion animation module. As
seen in Figure 1, output of our reactive navigation module
is connected to a locomotion module. Our method may lead
to important speed or orientation changes from which a re-
alistic animation must be computed. In order to get as real-
istic animations as possible, we synchronize the animation
module and the reactive navigation module, so that changes
occur at the feet-land instants (left or right). Also, the loco-
motion module smooths variations itself.

4. Model Calibration and Validation

The previous Section described the technical basis of our
model: resulting trajectories mainly depend on the parame-
ters used in the cost functions (α,β). In order to get realistic

behaviors, a calibration of the model is required. In previ-
ous works, such a calibration is achieved by analyzing video
captures of real crowd motions. However, automatic analysis
techniques are not always applicable due to lighting condi-
tions, and analysis by hand requires great effort. Moreover,
pedestrians goals are generally unknown in video sequences,
which may prevent strict comparisons between real data and
simulations. For these reasons, we prefer to use a motion
capture system to collect our reference data, with protocols
defining the goals of each participant.

In a first experiment, we measure the interaction phe-
nomenon in the following situation: two pedestrians achieve
navigation tasks in an empty environment, we force them to
have more or less interacting trajectories and observe adap-
tations to avoid contact. Results allow us to demonstrate the
need for prediction in a realistic reactive navigation model
and to calibrate some crucial factors. Secondly, we attempt
to reproduce some typical crowd navigation situations at a
microscopic level, such as corridor following, gate crossing,
X-crossing, etc. in order to validate the model behavior in
more complex scenes. For that, we captured as many partic-
ipants as possible executing navigation tasks in an environ-
ment made of obstacles.

4.1. A protocol for model calibration: interactions
between two pedestrians

Figure 7: Four computers displaying signals to participants
controlling their start-time and goal. A motion capture sys-
tem retrieves resulting interactions.

The first experiment protocol allows us to control the
interaction of two participants walking in an obstacle-free
area, as illustrated in Figure 7. By interaction, we mean the
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required trajectory adaptations made by each participant in
order to avoid a collision. The objective of the experiment is
to qualify the avoidance strategies developed by the partic-
ipants given the conditions imposed by the protocol, and to
quantify the trajectory corrections made in terms of velocity
and orientation changes. For that, we place four computers
at the corners of a square area visible for a motion capture
system. Each participant must go from a given computer to
the diagonally opposite one. We get a temporal control on
the experiment by transmitting a start signal to participants
using computer displays. All computers are synchronized in
order to precisely control some delays between the start time
of each participant, and to provoke more or less important
interactions between them. We deduce the conditions for an
interaction to occur or not. Participants always see each other
but only perceive their own start signal. Finally, participants
are equipped with 34 markers to get full body motion capture
data. A total of 145 interactions were captured, 6 participants
where involved, we placed computers in order to form π/2
or π/3 angles between trajectories.

Figure 8: Horizontal trajectory of 2 interacting participants.

We detail our analysis method over a specific case whose
results are shown in Figures 8 and 9. Here, as it can be seen
in Figure 8 representing the horizontal trajectory of partici-
pants P1 and P2, a strong interaction occurred between ex-
periment times 60s to 66s: trajectories are conspicuously de-
formed in order to avoid collision. We joined the respective
positions of P1 and P2 at equivalent times (each half a sec-
ond) in order to provide a temporal indication of events. A
first look at the results leads one to think that participants
reacted late (t=62.5s), just before collision: P2 passes before
P1, P1 decelerates and turns to the left while P2 turns a little
to the left to facilitate the passage.

But motion capture data allow a more precise analysis and
the real intentions of participants appear clearly in Figure 9:
top and bottom plots are the speed and orientation of each
participant (respectively red and blue plots). In dashed hor-
izontal lines, we represent some mean reference values for

Figure 9: Orientation and speed variations of participants
P1 (top) and P2 (bottom). Comparing the predicted and
measured distances between participants allows to detect
the time of adaptation to avoid a collision (center).

speed and orientation, measured during experiments where
participants execute identical navigation tasks alone. We ob-
serve that two successive corrections finally compose this
interaction:

• t ∈ [61;62s]: P1 has a higher speed and deviates to the
right compared to mean reference values. This reveals her
first intention to pass before P2, who has a normal behav-
ior. But P2 naturally walks faster (looking at the reference
mean values) than P1 and this first strategy fails.

• t ∈ [62;62.5s]: P1 decelerates.
• t ∈ [62.5;64s]: A combined reaction is now clearly visi-

ble: P1 increases its deceleration and deviates to the left,
which will allow her to pass behind P2, who facilitates the
success of this new strategy by accelerating and deviating
to the left.

• t > 64s: After the time where distance between P1 and P2
is minimal, participants achieve their goal and no particu-
lar interaction is observable.

Previous analysis showed that corrections may appear
early in the experiments (P1 for t = 61 to 62s), and differ-
ences between reference and measured values may be minor
and hardly detectable. We introduce a criterion to both qual-
ify automatically situations of interactions in the different
experiments and answer a crucial question: are corrections
made by participants pertinent (i.e., does collision occurs if
no adaptation is made)? This will allow us to conclude on the
accuracy of participants in evaluating potential collisions.
Figure 9 illustrates our criteria: the red curve is the measured
distance between P1 and P2. The violet one is MinDistpred
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defined as follow:

Pred1,2(t,u) = Pos1,2(t)+(u− t)−→v1,2(t)

with t is the experiment time, u ∈ [t;∞] a parameter,
Pred1(t,u) and Pred2(t,u) are respectively the predicted po-
sitions of P1, P2 in the future time u, according to their cur-
rent position Pos1(t), Pos2(t) and speed vector −→v1 (t), −→v2 (t).

InterDistancepred(t,u) =‖ −−−−−−−−−−−−−→Pred1(t,u)Pos2(t,u) ‖

is the evolution of the distance between P1 and P2 according
to the previously predicted positions.

MinDistpred(t) =
∞

min
u=t

(
InterDistancepred(t,u)

)

The plots reveal that the anticipation of P1 was accurate.
Despite her initial faster speed and deviation to the right, she
would not have been able to avoid P2 with a minimum pre-
dicted inter-distance below 0.2m. Her change of strategy is
revealed when Mindist(t) is null at t = 62.1s (from "passing
in front of P2" to "passing behind P2").

By analyzing the whole set of experiments our first con-
clusions are:

• Reactions are observable for MinDistpred(t) < 0.5m,
which allows automatic distinction between cases where
interaction occurs or not.

• Anticipation is up to several seconds before a potential
collision. Our experimental conditions did not allowed us
to determine an upper bound to anticipation time because
of the size of the motion capture field.

• Reaction is a combination of speed and orientation adap-
tation. Deviations are bounded whereas decelerations can
lead to a complete stop for one of the participants. This
occurs especially when participants modify both their tra-
jectory so that MinDistpred(t) remains below 0.5m (con-
flicting corrections). The closer the collision is in time, the
more speed adaptation is preponderant.

• Interaction is an accurate phenomenon. If no collision is
predicted by our criterion, no reaction appears in data.
At the other extreme, participants detect interaction sit-
uations early.

We calibrate our model to synthesize interacting pedes-
trians trajectories in a realistic manner. Anticipation is set
to 8 seconds. In order to find a trade-off between perfor-
mance and precision, time is discretized in a non-uniform
manner (1s steps in the near future, up to 4s for the last pe-
riod). Minimal and maximal velocities to avoid a collision
are computed for a set of walking directions, allowing com-
bination of speed and orientation variations to avoid other
pedestrians. We tuned the cost function to fit experimen-
tal data in a pragmatic manner. Statistical analyses are still
on-going in order to calibrate the model automatically from
data. Moreover, we noticed individual factors and deeper
analyses should allow us to determine a variety of individual
profiles to calibrate our model.

4.2. A protocol for model validation: capturing
microscopic crowd phenomenon

Figure 10: A microscopic crowd phenomenon: crossing a
narrow passage with funnel shape.

In a second experiment, we capture 24 participants - each
equipped with 5 markers placed on the chest - navigating
in an area where we place static obstacles. The objective is
to reproduce some frequently encountered situations where
crowd flows meet, and to check for realistic emerging crowd
behaviors in simulations (such as lane formations in cor-
ridors where opposite pedestrians flows meet). Figure 10
illustrates an example of obstacles setup, superposed with
the set of recorded horizontal trajectories. Each participant
crosses the narrow passage from the right to the left, and
must circle the obstacle to reenter in the area from the right.
We tested several setups: X-crossing with several flow di-
rections repartitions, corridors with single or opposite flows,
gate crossing, etc. We can draw first conclusions from com-
parisons between simulations and real data. Characteristic
phenomenons could emerge from our model as observed in
real data such as lane formation in corridors where two op-
posite flows meet, pedestrians going in same directions at X-
crossing tend to group in order to facilitate their passing-by,
high speed changes occur where flows meet with visibility
limited by obstacles, etc. Thus, we validate qualitatively the
basis of our model. However, quantitatively, simulation and
real data still need to be accurately compared, and we are
currently performing a deeper analysis.

4.3. Discussion

From real data, we can discuss the limitations of our model.
During the calibration step, we found a balance between the
cost of direction changes and speed changes (α parameter of
the cost function Section 3.4) that allowed us to have similar
results in simulation and experiments with identical condi-
tions. However, we could not find a calibration that satisfies
all situations. Simulation results were still valid (no colli-
sion, and no dead-locks), but realism was decreasing in some
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specific situations. We think an always-valid calibration is
impossible to find for two reasons. First, our anticipation
time, T , is a constant parameter, whereas real humans act
in a more reactive way where population is dense. Second,
time-interval duration step, ∆t, is also a constant parameter
during the sectioning step (see Section 3.2). In other words,
our model precision is constant and should depend on the sit-
uation. We believe that these two model parameters should
be adapted according to local population density (at least) in
order to improve the realism of the results.

5. Results

Performance We have run a variety of situations reproduc-
ing the ones we motion captured, as shown in the accom-
panying video. Implementation is in C++ and simulations
ran on a Pentium M 1.6GHz, 1GB memory, with an Nvidia
4200Go 64MB graphics card.

Figure 11: Solution Performance. The blue curve plots the
computation time required for solving one interaction ac-
cording to the number of neighbor entities taken into ac-
count. The red curve plots the number of orientation sections
created in order to compute the solution. From these plots, it
is possible to compute global performances with respect to
the density of people.

The performance provided in Figure 11 does not corre-
spond to the computation time functions of the total number
of simulated entities, but to the computation time for one en-
tity according to the density of people. In fact, this density
of people implicitly defines the number of neighbor entities
to take into account for the computation. Moreover, the plot
limit of 21 surrounding entities has not been specified, but is
a result of our benchmarks using by far more entities in dif-
ferent situations (an average of 100 moving agents, plus the
walls). Then, the computation time for one entity, between
200 and 500 µs, may appear high compared to previous ap-
proaches, but is relatively stable for growing entities num-
bers. In addition, our model is only refreshed at each foot
step, corresponding to an average rate of 1− 2Hz. Thereby,
taking the worst cases, our model can easily handle 1,000
entities in real time, and its complexity is scalable and could

be reduced to simulate more entities by decreasing the antic-
ipation time. However, as previously mentioned, this model
is integrated in a whole virtual human architecture, manag-
ing other tasks like path planning, rational behavior, anima-
tion, and so on. Based on our experiments, we are able to
fully simulate and animate approximately 150 entities in real
time. Moreover, the performance depends on the complexity
of the environment, and on the density of the crowd, that
is why it is difficult to provide representative performance
considering the number of influent parameters.

Figure 12: Detailed view of a unit interaction case. Red ar-
rows are desired directions θdes while blue ones result from
the reactive navigation. Virtual humans adapt both their
speed and orientation in quite an optimal and realistic man-
ner to avoid each other (see video for animation).

Realism As mentioned Section 4.2, we could compare our
simulations with real data, however, a quantitative valida-
tion of our model is still in progress. Our first results are
promising. We solved several drawbacks observed in pre-
vious approaches. First, anticipated reactions in low density
areas improve results realism (Figure 12): in such cases, con-
flicting states (typically, close entities face to face) never ap-
pear in simulations. Indeed, thanks to a sufficiently stable
state of the environment, model predictions remain valid for
a large enough interval to always avoid any close interac-
tion. Second, in dense population situations, pedestrians do
not have jerky trajectories with successive and contradictory
reorientations or turn-backs. In this case, next-future predic-
tions are accurate enough to avoid such unrealistic behaviors
and dead-locks. However, distant time predictions appear to
be useless because of the constantly changing situation.

6. Conclusion and Perspectives

We presented a novel approach to solve interactions between
virtual pedestrians in the context of realistic crowd simula-
tions. Our first contribution is to introduce long-time pre-
dictions in our model when accounting for other pedestrians
moving around. Such a prediction allowed us to solve ma-
jor drawbacks of previous approaches to this known difficult
problem. Our second contribution is to propose experiments
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to validate and calibrate our approach using a motion cap-
ture system. Compared to video-streams analysis, we reach a
higher level of precision that allowed us to obtain a fine anal-
ysis of events occurring during real humans interactions. We
also captured crowd behaviors at a microscopic level in order
to validate our simulation results. Work is still in progress
concerning this last point.

Our results are promising and we can identify our model
limitations to get even more realistic results: this determines
our future work directions. First, we want to dynamically
adapt the model parameters to the variations of environment
context. Especially, the prediction time-ranges and precision
must fit the local population density. Second, the model does
not account for social factors. We want our model to be able
to consider couples of pedestrians or larger groups navigat-
ing among other pedestrians: such groups shall remain as
gathered as possible during their navigation. We believe our
implementation capable of supporting such evolutions eas-
ily, and work is underway. Finally, connections to the ani-
mation module must be enhanced. A feedback must emanate
from the locomotion module in order to score the proposed
reactions, purely in terms of realism of motion. This additive
cost would help in taking realistic decisions. Recent results
in animation evaluation techniques is an inspiration source
to reach such a goal.
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crowds. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers
(New York, NY, USA, 2006), ACM Press, pp. 1160–1168.

[Yam98] YAMORI K.: Going with the flow: Micro-macro dynam-
ics in the macrobehavioral patterns of pedestrian crowds. Psy-
chological Review 105, 3 (1998), 530–557.

c© The Eurographics Association and Blackwell Publishing 2007.



Symposium on Computer Animation 2009 (SCA ’09) (2009)
(Editors)

Experiment-based Modeling, Simulation and Validation of
Interactions between Virtual Walkers
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Abstract

An interaction occurs between two humans when they walk with converging trajectories. They need to adapt
their motion in order to avoid and cross one another at respectful distance. This paper presents a model for
solving interactions between virtual humans. The proposed model is elaborated from experimental interactions
data. We first focus our study on the pair-interaction case. In a second stage, we extend our approach to the
multiple interactions case. Our experimental data allow us to state the conditions for interactions to occur between
walkers, as well as each one’s role during interaction and the strategies walkers set to adapt their motion. The low
number of parameters of the proposed model enables its automatic calibration from available experimental data.
We validate our approach by comparing simulated trajectories with real ones. We also provide comparison with
previous solutions. We finally discuss the ability of our model to be extended to complex situations.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation; I.6.4 [Simu-
lation and Modeling]: Model Validation and Analysis; I.6.5 [Simulation and Modeling]: Model Development;

Keywords: steering method, collision avoidance, interaction

1. Introduction

The computer animation community put in a great deal of
effort to provide virtual humans with autonomy of locomo-
tion. Despite the apparent simplicity of this everyday task,
simulating locomotion in a realistic manner is complex, es-
pecially when virtual walkers are moving in environments
made of many static and dynamic obstacles. A large body
of prior work suggests that simulating interactions between
virtual walkers in a realistic manner is particularly difficult.

An interaction occurs between walkers when a recipro-
cal influence is observed on their respective trajectory: each
one adapts its own motion in order to avoid the others. Un-
derstanding and simulating interactions between humans is
complex due to the possibly high number of factors involved.
Human locomotion is generally driven by a goal to reach,
while it is constrained by physical and biomechanical fac-
tors. In addition, environmental factors - such as the pres-
ence of obstacles - set supplementary constraints. Trajectory
adaptations are based on the perception humans have of oth-

ers’ motion, which is naturally error-prone. These first two
kinds of factors, related to physics and perception, are ob-
viously important during human interactions, but secondary
factors also need attention. First, sociological and cultural
factors influence human reaction according to some tacit
rules (deviating preferably to the left or to the right, avoid-
ing elderly people more carefully, etc.). Psychological fac-
tors are also involved: people walk according to their mental
state (hurrying, wandering). They are capable of moving in
an expressive manner to objectify this internal state.

Our motivation is to achieve realistic simulation of inter-
actions between walkers. Our objective is first to better un-
derstand how real humans behave in such situations. Our re-
sults allow us to discuss several assumptions which were for-
mulated to build existing computational models (developed
by both the crowd simulation and computer animation com-
munities). We elaborate a new model that better fits our ex-
perimental observations. Our approach is however based on
two major assumptions. First, a complex interaction that in-
volves several walkers simultaneously can be described as a
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combination of pair-interactions involving two walkers only.
Second, physical and perceptual factors are preponderant.
Secondary factors are then to be taken into account in fu-
ture works. As a result, we first focus our study on interac-
tions to the two-walker case only. We however describe how
the proposed model can handle multiple interactions. Un-
derstanding how humans combine pair-interactions to solve
complex ones is discussed in this paper, but certainly de-
serves a complete study. Our contribution is threefold. Our
primary contribution is a model for solving interactions be-
tween virtual walkers, presented in Section 4. The model is
elaborated from experimental observations of real interac-
tions between walkers, which sets our second contribution.
Our experimental data are made available to the research
community. Our third and final contribution is to propose a
quantitative evaluation of our model results. This evaluation
enables an objective assessment of simulated trajectories, as
compared with real data, or ones resulting from previous so-
lutions.

The remainder of this paper is organized as follows: in
Section 2, we review prior work in modeling interactions.
Section 3 describes our experimental results. The model we
elaborated from experiments is described in Section 4. Com-
parison of our model results with previous techniques is de-
tailed in Section 5. Finally, we discuss limitations and possi-
ble extensions of our model to answer complex situations in
Section 6, before concluding.

2. Related Work

Mainly three research fields addressed the problem of in-
teractions between walkers. First, cognitive sciences studied
the influence of obstacles (static or moving) on human loco-
motion. Their experiments demonstrated that humans com-
bine notions of time, distance and velocity to avoid colli-
sions. The second field focused on crowd simulation. Crowd
simulators mainly aim at studying the impact of numer-
ous human-human and obstacle-human interactions on the
global circulation of many walkers. Their main objective
is to achieve realistic simulations at a macroscopic level,
even though solutions are often based on microscopic mod-
els. The third field is Computer Animation which needs
for believable individual locomotion trajectories and devel-
oped specific approaches to simulate interactions. Two main
classes of solutions exist. First ones are based on steering
methods: they are general and efficient, however, evaluating
their level of realism is still an open question. The latter class
of solutions relies on a database of captured real interactions,
reused in simulations to imitate how real humans solve in-
teractions. A high level of realism is intrinsically obtained;
nevertheless, these solutions’ validity domain is limited to
the database content.

Time-to-collision and personal space. Avoiding collisions
is a spatiotemporal problem. Cognitives sciences divided its

temporal and spatial dimensions into two different notions:
the time-to-contact TTC, and the personal space. According
to Cutting and colleagues [CVB95], humans avoid collisions
by answering two successive questions: will a collision oc-
cur? When will this collision occur? Answers result from the
visual perception of their environment and of the moving
or stationary obstacles. Lee [Lee76] and Trésilian [Tré91]
demonstrated that the optical flow generated from the visual
perception of a moving object is sufficient to directly eval-
uate TTC. The real nature of information used by humans
to evaluate TTC is still an open question; however, humans
adapt their motion to avoid collisions in order to preserve
admissible TTC. Velocity, distance and time are intrinsically
linked together. As a result, TTC can also be interpreted as
a preserved distance between humans and obstacles, giving
rise to the personal space notion. Personal space can be de-
fined as a safety area preserved by walkers around them.
The personal space gives walkers enough time to react to an
unexpected moving obstacle appearing in their perception
field. Gérin-Lajoie and colleagues [GLRM05] experimen-
tally measured the personal space’s shape and dimensions.
They found the personal space is elliptic, as intuitively imag-
ined by Goffman [Gof71]. The novelty of this study is to
focus on personal space measurement while moving. How-
ever, the experimental process was based on the interaction
between a human walker and a moving manikin mounted on
an overhanging rail.

Reactive approaches. Solving interactions is certainly a
crucial component of crowd simulation. Helbing’s so-
cial forces model is probably the most popular ap-
proach [HM95]. The model was later revisited and cali-
brated for specific situations [HBJW05], or integrated into
a software platform in order to solve well-known arti-
facts [PAB07]. In this model, virtual walkers are modeled
as velocity-controlled particles undergoing a sum of ac-
celeration forces with an analogy to Physics. Interactions
are modeled as repulsive forces between walkers, and ex-
pressed as a function of their relative distance. Treuille and
colleagues [TCP06] also make an analogy to Physics, but
formulate interactions as a minimization problem. Walk-
ers’ motion is deduced from a potential field, whose dy-
namic component results from a repulsion emitted by walk-
ers. Walkers avoid each other implicitly, interactions are not
explicitly modeled. In [HLTC03], interactions between hu-
mans are modeled as a mass-spring-damper system: stiffness
and viscosity terms change with respect to relative distance
between walkers.

Anticipated collision avoidance. The steering behaviors
introduced in [Rey99] enable interaction solving with an-
ticipation. The unaligned collision avoidance behavior ex-
trapolates walkers’ trajectories - assuming that their veloc-
ity is constant - and checks for collisions in a near fu-
ture. A reactive acceleration is computed for both walkers,
in the direction opposite from the one of the future colli-

c© The Eurographics Association 2009.



Pettré et al. / Experiment-based Modeling, Simulation and Validation of Interactions between Virtual Walkers

sion. Van den Berg and colleagues extend the Reciprocal Ve-
locity Obstacle principle from Robotics [vdBPS∗08]. Sim-
ilarly to Reynolds’ steering, this technique enables collab-
orative interaction solving with anticipation. Finally, Paris
and colleagues [PPD07], inspired by Feurtey [Feu00], solves
the problem from an egocentric perspective (i.e., walker-
centered). In this approach, perceived neighbors’ motion is
also linearly predicted; an admissible velocity domain for
each walker is deduced. A cost function is used to compute a
specific velocity command belonging to the admissible ones.
More recently, Kapadia and colleagues proposed an egocen-
tric anticipative model in [KSHF09].

Imitating humans. Several solutions appeared in the liter-
ature taking advantage of motion capture or video tracking
technologies to create databases of real interactions [MH04].
In [LCHL07], relative motions and positions between vir-
tual humans are related to behaviors: this approach applies
to the collision avoidance problem, but more generally en-
ables behavioral crowd animation. In [LCL07], the authors
solve interactions occurring in a simulation by retrieving the
most similar example from the database; however, control-
lability and efficiency problems rise. Both of these problems
are solved in [TLP07]: walkers are described using a state-
vector, whilst a captured motion is modeled as a state-vector
change. Given a user-defined state command, a motion se-
quence is found to reach the desired state in a near-optimal
manner. Some components of the state-vector are used to de-
scribe interactions with one neighbor walker: this technique
is thus able to solve interactions.

Our approach. The experimental study proposed in the
next section allows us to describe how humans solve col-
lisions. We demonstrate that the adaptations are not purely
reactive and cannot only be modeled as a function of the
distance between them. It is however possible that this as-
sumption becomes true in the case of crowded areas where
walkers have numerous and intensive interactions. Neverthe-
less, a realistic simulation and animation of virtual walkers
in the general case need anticipation. We have mentioned
existing solutions to anticipate a reaction. However, several
questions remain: some approaches anticipate a reaction at
constant distance or time to collision, others immediately
when interaction is detected. Our experiments demonstrate
that interactions start with an observation period of time,
which allows humans to estimate other’s motion accurately
enough before reacting. Our model accounts for perception-
errors in order to evaluate when reactions occur. Moreover,
previous solutions assume velocity is constant before inter-
action, which enables linear extrapolations of trajectories.
We discuss and address the more complex case where walk-
ers are accelerating when interactions are initiated. Concern-
ing imitation techniques, their main advantage is their in-
trinsic realism. However, two main drawbacks limit their
application. First, efficiency does not always enable real-
time simulation. Second, their validity domain is restricted

Figure 1: Illustration of the proposed experimental protocol.

by the content of example databases. Furthermore, some of
these techniques do not apply to multiple interactions. About
steering methods, the obtained level of realism has not al-
ways been evaluated. Brogan and Johnson proposed evalu-
ation metrics to assess simulated trajectories [BJ03]. Singh
and colleagues [SNK∗08] proposed a framework to evaluate
the ability of steering methods to address interactions among
obstacles. We propose an objective evaluation of our results
based on real data.

3. Experimental Study

Objectives Our objective is here to describe how humans
solve pair-interactions. We choose to observe interactions
under protocol-controlled conditions, in order to diminish -
and more important, to maintain constant between each ex-
perimental sample - the role of secondary factors: we focus
our attention on physical and perceptual factors only. Ac-
curate measures of motion adaptations are desired, and we
choose to use a motion capture system to acquire experi-
mental data.

Protocol The proposed experimental protocol is illustrated
in Figure 1. At the start of each experiment, 4 participants
stay still at each corner of a square experimental area. We
randomly give 2 of the 4 participants the simultaneous order
to walk toward the opposite corner (along each diagonal), the
2 others leave the experimental area. Start signals are given
to participants by network-synchronized computers. Partici-
pants have orthogonally intersecting paths and synchronized
trajectories: they are likely to interact, but not necessarily.
Initial conditions of interactions change for each experiment
because participants are asked to walk at their own comfort
speed. Occluding walls prevent participants to observe each
other before reaching their comfort speed. Our experimental
square is 15m long, interaction area is 10m long. We ran-
domize the selection of participants, so that they cannot an-
ticipate the direction from which one may appear. 30 sub-
jects have taken part in this experiment. We recorded 429
experimental samples.
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Figure 2: left: average adaptation over all experiments
made by participant passing first, function of minimum pre-
dicted distance and normalized time to interaction. right:
average adaptation over all experiments made by partici-
pant giving way, function of minimum predicted distance and
normalized time to interaction.

Method The trajectory was established from the mean of
the two shoulder markers: P(x,y). Velocity is noted V =
dP/dt and acceleration is noted A = dV/dt. We note θ the
velocity vector direction, and v its norm. We check that lat-
eral velocities can be neglected, and assume locomotion is
non-holonomic in our case [ALHB08]. Data are filtered to
remove noise and reduce the effect of natural oscillations
(Butterworth low-pass second order filter, 1Hz cutoff fre-
quency, zero phase shift). Trajectories are decomposed into
three periods of time: participants start walking during the
initial phase, during which they reach their comfort speed.
The interaction phase starts when participants are able to see
each other (with respect to occluding walls), at time t = tvis.
The time when the distance between participants is mini-
mal is called the interaction time tint . Finally, for t > tint ,
participants head again for their goal during the recovery
phase. Our study is focused on the interaction phase, for
tvis < t < tint . In the absence of interaction, participants have
constant velocity inside the interaction area. Their trajectory
can be predicted linearly as follows:

τpred(t,u) = P+(u− t)V, (1)

τpred is the predicted trajectory from instantaneous position
and velocity at time t. Parameter u > t corresponds to the
future time. For any time t belonging the interaction phase,
we are able to predict the distance at which they would meet
if no adaptation is made (the minimum predicted distance
mpd):

mpd(t) = min
u>t
‖−−−−−−−−−−−−−−−→τpred,1(t,u)τpred,2(t,u)‖, (2)

where τpred,1 and τpred,2 are the predicted trajectories for
each of the participants at time t. As participants walk at their
own comfort speed, initial interaction conditions change for
each experiment. This results in a variety of initial mpd(t =
tvis) values over all our experiments. Finally, in order to en-
able direct inter-experiments comparison, we normalize the
duration of the interaction phase and define the normalized
time-to-interaction ttin as follows (average duration of inter-
action phase over all experiments is 4 s.):

ttin(t) = (tint − t)/(tint − tvis), (3)

Figure 3: left: minimum predicted distance for one experi-
ment, function of normalized time to interaction. Three suc-
cessive periods of time are observed: observation, reaction,
and regulation. right: density of minimum predicted dis-
tance trajectories over all experiments, function of normal-
ized time to interaction

ttin ranges from 1 to 0, respectively corresponding to the
normalized time at which the interaction phase starts, and
next, ends.

Minimum predicted distance as a motion adaptation cri-
terion. As participants’ motion is linear in absence of inter-
action, we simply detect motion adaptation by direct measur-
ing of accelerations. We define thus the adaptation quantity
a(t) as follows:

a(t) = ‖A(t)‖= ‖V̇ (t)‖=
√

v̇2(t)+ θ̇2(t).v2(t). (4)

Previous studies state that walkers first determine whether
a collision will occur, and react (or not) accordingly. As
a result, adaptations are to be detected for low mpd val-
ues only. Figure 2 plots participants’ adaptation averaged
over all our experiments, in function of mpd (on vertical
axis) and ttin (horizontal axis). Adaptations of the partici-
pant passing first and of the one giving way are plotted sep-
arately (respectively the top and bottom plot). A strong re-
lation between adaptation and mpd is effectively observed:
when mpd > 1m, almost no acceleration is detected. Note
that adaptations at low normalized time values (ttin < 0.1)
correspond to the initiation of the recovery phase.

Three successive stages. The left plot of Figure 3 shows
the evolution of mpd in time for one single experiment.
At the beginning of interaction phase, we observe 0.1m <
mpd < 0.35m: collision is predicted (mpd is effectively a
body center-to-center distance). mpd remains low for half of
the interaction phase. We call this first stage the observation
period. Following this, mpd is increased during the reac-
tion period to an acceptable value of 1m, enabling collision
avoidance: participants necessarily adapt their motion to in-
crease mpd. However, we cannot determine from this plot
only if adaptation is made by one participant or both. Fi-
nally, mpd is maintained during the regulation phase. mpd
gives a clear temporal description of interactions. In order
to obtain a statistical overview of interaction solving, we
cumulate mpd trajectories for all experiments, and plot the
density of trajectories: the result is given at the right of Fig-
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ure 3. Note that we later use the density plot to qualitatively
compare simulated and real data. We conclude that the ob-
servation period statistically takes place for 1 > ttin > 0.8,
which means during the first 0.8s of the interaction phase.
Reaction period averagely lasts for 1.6s (ttin ∈ [0.8,0.4]).
Finally, during the remaining time (1.6s until ttin = 0, i.e.,
t = tint ) motion is regulated to maintain admissible mpd val-
ues. Note that mpd becomes closer to the distance between
participants when the interaction phase is ending. As a result,
we can see that the average distance at which participants
meet is distributed around 0.8m. The existence of the regu-
lation period of time confirms interactions are solved with
anticipation.

A role-dependent adaptation. Figure 2 separately plots the
adaptations made by each of the two participants. We ob-
serve that both make adaptations, however, the first partici-
pant passing is clearly making less efforts. In conclusion, in-
teraction is solved collaboratively, but asymmetrically. Fur-
ther analysis also reveals different strategies: the first partic-
ipant mainly adapts his velocity, whereas the one giving way
combines velocity and orientation adaptations. This asym-
metry confirms the notion of the personal space: in order to
preserve this space, the participant giving way needs to make
larger avoidances.

Adaptation is error-prone. A common experience we all
have had while walking is to get close to colliding with
someone after successive hesitations on how to avoid him.
We could observe such hesitations: mpd(t) value is lowered
in time instead of being increased. Antinomic adaptations
occur only when mpd is initially close to 0m. In such a case,
the role of each participant is not clearly predictable. The
observation period then becomes longer, and reaction is de-
layed. Do participants refine their motion estimation to de-
termine their role? Nevertheless, such cases provoke the ac-
celeration peak that can be seen in Figure 2, right plot, for
ttin ≈ 0.4 and mpd ≈ 0m. The density plot however reveals
that such cases remain rare.

4. A model for solving interactions between walkers

We elaborated a model for solving interactions between vir-
tual walkers from our experimental observations. Our model
is based on an egocentric representation of walkers’ relative
motion. In the following part, we describe how our model
solves pair-interaction. Next, we describe a calibration tech-
nique to compute realistic model parameters from real in-
teraction data. Finally, the case of multiple interactions is
addressed in Section 4.3.

4.1. A Model for Solving Pair-Interactions

Overview. An interaction is solved for each of the two in-
volved virtual walkers independently. Walkers are modeled

Figure 4: left: Illustration of the components of the pro-
posed model. Solution is based on an egocentric represen-
tation of the interaction situation. right: Step 2 and 3 of a
Model Iteration: walker’s role is deduced from the position
of I relatively to the decision line. A solution velocity is com-
puted in order for I to exit the interaction area.

as velocity-controlled moving points. Our description is sup-
ported by the example introduced in Figure 4, left. Two
walkers walk straight forward at comfort velocity toward
their goal, their trajectories are secant. We note R the ref-
erence walker for which the model is controlling the motion,
displayed at the bottom of the figure. The perceived walker
on the top-right of the figure is noted P . Our approach is
based on several components described below.

Model components The first step of our solution consists
in computing the egocentric representation of the interaction
situation, as illustrated in Figure 4. We first compute P’s po-
sition and velocity relatively to R. We consider thus the lo-
cal coordinate system centered and oriented on the reference
walker R. P’s relative position is noted PP/R, and relative
velocity is computed as follows:

VP/R =VP/W +VW/R, (5)

where VP/W is the velocity of P relatively to the worldW ,
and VW/R the relative motion ofW relatively toR (simply
deduced from absolute velocity vector: VW/R =−VR/W ).

The reference walker’s desired velocity Vd is directly de-
duced from its goal. Vd is oriented toward this goal, its norm
is the reference walker’s comfort velocity vc. The constant
vc is thus an individual parameter. Vd is then expressed in
the local coordinate system as a desired world velocity rel-
atively to the reference walker: VdW/R = −Vd . In the case
presented in Figure 4, the reference walker is walking at the
desired velocity as no adaptation has been made yet. As a
result, desired velocity and current velocity coincide.

A personal area is set around the reference walker. Per-
sonal area has a kite shape. The kite approximates the el-
liptic shape experimentally measured by [GLRM05], but is
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mathematically much simpler to handle. The kite allows the
reference walker to keep more space available in front of it
than in its back and on its sides. Note that the personal area
here maintains a center-to-center distance between walkers.
The kite’s dimension on each side and on the back is 0.8m
and velocity-dependent in front of it (where ut is the unit of
time):

l = 0.8+0.4v.ut . (6)

T1 and T2 are the tangents to the personal area passing by
PP/R. These tangents delimit an area called interaction area
(colored in light green in Figure 4). We also define the inter-
action point I as follows:

I = PP/R+utVP/W +utVdW/R. (7)

Our technique is mainly based on the position of I relatively
to the interaction area: virtual walkers play on this position
to solve an interaction. I results from the relative motion of
P to R, however, each virtual walker can only act on the
self-motion component of this relative velocity. Our exper-
iments demonstrate the importance of motion perception to
explain the interaction temporal structure. As a result, we
model the interaction point location relatively toR as prone
to errors. We only take into account velocity and orientation
perception errors (respectively noted εv and εθ), as they re-
sult from position integration in time since interaction initia-
tion. We neglect position and self-motion perception errors.
We model perception errors by transforming the I point into
a locus: Ilocus. Errors are dependent on the observation time
since the reference walker is perceiving P: the longer the
observation time, the lower the errors. We compute εv and
εθ, as functions of time-to-interaction tti, as follows:

tti = argmin
k
‖PP/R+ k.VP/R‖, (8)

εv = βv.(1− (
tint

tint + tti
)γv), (9)

εθ = βθ.(1− (
tint

tint + tti
)γθ), (10)

where tint is the time elapsed since P is perceived. βv, γv, βθ
and γθ are parameters to be calibrated from real data as ex-
plained in the last paragraphs of this section. Default values
are: βv = 0.5, βθ = 0.5, γv = 0.25, γθ = 0.25. We model Ilocus
as a rectangle aligned on the P’s velocity vector VP/W . Its
length (in the direction of VP/W ) is εv and its width (orthog-
onally to VP/W ) is εθ (see Figure 4).

Finally, we define the decision line which joinsR and P .
We now describe the successive steps of one model iteration.

Model Iteration Our model works according to the three
following steps.

Step 1 - Is adaptation required? If Ilocus is fully contained
in the interaction area, then R has an accurate enough esti-
mation of P’s motion to be sure they will pass at a too low
distance. Indeed, the extrapolated P’s trajectory is crossing

R’s personal area. We are then in the situation illustrated by
Figure 4, right image. (a detailed-view of Figure 4 whereR
is not represented anymore). The goal of the following steps
is to move I on the limits of the interaction area. In the op-
posite case, the model iteration stops here.

Step 2 - What is the reference walker’s role? By the inter-
action point definition (cf. Equation 7), the reference walker
can modify I’s position by adapting its desired velocity,
which becomes the solution velocity. In order to solve the
interaction in an optimal manner, I has to be on the limit of
the interaction area: I ∈ T1 or I ∈ T2. These two solution do-
mains respectively correspond to two different roles: passing
first or giving way. Decision is taken from the relative posi-
tion of I to the decision line. In the case of Figure 4, right, I
is on the side of T1.

Step 3 - Computing a solution velocity. We want I ∈ T1
(T2 when giving way), the solution velocity VsolW/R has to
verify the following condition:

PP/R+utVP/W +utVsolW/R ∈ T1. (11)

Infinity of solutions exists. We represent 3 of them in Fig-
ure 4, right, parameterized by α. Vsol(α = 0) corresponds to
a pure orientation adaptation. Vsol(α = 1) corresponds to a
pure velocity adaptation. Finally, Vsol(α = 0.5) corresponds
to a combination of velocity and orientation adaptation (by
orthogonal projection of I on T1). We thus introduce a new
parameter α which defines the avoidance strategy of the ref-
erence walker. We set the default value: α = 0.5, this param-
eter is later calibrated from real data. Note that the personal
area induces asymmetry in the model. When choosing the
T2 solution domain, (i.e., when giving way) more adaptation
is required, and I reaches the limits of the interaction area
later. It is even possible that no adaptation is required for
the first walker passing, whilst the one giving way detects a
need for adapting its motion. This property is correlated to
our experimental observations.

4.2. Model Calibration

A walker’s behavior is controlled by the five model param-
eters. α determines the walker’s avoidance strategy while
βv, γv, βθ and γθ control perception error evolution in time.
We provide default values for each parameter above. We
now propose to use the Maximum Likelihood Estimation
(M.L.E.) technique [HS98] to calibrate our model from ex-
perimental samples. Briefly, this method consists of succes-
sive testing of different parameter sets. The one leading to
the best match between real and simulated trajectories is
identified. We initialize simulations from the measured ex-
perimental conditions (i.e., relative position and comfort ve-
locities at the initiation of the interaction phase). More pre-
cisely, we search for the parameter set p(α,βv,γv,βθ,γθ) so
that the likelihood estimator L(p) is maximum:

p̂ = argmax
p
L(p), where: L(p) =

n

∏
i=0

fp(δi), (12)
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(a) Uncalibrated model (b) Calibrated model (c) RVO model (d) Reynolds’ model (e) Helbing’s model

Figure 5: A direct comparison between real interaction (red trajectories) and simulated interaction (blue trajectories) for
models.

with δi the error between the experimental position Pe at
time i and the simulated position Ps for an identical time
(Manhattan distance is used):

δi = ‖−−→PePs‖1, (13)

fp(δ) is the probability function of a normal distribution
N (µ,σ2):

fp(δ) =
1√
2πσ

e−
(δ−µ)2

2σ2 . (14)

Figure 5 illustrates the model calibration results. All plots
show real trajectories (in red) superimposed with simulated
ones (in blue). Simulated and real positions at identical times
are linked by black line segments. The plot (a) is obtained
from the uncalibrated version of our model, using the default
parameter values. The plot (b) is obtained after calibration.
In the latter case, perception errors are better estimated, al-
lowing the model not to anticipate reaction too early. As a re-
sult, reaction is delayed and needs to be stronger: simulated
adaptation more accurately corresponds to real data. In or-
der to enable comparison to previous solutions, we also pro-
vide simulated data using van den Berg’s model [vdBPS∗08]
(using the RVO library implementation), Reynold’s steer-
ing behavior [Rey99] (using the OpenSteer implementation)
and Helbing’s model [HM95]. Plot (c) (RVO model) reveals
the need of the asymmetrical personal area. Because of the
circular representation, the correction of the walker passing
second to its velocity is small. We also compare our results
to the Reynolds’ technique because the assumptions used
in this solution meet several of our experimental observa-
tions: reactions are anticipated and collaborative. However,
walkers have symmetric reactions, and anticipation time is
near-constant (just lightly randomized). However, this value
is relatively correct in the case of our initial conditions. We
finally choose the Helbing’s model because of the large in-
terest showed in his approach, and the many existing vari-
ants. We further evaluate and validate our model in the fol-
lowing section, in comparison to these three approaches.

Figure 6: left: Step 3 is modified to solve multiple interac-
tions. The velocity domains U1 and U2 contain all possible
solution velocities for 0 ≤ α ≤ 1. right: Step 4 and 5: the
reference walkerR needs to avoid a collision with perceived
walkersP1 andP2. At the end of step 3, S contains 4 velocity
domains: S = {U11,U12,U21,U22} (orange color). After step
4, S’ = { U ′11, U ′21, U ′22} (blue color), whilst U12 is dropped.
The solution velocity, closest to the current one, Vsol belongs
to U21 but due to the presence of P3, this solution is rejected
and the final solution velocity Vsol belongs to U22.

4.3. Multiple Interactions

In the previous section, we describe and calibrate our in-
teraction model from the pair-interaction case perspective.
We are then able to handle sparsely populated environments
where a walker is usually avoiding one or few other walk-
ers at long distance without need for further computation. In
this section, we describe how our model is able to solve si-
multaneous multiple interactions in more densely populated
environments. Two supplementary steps - step 4 and step 5 -
are required to address such situations.

Similarly to the pair-interaction case, steps 1 to 3 are pro-
cessed for each of the n perceived walker Pi, i = 1, ..,n.
Note that, for each pair-interaction, steps 2 and 3 run only

c© The Eurographics Association 2009.



Pettré et al. / Experiment-based Modeling, Simulation and Validation of Interactions between Virtual Walkers

calibr. uncal. RVO Reynolds’ Helbing’s
model model model steer. model

fig. 5
L(p) 0.285 0.056 0,001 0.004 1.3 10−15

mean
L(p) 0.214 0.165 0.14 0.047 0.004

Table 1: values of the likelihood function using different sim-
ulation models. First results correspond to the example given
Figure 5. Second results are mean values over 429 simula-
tions corresponding to each of the available experimental
sample.

if the corresponding Ilocus is inside the interaction area. Step
3 is however slightly modified. Instead of computing Vsol
according to one specific α value, we compute two velocity
domains Ui1 ∈ Ti1, Ui2 ∈ Ti2 respectively for 0≤ α≤ 1. Ui1
and Ui2 are shown in Figure 6, left. Result is a set of solution
velocity domains: S = {Ui1,Ui2} with i = 1, ..,m. Note that
m < n because some of the perceived walkers have no in-
teraction with the considered reference walker. Real humans
have a limited capability of considering several interactions
simultaneously, we arbitrarily limit m≤ 7.

step 4 - Merging solution velocity domains. For each in-
teracting perceived walker, i.e., for i = 0 to m, we compute
the parts of the corresponding solution velocity domain Ui1
and Ui2 not intersecting the interaction areas corresponding
to any other considered walker. We thus compute a merged
solution velocity domain S′ which contains reduced velocity
domains U ′i1 and U ′i2, computed as follows:

U ′i1 =Ui1−Ui1∪ I j, and U ′i2 =Ui2−Ui2∪ I j, (15)

where I j is the interaction area corresponding to the jth per-
ceived walker, j = 0..m, and j 6= i.

step 5 - Rating velocity domains. In case S′ is empty, we
set Vsol = 0. In the opposite case, each velocity belonging
S′ successfully solves all the considered interactions. How-
ever, they may lead to new interactions with nearby walkers,
yet unconsidered. To diminish the number of interactions in-
duced by the retained solution velocity, each possible solu-
tion is envisaged. We retain the solution velocity Vsol that
minimizes the number of new interactions with walkers (i.e.,
not considered in the S interaction set). Steps 4 and 5 are il-
lustrated in Figure 6, right. Note that P3 is not interacting
with R at this precise simulation step, but makes R prefer-
ably avoiding P1 and P2 by turning to the right in order for
him to not start interacting with P3.

5. Results

Quantitative model evaluation. The likelihood function
L(p) can be directly used as a metric for a quantitative eval-
uation of our model results. Moreover, this function can also
be evaluated for any simulated data which enables compar-

ison between different approaches. Table 1 provides the ob-
tained likelihood function value using: first, our calibrated
model, second, our model using default parameter values,
third, RVO model, fourth, Reynolds’ steering behavior and
finally, Helbing’s model. The first line of results in Table 1
is computed from the example presented in Figure 5. The
second line provides the mean value of the likelihood func-
tion computed over all the 429 available experimental sam-
ples. The higher the likelihood value, the more realistic the
results. The obtained likelihood for the calibrated model is
obviously higher than the one with default parameters value.
Likelihood of the uncalibrated model is only slightly better
than RVO model. However, this approach is not able to cor-
rectly simulate a large variety of cases, especially due to the
near-constancy of anticipation times. Furthermore, adapta-
tions are symmetrically made by the two walkers. Reynolds’
model is worse than previous two and has the same disad-
vantages as the RVO model. In the case of Figure 5, the low
contribution of the first walker passing is clearly observable.
Only our solution correctly simulates such an asymmetry,
even without calibration. Helbing’s model is not adequate
for this simulation setup. Finally, 398 times over 429 sam-
ples, the uncalibrated model correctly simulates the passage
order between walkers. After calibration, the correct order
is found 416 times. The obtained realism in our simulation
results has no prohibitive computational cost: the three steps
of one model iteration are averagely computed in 16µs. (on
a PC with Intel Core2-Duo X9000 at 2.8GHz).

Qualitative model evaluation The qualitative comparison
between models can be further detailed looking at the den-
sity plots displayed in Figure 7. Density plots enables a sta-
tistical evaluation of the relative duration of the observation,
reaction and regulation periods, as well as the evolution of
the mpd value. They are obtained from simulated data in
exactly the same manner as for the one displayed in Fig-
ure 3 from experimental data. On plots (a) and (b) of Fig-
ure 7, the uncalibrated and calibrated model density plots are
respectively shown. The uncalibrated version of the model
over-increases the mpd value, the duration of the reaction
period is however correctly simulated. The calibration de-
lays reactions but the final distance between walkers at in-
teraction time is now correctly regulated. The RVO’s and
Reynolds’ model also converges toward a correct final dis-
tance between walkers. For RVO model, mpd is increasing
smoothly but starts increasing from the moment the walkers
can see each other. Reaction is apparently too abrupt con-
cerning the Reynolds’ method. This is due to simultaneous
adaptations of walkers’ motion; in reality, adaptations are
not synchronized, which makes the reaction period longer
and smoother. The lack of anticipation of Helbing’s model is
detectable, and the minimal distance between walkers over-
pass realistic values.

c© The Eurographics Association 2009.



Pettré et al. / Experiment-based Modeling, Simulation and Validation of Interactions between Virtual Walkers

(a) Uncalibrated model (b) Calibrated model (c) RVO model (d) Reynolds’ model (e) Helbing’s model

Figure 7: Trajectory density plots for 429 simulations, using initial conditions extracted from experimental samples, and using
respectively (a) our model with default parameters values, (b) our model with calibrated parameters values, (c) the RVO model,
(d) the Reynolds’ model, and (e) the Helbing’s model.

6. Discussion

Our approach has several limitations. Doubtlessly, the ma-
jor limitation is to have restricted our study on single pair-
interactions. However, we discuss these limitations, as well
as future work directions in the following paragraphs.

Figure 8: A complex interaction situation where the per-
ceived walker has non-linear trajectory.

The non-linear case. So far, we have assumed that walk-
ers have a constant velocity during the observation period of
time. When a curved path is followed, such as in the exam-
ple displayed in Figure 8, this assumption becomes false and
the proposed model version is not able to correctly anticipate
a collision avoidance. The problem comes from the position
of the interaction point I which is moving relatively to the
tangents T1 and T2 (by the interaction point definition, cf.
Equation 7). When P accelerates, the instantaneous velocity
of I in our representation is:

VI/R = utAP/R. (16)

In order to address such a situation, we adapt the step 1 of the
model iteration. We compute two new variables tin and tout ,
which are respectively the time when Ilocus is predicted to
enter and next, leave, the interaction area. This evaluation is
made from the instantaneous velocity of I, and distance from
Ilocus to T1 and T2 in the VI/R direction. This estimation is
coarse, given that I is probably not having a constant velocity

in time. We then compare tin and tout to tti. If tti∈ [tin, tout ], a
collision is predicted. Then, two cases are considered. If tti is
closer to tout than tin, motion adaptation is computed to make
Ilocus exit the interaction area more rapidly. Conversely, if tti
is closer to tin, motion adaptation is computed to avoid Ilocus
entering the interaction area. Steps 2 and 3 of the model iter-
ation are modified accordingly. We illustrate such a complex
situation in the companion video. As far as we know, none
of the existing models is able to handle correctly such a case.

Orientation and velocity perception errors. We divide
perception errors into two terms, εv and εθ. Our intuition is
that the initial value of these two terms, when another walker
is just perceived, depends on its relative position and walking
direction. We assume that velocity is more accurately per-
ceived than orientation when locomotion is perceived from
a lateral point of view. Conversely, when walkers are face to
face, orientation is more precisely perceived than velocity.
In the proposed model, and in the example of the latter case,
Ilocus is elongated and rapidly contained into the interaction
area due to its orientation. Consequently, this interaction is
solved in simulations at far distances. This intuition is con-
firmed when thinking of interactions in straight corridors.

Taking obstacles into account. Environment obstacles
have three major roles in interactions. First, they limit walk-
ers’ visual perception. Obviously, an interaction is initiated
between two walkers when they are able to see each other.
Second, they may limit the solution velocity domain. As for
multiple interactions, it is possible to solve interactions with
such limitations. Singh and colleagues recently proposed
a framework to evaluate walker-walker interaction solving
among obstacles [SNK∗08]. Accounting for obstacles in a
general manner, and evaluating our results using the pro-
posed framework is in progress. We provide first results in
the companion video: one walker cannot deviate during the
interaction due to the presence of an obstacle. Finally, ar-
eas made invisible by obstacles have a role in locomotion.
For instance, at corridors crossing, walkers adapt their mo-
tion because they expect someone to appear from an invisi-
ble area.
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7. Conclusion

We presented a novel approach to simulate interactions be-
tween virtual walkers. The model is based on a detailed ex-
perimental study, allowing us to observe how real humans
behave in such situations. We state that the minimum pre-
dicted distance is an adequate criterion to determine whether
humans require to adapt their trajectory or not. We also
demonstrated that humans react after an observation period
during which perceived motion is estimated more and more
accurately. Interactions are solved by a combination of ve-
locity and orientation adaptations, which is role-dependent.
The task is collaborative between the two walkers, how-
ever, the walker passing in front of the one giving way
makes quantitatively less adaptations. We proposed a model
able to simulate and reproduce our experimental trajecto-
ries. Our model has few parameters and can be automat-
ically calibrated on real data. We evaluated our approach
and compared it to previous techniques. We demonstrated
the achieved improvements: our model is able to determine
correctly if, when and how motion is adapted to solve in-
teractions. Future work’s main objective is to study multiple
and complex interactions between walkers among obstacles,
and to extend our model accordingly. We will then be able
to validate our main hypothesis, which states that a com-
plex interaction can be decomposed into a combination of
pair-interactions. Understanding how humans combine such
pair-interactions is then crucial.
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Figure 1: Animations resulting from our simulations. Emergent self-organized patterns appear in real crowds of walkers. Our simulations
display similar effects by proposing an optic flow-based approach for steering walkers inspired by cognitive science works on the human
locomotion. Compared to previous approaches, our model improves such an emergence as well as the global efficiency of walkers traffic. We
thus enhance the overall believability of animations by avoiding improbable locking situations.

Abstract

In the everyday exercise of controlling their locomotion, humans
rely on their optic flow of the perceived environment to achieve
collision-free navigation. In crowds, in spite of the complexity
of the environment made of numerous obstacles, humans demon-
strate remarkable capacities in avoiding collisions. Cognitive sci-
ence work on the human locomotion stated that a relatively succinct
information is extracted from the optic flow to achieve a safe loco-
motion. In this paper, we explore a novel vision-based approach
of collision avoidance between walkers that fit the requirements of
interactive crowd simulation. In imitation of humans and based on
cognitive science results, we detect future collisions as well as their
dangerousness from visual-stimuli. The motor-response is twofold:
reorientation strategy is set to avoid future collision, whereas a
deceleration strategy is used to avoid imminent collisions. Sev-
eral examples of our simulation results show that the emergence of
self-organized patterns of walkers is reinforced using our approach.
Emergent phenomena are visually appealing. More importantly,
they improve the overall efficiency of the walkers traffic and allow
avoiding improbable locking situations.
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1 Introduction

Crowd simulation has significantly grown in importance these two
past decades. Their field of application is wide and ranges from
the domains of security and architecture to the one of movie in-
dustry and interactive entertainment. The visually impressive self-
organized patterns that emerge at a large-scale from the combina-
tion of all the local actions and interactions in crowds is probably
a major reason of the attention paid by Computer Animation on
this topic. Reynolds’ seminal work on flocks of boids showed that
fascinating global motions can be obtained from simple local inter-
actions rules [Reynolds 1987]; however, the proposed rules explic-
itly stick boids together to obtain emerging flocks. Moreover, boids
motion rules are not directly transposable to human walkers.

Human crowds are the place of numerous and various interactions.
In this paper, we focus on crowds of individually walking humans
where interactions are limited to collision avoidance. Our motiva-
tion is to design a local collision avoidance method that remains
as close as possible to the real human behavior while display-
ing emerging self-organized patterns as witnessed in real crowds.
This objective is representative of our bottom-up approach: specific
large-scale formations are expected from realistic local interactions
between walkers. Simulating emerging formations is crucial in or-
der to obtain believable crowd animations. Obtaining them from
individually steered walkers avoiding each-other, and thus, simu-
lating self-organization, is particularly challenging.



Collision avoidance has recently received much attention. Several
types of approach were proposed (cf. Section 2 for an overview).
Most of recent agent-based techniques are based on geometrical
models. Their common point is to explicitly compute admissi-
ble velocities that allow avoiding future collisions: efforts are fo-
cused on reaching highest performance in order to handle large
crowds. Then, challenge is to steer walkers with believable tra-
jectories while remaining in the admissible velocity domain. How-
ever, geometrical models are also disconnected from reality since
humans unconsciously react to perceived obstacles to avoid colli-
sions. This raises fundamental question, that is can simpler percep-
tion/action control loops - probably closer to reality - steer virtual
walkers and allow them avoiding collisions even in complex situ-
ations? Rule-based techniques explored such a question; however,
artifacts occur in most complex situations because of the difficulty
in combining rules. Particle-systems and continuum-based meth-
ods ease the combination of interactions and are able to handle even
larger crowds. They however have drawbacks as well. The former
sometimes fail to simulate emerging patterns of walkers while the
latter may lead to unrealistic local motions as for example unfeasi-
ble accelerations or velocities.

In contrast with previous approaches, we steer walkers according to
the visual perception they have of their environment. We thus for-
mulate our collision avoidance solution as a visual-stimuli/motor-
response control law. Our model is inspired by the work of Cut-
ting and colleagues [1995] on the human locomotion in the field
of cognitive science. They stated that humans extract two ma-
jor elements from their optic flow to achieve collision-free nav-
igation. First is the derivative of the bearing-angle under which
obstacles are perceived. Second is the time-to-collision which is
deduced from the rate of growth of obstacles in successively per-
ceived images. Inspired by these observations, our model’s inputs,
i.e., the visual-stimuli, are the egocentrically perceived obstacles
transformed into images of time-derivatives of bearing-angles and
of times-to-collision. These images are directly computed from the
geometries and states of both the static and moving obstacles of the
scene. Walkers have simple reactions to these stimuli: they turn
to avoid future collisions and decelerate in the case of imminent
collisions.

Our contributions are thus the following. We propose a vision-
based collision avoidance model for interactive simulation of
crowds of individual humans. We base our approach on cognitive
science work on the human locomotion, which inspired us novel
local visual-stimuli/motor-response laws. We apply our method
to complex situations of interaction: resulting simulations display
the emergence of interesting self-organized patterns of walkers at a
global-scale. We demonstrate our improvements in comparison to
previous approaches, with enhanced emergence of patterns of walk-
ers, improved global efficiency of the walkers traffic, and smoother
animations.

The remainder of the paper is organized as follows. Section 2 first
provides an overview of crowd simulation techniques with partic-
ular focus on collision avoidance methods. Following, we present
the guiding principles of our approach before describing the pro-
posed model in details in Section 3. We provide details about its
implementation in Section 4. Finally, we illustrate simulation re-
sults from several examples and give comparison with previous
techniques in Section 5. Limitations of our approach and future
work are discussed in Section 6, before concluding.

2 Related Work

Virtual Crowd is a wide topic that raises numerous problems in-
cluding population design, control, simulation or rendering and

was surveyed in recent books [Thalmann and Raupp Musse 2007;
Pelechano et al. 2008] and tutorials [Thalmann et al. 2005; Halperin
et al. 2009]. This overview focuses on crowd simulation, the objec-
tive of which can be restrictively defined as computing global loco-
motion trajectories to achieve goal-driven collision-free navigation
for crowds of walkers.

Several classes of solutions were proposed in the literature.
Cellular-automaton approaches [Schadschneider 2001] are used to
simulate evacuation scenarios for large crowds: the discrete as-
pect of resulting trajectories prevent their use for Computer Ani-
mation applications. However, grid-based solutions were adapted
to meet such requirements [Loscos et al. 2003], and for example
Shao and Terzopoulos [2005] proposed the use of multi-resolution
grids to handle large environments. Other techniques consider
velocity-fields to guide crowds [Chenney 2004]. This analogy with
Physics gave rise to particle-systems approaches. Helbing [1995]
proposed the social-forces model where walkers repulse each-other
while they are attracted by their goal. The social forces model
was later revisited in [Pelechano et al. 2007; Gayle et al. 2009].
Evolved models proposed using mass-damp-spring systems to com-
pute similar repulsing forces between walkers [Heigeas et al. 2003].
Crowd simulation was also studied as a flowing continuum [Hughes
2003; Treuille et al. 2006] that allows simulating numerous walk-
ers in real-time. Even larger crowds were handled using hybrid
continuum-based approach [Narain et al. 2009]. From a general
point-of-view, high computation performance is a common point
between all of these approaches. Such performance allows simulat-
ing large crowds in equally large environments in real-time, which
is a crucial need of many interactive applications. Performance is
however obtained at the cost of some limitations, such as restricting
the total number of goals walkers can have, or using of simplistic
interaction models that may lower the realism of results. Compared
to this former set of approaches, our first objective is not to reach
a high-performance solution but to simulate local interactions in a
realistic manner. By realism, we here mean that we reproduce the
human vision-based locomotion control in order to steer walkers in
crowds. Synthetic vision raises numerous computations by nature.

Our method can be closely related to rule-based ap-
proaches [Reynolds 1999] as well as to geometrically-based
local avoidance models approaches [Paris et al. 2007; van den Berg
et al. 2008; Kapadia et al. 2009; Pettré et al. 2009; Karamouzas
et al. 2009; Guy et al. 2009]. It is generally required to combine
local approaches with dedicated techniques in order to enable the
reaching of high-level goals in complex environments [Lamarche
and Donikian 2004; Paris et al. 2006; Pettré et al. 2006; Sud
et al. 2007]. Nevertheless, geometrically-based avoidance models
carefully check the absence of future collisions locally, given the
simulation state. This goal is generally achieved by decomposing
the reachable velocity-space of each walker into two components:
the inadmissible velocity domain and the admissible velocity
domain. These domains respectively correspond to velocities
leading to collisions and those allowing avoidance. At the oppo-
site, our method make walkers react to some situations without
explicitly computing the admissibility of their motion adaptations.
This raises a fundamental question: can explicit collision checks
guarantee the absence of residual collisions? We argue the answer
is negative. The reason is twofold. First, the admissible velocity
domain is computed assuming that the velocity of moving obstacles
remains constant. Second, the admissible velocity domain is often
made of several independent components, especially in the case of
complex interactions - i.e., during simultaneous interactions with
several obstacles. Some of these components degenerate in time
because moving obstacles may also adapt their own motion. If
the current velocity of a given walker belong such a degenerative
component, switching to another component is required. As a



result, traversing the inadmissible velocity domain is required
when acceleration is bounded, whereas unbounded accelerations
result into unrealistic motions. Our method do not explicitly check
collisions and is not exempt from failure. We however believe
the proposed visual-stimuli/motor-response laws better imitate the
most basic level of real human locomotion control.

We previously addressed the question of realism of simulated lo-
comotion trajectories during collision avoidance in [Pettré et al.
2009]. We provide a qualitative description of such trajectories:
we experimentally show that real humans anticipate avoidance as
no more adaptation is required some seconds before walkers pass
at close distance. We also show that avoidance is a role-dependent
behavior as the walker passing first makes noticeably less adapta-
tions than the one giving way. We discuss the visual information
humans may exploit to be able to achieve avoidance in such a man-
ner. However, we proposed a geometrical model to reproduce such
trajectories that is calibrated from our experimental dataset. Com-
pared to this work, we here address two new problems. First, we
address the question of combining interactions. We explore syn-
thetic vision as a solution to implicitly combine them, for example:
they are integrated by projection to the perception image, they are
filtered when obstacles are invisible, they are weighted by the im-
portance obstacles have in the image. Second, we directly base our
motion control laws on the visual information believed to be ex-
ploited by real humans.

Vision-based methods were never used to tackle the crowd simu-
lation problem to the best of our knowledge, with the exception of
Massive software agents [Massive ] which are provided with syn-
thetic vision; however, controlling walkers from such an input is
left at the charge of users. Nevertheless, synthetic vision was used
to steer a single or few virtual humans [Noser et al. 1995; Kuffner
and Latombe 1999; Peters and O’Sullivan 2003] or artificial crea-
tures [Tu and Terzopoulos 1994]. Reynolds’ boids were also re-
cently provided with visual perception abilities [Silva et al. 2009].
Our approach explores a new type of visual-stimuli to control lo-
comotion, based on statements from cognitive science. We also
improve performance to fit the requirements of interactive crowd
simulation. Finally, visual-servoing is an active topic in the field of
Robotics [Chaumette and Hutchinson 2006]. Major challenges are
processing optic flows acquired with physical systems and extract-
ing the relevant information that allow steering robots. In contrast
to this field, we do not process digitally computed images but di-
rectly compute the required visual-inputs of our model.

3 Vision-based collision avoidance

3.1 Model overview

Humans control their locomotion from their vision [Warren and
Fajen 2004]. According to Cutting and colleagues [Cutting et al.
1995] humans successively answer two questions during interac-
tions with static and moving obstacles: will a collision occur?
When will collision occur? Cutting experimentally observed that
these two questions are answered by extracting two indicators from
the perceived optic flow:

1. Will a collision occur? Humans visually perceive obstacles
under a given angle referred to as the bearing-angle (noted
α). A collision is predicted when the time derivative of the
bearing angle, α̇, is zero (or close to zero because of the body
envelopes). This observation is illustrated in Figure 2 from the
3 examples of two walkers displaying converging trajectories.

2. When will collision occur? Humans visually perceive obsta-
cles with given sizes. The rate-of-growth of obstacles in time

Figure 2: The bearing-angle and its time-derivative, respectively α
and α̇, allow detecting future collisions. From the perspective of an
observer (the walker at the bottom), a collision is predicted when α
remains constant in time. (left) α < 0 and α̇ > 0: the two walkers
will not collide and observer will give way. (center) the bearing-
angle is constant (α̇ = 0). The two walkers will collide. (right)
α < 0 and α̇ < 0: the two walkers will not collide and observer
will pass first.

allow humans to detect obstacles coming toward them when
positive. Moreover, the higher the rate the more imminent the
collision. As a result, humans are able to evaluate the time-to-
collision (ttc).

Therefore, the relevant information necessary to achieve collision-
free locomotion according to Cutting is entirely described by the
pair (α̇, ttc). It is to notice that humans use similar information
to intercept mobile targets as described by Tresilian in [Tresilian
1994].

Figure 3: Two examples of real interactions between (top) two
walkers and (bottom) four walkers. Motion captured trajectories
projected on the ground are shown (plots on the left), as well as in
the (α̇, tti)-space (plots on the right), as perceived by one of the
participant called ’observer’. Trajectories are colored in order to
enable matching between the two representations.

Figure 3 illustrates Cutting’s theory from 2 examples of real inter-
actions: trajectories are displayed in the horizontal plane as well as
in the (α̇, tti)-space, where tti is the time-to-interaction. Time-to-
interaction is the time remaining before minimum distance between
participants is reached, according to current positions and veloci-
ties. The notion of time-to-collision ttc is generally used in the lit-
erature in place of our time-to-interaction tti; these two notions are



close. By definition ttc exists if and only if a risk of future collision
is also existing. At the opposite, tti exists whatever the relative po-
sitions and velocities of the considered moving objects. Also note
that tti can reach negative values when the considered objects dis-
play diverging motions. In the first example, we observe that α̇ is
initially close to zero whilst tti decreases: collision is predicted. By
turning to the left, the observer solves the interaction: α̇ decreases.
On the second example, future collision with the observer is pre-
dicted for two walkers among the three perceived ones. By turning
and decelerating, α̇ values are corrected. The impact of motion
adaptations on the variations of (α̇, tti) is not intuitive. However,
as a first approximation, turns mainly plays on the α̇ value, whereas
a deceleration mainly changes tti.

The guiding principles of the proposed model - based on Cutting’s
results - are thus the following. A walker perceives the static and
moving obstacles of his environment as a set of points P = {pi}
resulting from his synthetic vision. For each perceived point pi,
we compute the bearing angle αi, its time-derivative α̇i, and the
remaining time-to-interaction relatively to the walker ttii. We de-
duce the risk of a future collision from α̇i. We also deduce the
dangerousness of the situation from ttii. A walker reacts when
needed according to two strategies. First, he avoids future collision
by adapting his orientation with anticipation. Second, in the case
of an imminent collision, he decelerates until he gets stopped or
the interaction is solved. The following sections detail how we put
these principles into practice.

3.2 Model inputs

Figure 4: Model’s inputs. Any point is perceived under given
bearing-angle. The triad (αi, α̇i, ttii) is deduced from the relative
point position and velocity with respect to the walker.

A walker configuration is defined by its position and orientation θ.
He is velocity-controlled by his angular velocity θ̇ and his tangential
velocity v. Perceived points pi ∈ P may indiscriminately belong
to static obstacles - such as walls - or moving ones - such as other
walkers. Also note that a single obstacle result in several points with
respect to its shape: Figure 6 illustrates how a walker perceives his
environment. The variables associated to each pi → (αi, α̇i, ttii)
are deduced from the relative position and velocity of pi to the
walker; we however detail their computation in Figure 4 as well
as in the following Implementation Section 4.

3.3 Angular velocity control

As explained in the previous section, a walker detects a risk of fu-
ture collision when α̇ is low and ttii > 0. We define the α̇i thresh-

old τ1 under which a walker reacts as a function of the perceived
ttii as follows:

τ1(tti) =

{
τ1−(tti) = a− b.tti−c if α̇i < 0,

τ1+(tti) = a+ b.tti−c otherwise.
(1)

where a, b and c are some parameters of the model. These three
parameters change a walker avoidance behavior by adapting his an-
ticipation time as well as the security distance he maintains with
obstacles. We detail the role of these parameters in the Discussion
Section 6. Figure 5 plots the function τ1 for a = 0, b = 0.6 and
c = 1.5. These values were used in the examples shown in Sec-
tion 5, and were determined by manually fitting τ1 on numerous
experimental data capturing avoidance between real walkers similar
to those shown in Figure 3. Then, the set Pcol of points pi(α̇i, ttii)
a walker has to react to is defined as follows:

pi ∈ Pcol if ttii > 0 and αi < τ1(ttii) (2)

We now combine the influence of the set of points belonging to
Pcol. For this purpose, we decompose Pcol into P+ and P−, which
respectively correspond to points with positive and negative α̇i val-
ues. We then define φ+ and φ− as follows:

φ+ = min(α̇i − τ1+(ttii)), for all pi ∈ P+ (3)
φ− = max(α̇j − τ1−(ttij)), for all pj ∈ P− (4)

At this point, we have identified all interactions requiring walkers to
turn to the right to avoid future collision into P+, and those asking
to turn left into P−. The required amplitude of a right turn allowing
to avoid at once all the interactions provoked by the P+ set of points
directly depends on the amplitude of φ+ (the same for a left turn,
P− and φ− respectively). However, we must ensure walkers do not
highly deviate from their goal. For this reason, we now consider
the bearing-angle corresponding to the goal αg , as well as its time-
derivative α̇g . Contrarily to obstacles, walkers attempt to intercept
their goal, which means that α̇g = 0 is desired. Three cases are then
successively considered. Firstly, when α̇g is small (we arbitrarily
choose |α̇g| < 0.1rad.s−1), walkers are currently heading to their
goal, the influence of which is neglected. In this case, we simply
choose the change of direction which asks the minimum deviation.
θ̇ is controlled as follows:

θ̇ =

{
φ+ if |φ+| < |φ−|,
φ− otherwise.

(5)

Secondly, when φ− < α̇g < φ+, but cannot be neglected, we
choose the change of direction that leads to the smallest deviation
from the goal. Then,

θ̇ =

{
φ+ if |φ+ − α̇g| < |φ− − α̇g|,
φ− otherwise.

(6)

Thirdly, when α̇g < φ− or α̇g > φ+ we choose:

θ̇ = α̇g (7)

To avoid unrealistic angular velocities, θ̇ and θ̈ are finally bounded
so that |θ̇| < π/2(rad.s−1) and |θ̈| < π/2(rad.s−2).

3.4 Tangential velocity control

Tangential velocity v is set to comfort velocity vcomf by default.
It is only adapted in the case of a risk of imminent collision. The
imminence of a collision is detected when ttii is positive but lower



Figure 5: τ1 plot using the following parameter set: a = 0, b =
0.6 and c = 1.5 (cf. Equation (1)). Future collision is detected
when pi(α̇i, ttii) is below τ1 and ttii > 0. The plot also illustrates
that the lower the ttii value, the higher the walker’s reaction.

than a threshold τ2 (we arbitrarily choose τ2 = 3s.). Tangential
velocity is controlled from the minimum positive ttimp value per-
ceived by the walker. We define Ppos the set of points pi ∈ Pcol

for which ttii < τ2 and compute ttimp as follows:

ttimp = min(ttii) for all pi ∈ Ppos (8)

Finally, the walker’s tangential velocity is controlled as follows:

v =

{
vcomf if Ppos = ∅,
vcomf .(1− e−0.5tti2mp) otherwise.

(9)

Position and orientation of the walker are finally updated according
to the computed v and θ̇ values, with bounded v̇ (|v̇| < 1m.s−2).

4 Implementation

Figure 6: Walkers perceive the environment obstacles as a set of
points pi(α̇i, ttii). The image corresponding to all the perceived
α̇i values of pi is shown top-left (red are for lowest values). The
image corresponding to all the perceived ttii values of pi is shown
top-right (red are for lowest values). Perception is combined (bot-
tom image) to compute walker reaction. In this example - which
corresponds to the circle example, cf. Section 5 - the walker will
react to the most red points of the combined perception. In this par-
ticular situation, he is likely to follow the walker in front of him on
his right.

We implemented our model using OpenGL, shader programming
language and CUDA. The algorithm is decomposed into two major
stages. First, for each virtual walker:

Step 1 Set camera position and orientation at the one of the con-
sidered walker (see details below).

Step 2 Render to texture environment obstacles using simplified
geometries. Compute values αi, α̇i and distance to obstacle d
per vertex (Figures 4 and 6).

Step 3 Then, using a fragment shader, compute per pixel ttii, build
P+ and P− from τ1+ and τ1−.

Step 4 Copy the resulting texture to the CUDA space and make a
parallel reduction to compute φ+, φ−. Result is stored to an
array on the GPU.

At the end of this first loop, the resulting array is downloaded once
to the CPU. Then, for each walker again:

Step 5 Compute α̇g and deduce θ̇ and v.

Step 6 Update walker’s position accordingly.

Camera Setup Walkers visually perceive their environment
through the OpenGL camera set at the first step of our algorithm.
The camera field-of-view is 150◦ of width and 80◦ of height. The
camera position is set at the one of the considered walker at his eye
level, and panning angle is aligned on the walker’s motion direc-
tion. Tilting angle is set so that the upper clipping plane is horizon-
tal (i.e., camera is oriented toward the ground with a −40◦ angle).
Resolution is 256× 48 pixels.

Simplified Geometries The complexity of the proposed algo-
rithm is dependent on the one of the environment (Step 2). Walker
do not need to react to subtle geometrical details of the scene. Sim-
plified bounding geometries can be used for obstacles. In particular,
perceived walkers are geometrically simplified as cones of 1.8m of
height and 0.5m of base radius. Cones, similarly to walking hu-
mans, are wider at their base than at their top. Real humans can
see above others’ shoulders: cones better reflect this ability than
cylinders, for instance.

Computation of Inputs Model’s inputs are computed as illus-
trated in Figure 4. In the figure, pi is one of the perceived points
that belongs to a given obstacle o. The relative velocity

−→
V pi/w

of a perceived point with respect to the considered walker are first
deduced: −→

V pi/w = ~Vo − ~Vw (10)

where ~Vw the walker’s velocity vector and ~Vo the obstacle’s veloc-
ity vector the perceived point belongs to. Finally, ~Vpi/w is decom-
posed into ~Vconvpi/w

and ~Vorthpi/w
to deduce ttii and α̇i (~Vconv

is for the component of the relative velocity converging to the con-
sidered walker, and ~Vorth the orthogonal one):

~Vconvpi/w
= (~Vpi/w.

~k).~k (11)

~Vorthpi/w
= ~Vpi/w − ~Vconvpi/w

(12)

ttii = D.‖~Vconvpi/w
‖−1 (13)

α̇i = arctan(
‖~Vorthpi/w

‖
D − ‖~Vconvpi/w

‖
).u−1 (14)

whereD is the pi-walker distance, ~k is the unitary pi-walker vector,
and u the unit of time.



5 Results

5.1 Examples

(a) Initial walkers’ configuration (b) Our model

(c) RVO-Library (d) Helbing’s model

Figure 7: Circle (a) A scene of 100 walkers are initially deployed
uniformly along a circle. Walkers goal is to reach the diametrically
opposed position. Solution is shown for 3 models (b), (c), (d). Our
model (b) is the only one able to provoke the emergence of patterns.

We illustrate our simulation results according to four examples.
Comparison with two previously existing techniques is provided for
the two first examples in order to illustrate the achieved improve-
ments. We chose:

RVO which is representative of geometrical avoidance models.

Helbing’s model which is representative of particle-based ap-
proaches. Contrarily to RVO, such models do not take into
account anticipation and interactions are formulated as func-
tion of distance to obstacles.

The available examples are:

Circle: In this example, walkers are initially located along a cir-
cle and each one’s goal is to reach the diametrically opposed
position. In absence of others, each walker would go through
the circle passing by its center. The number of interactions
occurring in such an example is thus maximized: actually,
each walker interacts with all the other ones. The main diffi-
culty raised by this example is avoiding that walkers immedi-
ately converge to the center of the circle and get stuck there.
Such situation can be efficiently avoided when ’traffic circles’
emerge, whilst the center is almost left empty of anyone. Re-
sults are shown in Figure 1 and 7.

Group-swap: In this example, walkers are initially separated in
two groups. The goal is to swap group positions. Motion is
not constrained by static obstacles. A main difficulty raised by
this example is to achieve collision avoidance whilst walkers
do not excessively deviate from the shortest route in spite of

(a) Initial walkers’ configuration (b) Our model

(c) RVO-Library (d) Helbing’s model

Figure 8: Group-swap A scene with two groups of walkers heading
toward each other solved by three different models. In our model
(b) distinct lane formations emerge with anticipation. The lane for-
mations in RVO-Library (c) start emerging lately and lead to a con-
gestion. Helbing’s model (d) no such formation emerge.

the absence of constraints (e.g., corridor walls). Such a result
can be reached only if lane formations emerge. Results are
shown in Figure 8.

Pillars: In this example, we increase the difficulty of the group-
swap example by adding two rows of pillars in the middle
of the scene. We also demonstrate the ability of our model to
take in account static obstacles. Results are shown in Figure 9.

Crossing: In this example, two groups of people meet at the in-
tersection of two orthogonal corridors: static obstacles both
constraints the motion and prevent walkers to early perceive
the ones from the other group. Main difficulties of this ex-
ample are: first, avoid that one of the two groups get stuck
and second, avoid walkers to be excessively deviated along
corridors walls. Results are shown in Figure 10.

All of the displayed examples demonstrate our model ability to let

Figure 9: Pillars This example is identical to the group-swap one,
two rows of pillars make the scene more complex. The images show
the evolution in time of the simulation starting from the left.



Figure 10: Crossing This example shows two groups meeting at the
intersection of orthogonal corridors. The emerging line patterns
the direction of which is approximately 45◦ allows efficient global
motion (evolution in time is shown from top-left to bottom-right).

self-organized patterns of walkers emerge from the motion. Emer-
gent patterns allow to efficiently solve the sum of interactions be-
tween walkers (cf. Table 1). Improvements compared to previ-
ous approaches are perceptible: in identical situations, the walkers
travel-time is lowered using our approach, and the presence of slow
walkers - with v < 0.5m.s−1 and which may affect the overall
believability of results - is decreased. In the example of the cir-
cle (Figure 7), other techniques concentrate walkers in the center
of the scene which lower the efficiency of the circulation. In the
case of the group-swap example, the Helbing’s model fail to find
an acceptable solution: groups are widely spread because particles
simply repulse each-other.

circle group-swap
max. prop. of max. prop. of
travel slow travel slow
time walkers time walkers

our model 53s. 0.97% 55s. 0.74%
Helbing’s 90s. 30.4% 71s. 11.0%
RVO 63s. 13.0% 59s. 4.7%

Table 1: The maximum walkers travel-time and the proportion of
slow walkers are provided for the circle and the group-swap exam-
ples, using three different models. The proportion of slow walkers
is the mean proportion of time walkers are going below 0.5m.s−1.

Furthermore, a specificity of our model is to independently con-
trol angular and tangential velocity. Decelerations occur only in
case of an imminent collision. The absence of deceleration dur-
ing anticipated reaction results in smoother trajectories. We believe
the overall aspect of our results is improved compared to previous
approaches, especially when virtual humans are animated to fol-
low the generated trajectories. The companion video illustrates the
quality of synthetic trajectories, emergent self-organized patterns of
walkers, as well as final animations.

5.2 Performances

Obtaining reasonable performance is probably the major technical
challenge of the approach we propose due to the synthetic vision
technique. We are still able to reach fair results by partly executing
our algorithm steps on a GPU. Real-time performance (25 f.p.s.) is

Figure 11: Performance plot: computation time for one simulation
loop with respect to the number of walkers is measured. Simulation
ran on a laptop with Intel T7800@2.6GHz CPU and Quadro FX
3600M graphics card. The circle-example situation was used. We
detail the total simulation loop time into the rendering and process-
ing plots, which respectively correspond to the time spent during
steps 1-3, and 4-6 (the latter includes the GPU-CPU data trans-
fer).

maintained up to 200 walkers (cf. Figure 11, computed on a laptop
with Intel T7800@2.6GHz CPU and Quadro FX 3600M graphics
card). The major bottleneck of our method is the data transfer from
the GPU to the CPU (between steps 4 and 5).

Performance can be improved in several ways. Firstly, the camera
resolution at step 1 can be lowered: on one hand, the number of
perceived points is decreased accordingly and performance is im-
proved; on the other hand, perception accuracy is decreased and
may prevent walkers to react with anticipation to partly occluded
obstacles. The companion video illustrates the impact of lowering
the camera resolution. Secondly, we believe that the complete simu-
lation loop can be executed on the GPU (recent approaches demon-
strated feasibility [Silva et al. 2009]): on one hand, data-transfer
between GPU and CPU is avoided (which represent approximately
30% of the complete simulation loop time); on the other hand, fur-
ther tasks could be made impossible (e.g., animating virtual walk-
ers). Finally, assuming that each obstacle is represented by a sin-
gle static or moving points (which is, for instance, an acceptable
assumption for a scene made of walkers only), the model applies
without need to rely on synthetic vision. On one hand, interactions
are directly considered between pairs of moving points, in place
of each walker and a set of perceived points. The number of pro-
cessed interactions is drastically lowered. But on the other hand,
synthetic vision has many advantages: the visibility of obstacles
walkers react to is implicitly checked, obstacles can have any 3D
shape, walkers height - which may limit their perception - is taken
into account, etc.

6 Discussion

Realism Our results demonstrate the ability of our approach to
improve the emergence of self-organized patterns of walkers on
several examples. From the standpoint of Computer Animation, our
method provides visually appealing results. Interactions are solved
more efficiently at the global-scale: compared to other approaches,
the time required for walker to reach their goal is noticeably lower
using our model (cf. Table 1 and companion video for compar-
isons). We believe the reached efficiency benefits to the resulting
believability of animations, especially, some locking situations are
avoided. It is however still required to quantitatively evaluate the
realism of results. Studies based on spectators feedback or, better,



confrontation with real observations are possible directions for such
an evaluation.

High-level behaviors and control Interactions between walkers
are today limited to collision avoidance. Locomotion is controlled
at the most basic level by visual-stimuli/motor-response laws. A
near-future objective is to obtain a higher-level of control and to
extend simulation abilities. Our first goal is to integrate some new
types of interactions, such as following someone, reaching a mo-
bile target, etc. Such interactions can easily be expressed in the
(α̇, tti)-space. For instance, following pi is controlling velocity so
that (α̇i → 0, ttii → cst) where cst is a positive constant. Then,
our second goal is to combine different types of interactions to fur-
ther improve the global efficiency of navigation by setting mid-term
strategies (for instance, temporarily following someone is an effi-
cient strategy to avoid further avoidance interactions) or to make
possible the simulation of groups inside crowds (e.g., families). We
assumed that goals were visible in our examples: a preliminary
path planning stage would first be required to achieve navigation
in complex environments. Path planners can decompose high-level
goals into intermediary way-points that could be successively used
as short-term goals in our model. A reactive change of short-term
goals according to some external factors (e.g., local population den-
sities) could be of interest: the evaluation future traffic conditions
as well as the route selection process should be deduced from the
visually perceived information in order to match our approach phi-
losophy.

Model parameters Model’s parameters (a, b, c) (cf. Equa-
tion (1)) can be adapted for each walker to individualize avoidance
behavior with negligible computational overhead. The impact of
parameters change on simulations is illustrated in the companion
video. An intuitive link exists between avoidance behavior and the
shape of τ1 which is completely controlled by (a, b, c). The higher
the peak of τ1, the earlier the anticipation. The wider the peak,
the stronger the adaptation. Finally, the curvature of τ1 controls a
trade-off between anticipation time and reaction strength: when the
maximum curvature is higher, early anticipated reactions remain
low whilst they get stronger when tti decreases. The automatic
adaptation of parameters with respect to external factors, such as
local density of population, may open interesting perspectives.

7 Conclusion

We presented a novel approach of crowd simulation made of in-
dividual walkers avoiding each other. Our main contribution is to
steer walkers according to the visual perception they have of their
environment. We formulate their collision avoidance behavior as
visual-stimuli/motor-response control laws. Compared to previous
vision-based approaches, we rely on statements from cognitive sci-
ence that identified the visual-stimuli humans extract from their op-
tic flow to control their locomotion and avoid obstacles. Compared
to previous avoidance models, we demonstrate our approach im-
proves the emergence of self-organized patterns of walkers in crowd
simulations. In spite of the computational complexity raised by the
synthetic vision technique, we demonstrate the ability of our ap-
proach to address complex interaction situations between numerous
walkers. Our results are promising and open several future work di-
rections. First is to automatically adapt the model parameters with
respect to some external factors. A second direction is to extend our
model to new types of interactions. Then, our objective is to add
higher level of control in order to combine several types of interac-
tions and to enable mid-term and long-term navigation strategies.
Today, the proposed approach still results into visually interesting
motions that can benefit to many Computer Animation applications.

Evaluation of results by comparing them to real observations and
data is now required. Nevertheless, our model is founded on cogni-
tive science work on human locomotion which can open interesting
perspectives for realistic simulation purposes.
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2003. A physically-based particle model of emergent crowd be-
haviors. In Graphicon 2003.

HELBING, D., AND MOLNAR, P. 1995. Social force model for
pedestrian dynamics. Physical Review E 51, 4282.

HUGHES, R. L. 2003. The flow of human crowds. Annual Review
of Fluid Mechanics 35, 169–182.

KAPADIA, M., SINGH, S., HEWLETT, W., AND FALOUTSOS, P.
2009. Egocentric affordance fields in pedestrian steering. In
Proc. 2009 Symposium on Interactive 3D graphics and games
(I3D ’09), ACM, New York, NY, USA, 215–223.

KARAMOUZAS, I., HEIL, P., VAN BEEK, P., AND OVERMARS,
M. H. 2009. A predictive collision avoidance model for pedes-
trian simulation. In Motion in Games, 41–52.

KUFFNER, J. J., J., AND LATOMBE, J. C. 1999. Fast synthetic vi-
sion, memory, and learning models for virtual humans. In Proc.
Computer Animation, 118–127.

LAMARCHE, F., AND DONIKIAN, S. 2004. Crowds of virtual
humans : a new approach for real time navigation in complex and
structured environments. Eurographics’04: Computer Graphics
Forum 23, 3 (September), 509–518.

LOSCOS, C., MARCHAL, D., AND MEYER, A. 2003. Intuitive
crowd behaviour in dense urban environments using local laws.
Theory and Practice of Computer Graphics (TPCG’03).

MASSIVE. http://www.massivesoftware.com.



NARAIN, R., GOLAS, A., CURTIS, S., AND LIN, M. 2009. Ag-
gregate dynamics for dense crowd simulation. In SIGGRAPH
Asia ’09: ACM SIGGRAPH Asia 2009 papers.

NOSER, H., RENAULT, O., THALMANN, D., AND THALMANN,
N. M. 1995. Navigation for digital actors based on synthetic
vision, memory, and learning. Computers & Graphics 19, 1, 7–
19. Computer Graphics Lab., Swiss Federal Inst. of Technol.,
Lausanne, Switzerland.

PARIS, S., DONIKIAN, S., AND BONVALET, N. 2006. Envi-
ronmental abstraction and path planning techniques for realistic
crowd simulation. CASA 2006: Computer Animation and Virtual
Worlds 17, 3-4, 335.
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Minimal predicted distance: A common metric for collision avoidance during
pairwise interactions between walkers
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1. Introduction

When two humans walk in the same proximity, each can be
considered as a moving obstacle for the other one. Such a situation
occurs during everyday life activities such as walking in the streets.
There is a fundamental difference between the avoidance of a non-
human moving obstacle and the avoidance of human moving
obstacles. The situation, in essence, is reciprocal: each walker is
avoiding the other one while being avoided at the same time.

Previous studies have focused on the locomotion trajectory of a
walker confronted with static or passive moving obstacles. Studies
have mainly described the adaptation made to step over [1–3] or to
circumvent [4] static obstacles. The extension to passive moving
obstacles in a few studies has shown that walkers adapt their
trajectories along both the anteroposterior and mediolateral axes
to avoid a mannequin with a predefined trajectory [5–7]. The
observed clearance area, also known as personal space, was
modelled as an ellipse which dimensions depend on the level of

attention required by the task [5]. In another study, Fajen and
Warren [8] proposed to model interactions between a walker and
the environment as a pair of coupled dynamic systems. Authors
proposed to adapt heading according to the distance and the angle
between the walker and stationary goals and obstacles. This model
was extended to the avoidance of moving obstacles [9–11].
Following a vector–field interaction model in which goals represent
attractors and obstacles represent repellors, the path of the walker
was computed at each instant as the resultant of all forces applied to
him/her. To the best of our knowledge, no study has considered the
avoidance behavior between two human walkers. Two-human
interactions have however been investigated by considering
interpersonal coordination [12–14]. Ducourant et al. [12] focused
on two participants (a leader and a follower) placed face to face and
moving forwards and backwards. Results showed the presence of
coordination mechanisms that depend on leadership and distance
between people. This study provides an understanding of the
interaction mechanisms during walking. However, trajectories were
highly constrained and the nature of interactions between walkers
was very specific. Compared to previous studies, our objective was to
investigate collision avoidance between two human walkers. The
main question was to identify the conditions that lead to avoidance
manoeuvres in locomotor trajectories: what are the relations
between the respective positions and velocities which yield motion
adaptations? Based on the assumption of a reciprocal interaction, we
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A B S T R A C T

This study investigated collision avoidance between two walkers by focusing on the conditions that lead

to avoidance manoeuvres in locomotor trajectories. Following the hypothesis of a reciprocal interaction,

we suggested a mutual variable as a continuous function of the two walkers’ states, denoted minimum

predicted distance (MPD). This function predicts the risk of collision, and its evolution over time captures

the motion adaptations performed by the walkers. By groups of two, 30 walkers were assigned

locomotion tasks which lead to potential collisions. Results showed that walkers adapted their motions

only when required, i.e., when MPD is too low (<1 m). We concluded that walkers are able (i) to

accurately estimate their reciprocal distance at the time the crossing will occur, and (ii) to mutually

adapt this distance. Furthermore, the study of MPD evolution showed three successive phases in the

avoidance interaction: observation where MPD(t) is constant, reaction where MPD(t) increases to

acceptable values by adapting locomotion and regulation where MPD(t) reaches a plateau and slightly

decreases. This final phase demonstrates that collision avoidance is actually performed with

anticipation. Future work would consist in inspecting individual motion adaptations and relating

them with the variations of MPD.
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suggested a mutual variable, common to both walkers, the
minimum predicted distance (MPD), which (i) predicts potential
collisions and (ii) describes the mechanism of collision avoidance
over time in three successive phases.

2. Methods

2.1. Participants

Thirty participants (11 women and 19 men) volunteered for this experiment.

They had no known vestibular or neurological pathology which would affect their

locomotion. Participants gave written and informed consent before their inclusion

and the study conformed to the Declaration of Helsinki. They were 26.1 years old

(�6.9) (mean � S.D.) and 1.74 m tall (�0.09).

2.2. Experimental protocol and apparatus

A 15 m edge square was used for the experiments. In pairs of two, starting from

corners not sharing the same diagonal, participants were instructed to reach the

opposite corner without restriction on gait or path. Interaction was mainly based on

visual information: participants were not allowed to speak during the experiment and

they walked barefoot or with socks on a carpet to avoid anticipation through auditory

clues.

Participants waited for a start signal displayed on a computer screen placed on

their right at each corner of the area. By synchronizing the two start signals, we

provoked situations of potential collisions on orthogonal trajectories. The

variability in natural speeds and reaction times actually changed the exact

kinematic conditions of interactions, thereby allowing us to study their influence.

The presence of occluding walls (2 m high by 3 m long) between corners (Fig. 1A

and B) prevented participants from seeing each other before reaching their natural

speeds. More precisely, there were six participants in a session located at the four

corners of the area, but only two of them were actually given a start signal. This

prevented walkers from anticipating who they would interact with and from which

side he/she would come. 420 trials were performed.

2.3. Analysis

3D kinematic data were recorded using 12 Vicon MX-40 cameras (Oxford

Metrics1) at a sampling rate of 120 Hz. Reconstruction and labeling were performed

using Vicon IQ software and computations using Matlab (Mathworks1). We

approximated participant’s motions by using the middle point between their

shoulders (two reflective markers were attached to participants acromions). The

present study focused on the overall duration of the interaction between two walkers

which lasted in average 4.1 s (�0.5). The higher frequency stepping oscillations were

averaged out by applying a butterworth low-pass filter (dual-pass, third order, 0.5 Hz cut-

off frequency) on mid-shoulder positions. Velocity was computed as the discrete time

derivative of the mid-shoulder position in the horizontal plane.

2.3.1. Temporal segmentation

Experimental conditions prevented participants from seeing each other before

they reached their natural speeds. By analyzing the geometry of occluding walls and

the position of participants, we derived the time at which participants first saw each

other (denoted ‘tsee’). They had orthogonal and convergent trajectories: they reached

a minimum distance between them (clearance distance denoted ‘dmin’) and we

measured the time ‘tcross’ at which dmin occurred (Fig. 1C). Crossing was considered

as a relative concept in space (dmin) and time (tcross) between participants. We then

focused on the analysis of the portion of data between tsee and tcross, given that

interaction would occur during this period. We performed a temporal normalization

of all trials between tsee (0%) and tcross (100%) to enable comparison.

2.3.2. Minimal predicted distance

We introduced and based our analysis on the minimal predicted distance (MPD):

at each instant t, MPD(t) represents the distance at which participants would meet if

they did not perform motion adaptation after this instant t. Distance, being a mutual

variable, appears relevant to describe reciprocal interactions. This distance was

strictly positive since measured between the middle of the shoulders of each

walker. When assuming that no motion adaption was performed, we can model

future trajectories of walkers as linear extrapolations of their current states. For

example, the trajectory of participant #1 was predicted by Ppred,1(t, u) as follows:

Ppred;1ðt; uÞ ¼ P1ðtÞ þ ðu � tÞV1ðtÞ (1)

where u is a time parameter, P1(t) the current position and V1(t) the current velocity

vector of participant #1.

MPD is thus formulated by computing the minimum distance between predicted

positions Ppred,1 and Ppred,2 (Fig. 2A) reached by participants #1 and #2:

MPDðtÞ ¼ argmin
u

Ppred;2ðt; uÞ � Ppred;1ðt; uÞ
�
�

�
� (2)

Eq. (2) can be solved as the argument of the minimum of a second degree

polynomial. If a positive solution is found (u > 0), trajectories are converging; if a

Fig. 1. (A) Experimental setup. Area is 15 m � 15 m. Two participants stand at the

corners of the area and are synchronously given a start signal. Their task is to walk to

the opposite corner. They implicitly start an interaction to avoid any collision. (B)

Picture taken during experiment. (C) tcross is the time when the distance between

walkers is minimal.
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negative solution is found (u < 0), they are diverging; finally, if a null solution is

found (u = 0), trajectories have actually reached their point of minimal distance.

Indeed:

MPDðtcrossÞ ¼ dmin (3)

dmin cannot be lower than a threshold distance considered to be admissible by

participants and which needs to be precisely investigated. Nevertheless, we

hypothesized its definition as a combination of contact distance (i.e., no collision

between body envelopes) and social distance as suggested by previous studies on

personal space preservation [5,15].

MPD is a prediction of dmin given current position and velocity of walkers. MPD

varies if and only if motion adaptations are performed (Fig. 2B). We hypothesized

that motion adaptations are linked to the admissibility of future clearance distance.

2.3.3. Statistics

Statistics were performed using Statistica (StatSoft1). The data were presented

with mean and standard deviations. All effects were reported at p < 0.05. Wilcoxon

signed-rank tests were used to determine differences between values of MPD at

various instants.

3. Results

No collision occurred during the experiment and dmin was
never below 0.41 m. Occluding walls fulfilled their role since
participants reached a stable speed at tsee, i.e., before interaction.
Fig. 3 illustrates a representative 908 crossing (A), the associated
instantaneous velocity before tsee (B), and MPD(t) evolution during
interaction (C). In this situation, the initial MPD (MPD(tsee)) is
approximately 0.2 m (i.e., a future collision will occur if no
adaptation is performed) and increases along the trial to reach
0.8 m at tcross.

Throughout all trials, the mean walking speed of participants
was 1.57 m s�1 (�0.24) during the interaction phase and the mean
clearance distance dmin was 1.09 m (�0.47) ranging from 0.41 to
3.48 m. MPD(tsee) ranged from 0 to 3.81 m (Fig. 4A). To consider the
wide variety of MPD(tsee) values across our experiment, we
subdivided the dataset in 10 groups of 42 trials according to

Fig. 2. (A) Schematic illustration of the minimum predicted distance (MPD) computed at four different times. A motion adaptation occurs between times t2 and t3. (B) MPD(t)

evolution in time. MPD values change between t2 and t3: the increase of MPD indicates that motion adaptations were performed. In that case MPD was above an admissible

distance at crossing.
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Fig. 3. (A) Participants’ trajectories for one 908 crossing. Interaction phase is in bold

line. (B) Instantaneous walking speed for both participants before tsee: they reach a

stable speed before interaction. (C) MPD(t) evolution during the interaction phase.

Fig. 4. (A) MPD(t) evolution for each of the 420 trials during the interaction phase.

(B) Mean MPDðtÞ evolution for 10 groups of ascending MPD(tsee) values. (C) Mean

values of MPD(tsee) and MPD(tcross) for each of the 10 groups.
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ascending MPD(tsee) values. For each group, we computed MPDðtÞ,
the mean MPD evolution along the interaction phase (Fig. 4B). When
MPDðtseeÞ is lower than 1 m (groups 1–6), the set of MPD(tcross)
values for each group (see Fig. 4C) is significantly higher than
MPD(tsee) (respectively, Wilcoxon signed-rank tests results were
T1 = 0, T2 = 0, T3 = 0, T4 = 0, T5 = 72, T6 = 125; df = 41, p < 0.01). When
MPDðtseeÞ ranges from 1 to 1.5 m, there is no significant difference
between the sets of MPD(tcross) and MPD(tsee) (p > 0.05). When
MPDðtseeÞ is higher than 1.5 m, MPD(tcross) is significantly smaller
than MPD(tsee) (respectively, T9 = 208, T10 = 56; df = 41, p < 0.05).

Results showed that walkers adapted their trajectories to
increase MPD(t) when MPD(tsee) was lower than 1 m. For all these
trials, we computed the overall mean MPDðtÞ and its time
derivative (Fig. 5A and B). We then considered three successive
phases in time with respect to the value of the time derivative
MPD0ðtÞ. The first phase, to which we referred to as the observation
phase, was between normalized time t0% and t7%, for which
MPD0ðtÞ was negative. Note that we still considered MPDðtÞ to be
constant during the observation phase with respect to Wilcoxon
signed-rank tests (MPD(t0%) = 0.44 � 0.28, MPD(t7%) = 0.44 � 0.28,
p > 0.05). The second phase, from t7% to t79%, was called the reaction
phase: MPD0ðtÞ was positive and MPDðtÞ significantly increased up to
0.88 � 0.22 m (T = 258, df = 263, p < 0.01). Finally, the third phase,
from t79% to t100%, was called the regulation phase: MPD0ðtÞ was
negative again and MPDðtÞ slightly decreased to
dmin = 0.84 � 0.19 m, ranging from 0.41 to 1.48 m (T = �4648,
df = 263, p < 0.01). The mean trial duration was 4.1 s (�0.5).
Therefore, these three periods of time respectively lasted about
0.3 s, 3 s and 0.8 s.

4. Discussion

We experimentally examined interactions between two
participants avoiding each other. We then considered MPD as
well as its variations as kinematic clues to represent interaction.
Finally, we described collision avoidance as a three-phases
process.

MPD(t) is a predictive variable which is defined as the distance
walkers would meet if no adaptation to their trajectories was
performed. MPD(t) varies in time if and only if locomotion is
adapted by one or both walkers. An experimental setup allowed
us to observe changing initial conditions of MPD(tsee). By
grouping trials according to MPD(tsee) thresholds, typical
behaviors were observed. When MPD(tsee) is below 1 m,
participants avoid a future collision by increasing this distance
to reach an admissible value at tcross. When MPD(tsee) is
between 1 m and 1.5 m, no adaptation is performed and when
MPD(tsee) is above 1.5 m, participants even take the liberty of
decreasing MPD(t).

Based on the analysis of initial and final values of MPD, our
general conclusion is that this variable is adapted only when
required. Walkers are able to accurately estimate future crossing
distance and to mutually adapt this distance. This result can be
linked to the notion of personal space during collision avoidance
between a walker and a mannequin mounted on an overhanging
rail [5]. In our situation, the need to adapt trajectories is then
revealed by MPD(tsee). This mutual metric reveals the presence
of motion adaptations, but does not relate individual collision
avoidance strategies. Indeed, it was previously shown that
walkers adapt their heading [8] or their heading and walking
speed [5–7] to avoid a moving obstacle. Future work is then
required to determine the nature of individual trajectory
adaptations. Moreover, the locomotor path generated by the
behavioral dynamic model [8] depended on the angle and the
distance between the walker and the goals and obstacles. It
would then be interesting to investigate the influence of these
parameters on collision avoidance.

MPD(t) also revealed the temporal structure of interactions. In
the situation where the interaction requires motion adaptations
(MPD(tsee) < 1 m), we identified three successive phases: obser-
vation, reaction, and regulation. Respectively, these phases
correspond to periods of time when, first, MPD(t) is constant,
second, increases to acceptable values by motion adaptation and,
third, reaches a plateau and slightly decreases. The observation
phase is short. Information about future collision is quickly
available. A similar observation was made by Gérin-Lajoie et al. [5]
who observed an initial deviation of the trajectory one step after
seeing a moving mannequin on a colliding path. The use of eye-
trackers in future experiments would be a solution to study more
carefully the characteristics of the observation phase as well as its
duration in time. Gaze direction would additionally provide a more
accurate description of the interaction by detailing visual
information taken during the combined goal-directed and
avoidance locomotion tasks.

The reaction phase is the longest part of the interaction.
Participants adapt their trajectories to increase the future crossing
distance and consequently to avoid a collision. There is no
hesitation to the way interaction is mutually solved since MPD(t) is
increasing on average during this period of time. The value reached
at the end of this phase is relatively constant (0.88 � 0.21 m). These
two observations show that participants accurately perceive the
kinematics of the interaction and adapt their motion with positive
effect on the interaction. Adaptation is quite optimal since MPD(t) is
not exaggeratedly increased at the end of this phase. This reaction
phase can be linked to the anticipatory locomotor phase as described
by Gérin-Lajoie et al. [5] during avoidance of dynamic obstacles.

Fig. 5. Mean MPDðtÞ evolution (�S.D.) (A) and its time derivative (B) for all trials for

which MPD(tsee) is below 1 m. Interaction follows three successive phases:

observation, reaction and regulation phases.
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Whereas this study analyzed individual adaptations, we focused on
MPD(t) to illustrate that interactions are mutually solved. This
variable does not indicate individual strategies but the effect of their
joint combination.

The regulation phase, which starts approximately 0.8 s before
crossing, demonstrates anticipation: the collision is solved, and
the future crossing distance is maintained. It is even slightly
decreased (4 cm). This anticipating behavior is not consistent
with Fajen and Warren’s model [8] but corroborates the results
of other studies [5,16]. Moreover, contrasting with Gérin-Lajoie
et al. [5], we did not observe a readjustment phase which
increases the mediolateral distance from the obstacle before
crossing. In their study, the mannequin was passive (i.e., with a
linear trajectory), and therefore, the walker was not expecting
any reaction. In our study, we considered interactions between
two humans: they could expect a sharing of the effort to
adapt trajectories, but with uncertainty about the other’s
attitude. This can explain that collision avoidance is solved
0.8 s in advance, close to the duration of a stride. This period
may be associated with the one-stride interval related by Patla
[17], which is sufficient to successfully implement adaptive
strategies.

In conclusion, this study proposed a new metric, MPD(t), to
investigate collision avoidance between two walkers. MPD(t)
was defined as the prediction at each instant of the future
crossing distance. Results showed that walkers adapt their
motion only when required (when MPD is too low) with
anticipation (existence of the regulation phase). Future work
will investigate the nature and the quantity of individual
adaptations necessary to solve interactions. The crossing order
would be an important parameter since at the crossing point,
the participant giving way views the other participant in front of
him/her, and the participant passing first has the second one to
his/her side or back. This asymmetric configuration emphasizes
on asymmetric strategies for collision avoidance. Indeed,
personal space may have an elliptic shape [5]. Therefore,
collision risk should be perceived as being higher when the
walker to avoid is in front compared to the side (see Fig. 1C).
MPD is a relevant parameter to conduct such an analysis. First,
MPD reveals the effect of individual reactions on the
interaction, and second, the partial derivative of MPD with
respect to each walkers speed and heading reveals the
contribution of each participant manoeuvre to the evolution
of MPD.
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Abstract 

This paper presents an Animation Planning 
Mediator (APM) designed to synthesize anima-
tions efficiently for virtual characters in real 
time crowd simulation. From a set of animation 
clips, the APM selects the most appropriate and 
modifies the skeletal configuration of each 
character to satisfy desired constraints (e.g. 
eliminating foot-sliding or restricting upper 
body torsion), while still providing natural look-
ing animations. We use a hardware accelerated 
character animation library to blend animations 
increasing the number of possible locomotion 
types. The APM allows the crowd simulation 
module to maintain control of path planning, 
collision avoidance and response. A key advan-
tage of our approach is that the APM can be 
integrated with any crowd simulator working in 
continuous space. We show visual results 
achieved in real time for several hundreds of 
agents, as well as the quantitative accuracy. 
 
Keywords: Crowd animation, Foot sliding.  

1. Introduction 

Crowd simulation in real time for computer 
graphics applications, such as training and video 
games, requires algorithms for not only agent 
navigation in large virtual environments while 
avoiding obstacles and other agents, but also 
rendering highly complex scenes with avatars to 
enhance realism. To achieve that, either of these 
steps can become a major bottleneck for real 
time simulation. Therefore, trade-offs between 
accuracy and speed are necessary. Simulating 
human motion accurately whilst keeping within 
constraints is not an easy task, and although 
many techniques have been developed for syn-
thesizing the motion of one agent, they are not 

easily extended to large numbers of agents 
simulated in real time.   
To achieve natural looking crowds, most of the 
current work in this area uses avatars with a 
limited number of animation clips. In most 
cases, problems arise when the crowd simulator 
module updates the position of each agent’s root 
without taking into account movement of the 
feet. This yields unnatural simulations where 
the virtual humans appear to be ‘skating’ in the 
environment, which is known as ‘foot sliding’. 
Other problems emerge from the lack of coher-
ence between the orientation of the geometric 
representation of the agents and direction of 
movement. As we increase model sophistication 
through enhanced path selection, avoidance, 
rendering, and inclusion of more behaviors, 
these artifacts become more noticeable. 
In order to avoid these problems, most ap-
proaches either perform inverse kinematics, 
which implies a high computational cost that 
does not allow large crowd simulations in real 
time, or adopt approaches where the animation 
clip being used drives the root position which 
limits movements and speeds. 
In this paper we present an Animation Planning 
Mediator; a highly efficient animation synthe-
sizer that can be seamlessly integrated with a 
crowd simulation system. The APM selects the 
parameters to feed a motion synthesizer while it 
feeds back to the crowd simulation module the 
required updates to guarantee consistency. Even 
when we only have a small set of animation 
clips, our technique allows a large and continu-
ous variety of movement. It can be used with 
any crowd simulation software, since it is the 
crowd simulation module which drives the 
movement of the virtual agents and our module 
limits its work to adjusting the root displace-
ment and skeletal state. 



2. Related Work 

We can classify crowd simulation models into 
two approaches. The first encompasses those 
models that calculate the movement of agents in 
a virtual environment without taking into con-
sideration the underlying animation. The second 
is defined by those that have a core set of ani-
mation clips that they play back, or blend be-
tween, to move from one point to another. 
The first group suffers from an artifact known 
as foot sliding, since the position of the charac-
ters is updated without considering the foot 
position. Notice this is not exactly the same 
problem addressed by other works removing 
motion capture noise [5]. In this group we have 
many examples using different crowd simula-
tion models, such as social forces [4], rule-
based models [13], cellular automata [17], flow 
tiles [1], roadmaps [16], continuum dynamics 
[18] and forces models parameterized by psy-
chological and geometrical rules [12].  
The second approach puts effort into avoiding 
foot-sliding while limiting the number of possi-
ble movements for each agent. Lau and Kuffner 
[8] introduced pre-computed search trees for 
planning interactive goal-driven animation. 
These models do not perform motion blending, 
are often limited to a small graph of animations 
and play one animation clip after another, thus 
moving the agent according to the root move-
ment in each animation clip. As such they do 
not perform well in interactive, dynamic envi-
ronments, especially with dense crowds where 
collision response forces have an impact.  
Recent trends in character animation include 
driving physical simulations by motion capture 
data or using machine learning to parameterize 
motion for simplified interactive control. Ex-
amples are inverse kinematics and motion 
blending based on gaussian process statistics or 
geostatistics of motion capture data [2][11]. 
Such techniques avoid foot sliding but are com-
putationally more expensive. 
Through interpolation and concatenation of 
motion clips, new natural looking animations 
can be created [20]. Kovar et. al. introduced 
motion graphs [6].  Zhao et. al. extended them 
to improve connectivity and smooth transitions 
[23]. These techniques can avoid foot sliding by 
using the root velocity of the original motion 
data, but they require a large database of motion 
capture data to allow for interactive change of 
walking speed and orientation. 

Ménardais et al. were able to synchronize and 
adapt different clips without motion graphs 
[10]. 
Proportional derivative controllers and optimi-
zation techniques are used [22] [14] to drive 
physically simulated characters. Goal-directed 
steps can perform a controlled navigation [21]. 
While such techniques show very impressive 
results for a single character in real time, the 
computational costs mean they are not suitable 
for real time large crowd simulations. 
Kovar et. al. [7] presented an online algorithm 
to clean up foot sliding artifacts of motion cap-
ture data. The technique focuses on minute de-
tails and therefore is computationally not suit-
able for large real time crowds. 
Treuille et. al. [19] generated character anima-
tions with near-optimal controllers using low-
dimensional basis representation. This approach 
also uses graphs but, unlike previous models, 
blending can occur between any two clips of 
motion. They also avoid foot sliding by re-
rooting the skeletons to the feet and specifying 
constraint frames, but their method requires 
hundreds of animation clips which is very time 
consuming to gather. 
Recently, Gu and Deng [3] increased the variety 
realism creating new stylized motions from a 
small motion capture dataset. Maïm et. al. [9] 
apply linear blending to animations selected 
based on the agent’s velocity and morphology 
achieving nice animations for crowds but with-
out eliminating foot sliding. 

3. The Framework 

The framework employed for this work per-
forms a feedback loop where the APM acts as 
the communication channel between a crowd 
simulation module and a character animation 
and rendering module. The outline of this 
framework is shown in Figure 1. 

 
Figure 1 : Framework 
 

For each frame, the crowd simulation module, 
CS, calculates the position p, velocity v, and 
desired orientation of the torso θ. This informa-



tion is then passed to the APM in order to select 
the parameters to be sent to the character anima-
tion module, CA, which will provide the next 
character’s pose, P.  Each pose is a vector 
specifying all joint positions in a kinematic 
skeleton. 
The APM calculates the next synthesized ani-
mation Si which is described by the tuple {Ai , dt 
, b, P , v, θ } (see Table 1).  
 

p Agent root position. 

v Agent velocity. 

θ Angle indicating torso orientation in x-z plane. 

Ai Animation clip for agent i. 

dt Differential of time for blending animation clip Ai 

b Blending factor when changing animation clip, 
i.e. when  Ai(t)≠Ai(t-1), where t indicates time. 

P Pose given by the skeletal state of the agent.  

Table 1 : Input/Output variables of the APM 
 
The APM may need to slightly adjust the 
agent’s position and velocity direction in order 
to guarantee that the animations rendered are 
smooth and continuous. It is thus essential that 
the crowd simulation model employed works in 
continuous space and allows for updates of the 
position and velocity of each agent at any given 
time in order to guarantee consistency with the 
requirements dictated by the animation module.  
We have used the crowd simulation (CS) model 
HiDAC [12]. 
The torso orientation at time t, wt, is obtained 
from the velocity vector vt after applying a filter 
so that it will not be unnaturally affected by 
abrupt changes.  
 

ttot vww += −1ω  

where ωo is the orientation weight introduced 
by the user and wt-1 is the direction of the orien-
tation vector at time t-1. The orientation angle θ 
of the vector w is measured relative to the posi-
tive x-axis (since either the angle or the vector 
can be calculated from the other). 
This orientation filter is applied as we want the 
position of the character to be able to react 
quickly to changes in the environment such as 
moving agents and obstacles, but we need the 
torso to exhibit only smooth changes, as without 
this the result will be unnatural animations 
where the rendered characters appear to twist 

constantly. Through filtering we can simulate an 
agent that moves with a slight zigzag effect, 
while the torso of the rendered character moves 
in a constant direction. 
For the animation and visualization of avatars 
(CA) we are using a hardware accelerated li-
brary for character animation (HALCA)[15]. 
The core consists of a motion mixer and an 
avatar visualization engine.  Direct access to 
properties such as the duration, frame rate, and 
the skeletal states of an animation are provided 
to the hosting application. Such information can 
be useful to compute, for example, the actual 
walking speed of a character when animated. 
Among the functionalities provided are: blend-
ing, morphing, and efficient access and manipu-
lation of the whole skeletal state. 
The CA contains a motion synthesizer which 
can provide a large variety of continuous mo-
tion from a small set of animations by allowing 
direct manipulation of the skeleton configura-
tion. To create the library of animations, we 
decided to use hand created animations, al-
though motion capture data could also be used 
after some pre-processing.   

4.  Animation Planning Mediator 

To achieve realistic animation for large crowds 
from a small set of animation clips, we need to 
synthesize new motions. 
The APM is used to find the best animation 
available while satisfying a set of constraints. 
On the one hand it needs to guarantee that the 
next pose of the animation will reflect as closely 
as possible the parameters given by the crowd 
simulation module (p, v, θ), and on the other 
hand, it needs to guarantee smooth and continu-
ous animations. Therefore, the selection of the 
best next character’s pose needs to take into 
account the current skeletal state, the available 
animations, the maximum rotation physically 
possible for the upper body of a human, and 
whether there are any contact points to respect 
between the limbs of the skeleton and the envi-
ronment (such as contact between a foot and the 
floor). Once the APM determines the best set of 
parameters for the next pose and passes this 
information to the CA for animation and render-
ing, it will also provide feedback to the CS in 
the cases where the parameters sent needed to 
be slightly adjusted to guarantee natural looking 
animations with the available set of animation 
clips and transitions. 



During pre-processing the APM will calculate,  
for each animation clip average velocity vanim in 
m/s by computing the total distance traveled by 
the character through the animation clip divided 
by the total duration of the animation clip, T, as 
well as the angle α between the torso orienta-
tion, θanim, and the velocity vector, vanim, in the 
animation clip. The i

th animation clip Ai is de-
fined by the tuple {vanim,i, αi, Ti}. 
During the simulation the APM takes the input 
parameters from the CS and proceeds through 
the five steps shown in Figure 2 to obtain the 
output tuple {Ai, dt ,b, P’’,  p’, θ} that will be 
sent to the CA. We explain this in detail below. 

 
Figure 2 : Animator Planning Mediator 

4.1. Animation Clip Selection 

Instead of achieving different walking speeds 
by using hundreds of different walk animations, 
the algorithm can be effective with a limited 
number of animation clips by blending within 
an animation. This is given by the parameter dt 
which defines the time elapsed between two 
consecutive frames. Each animation clip covers 
a subset of speeds going from the minimum 
speed of 0 m/s (dt=0) to the original speed of 
the animation clip (dt=1).  
An animation clip of walking forward can also 
be used to have the agent turn, as we can reori-
ent the foot on the floor, thus reorienting the 
entire figure. This provides natural looking re-
sults for high walking velocities, but for slower 
velocities, using several turning animation clips 
and blending between them results in more 
natural looking motion.  
If we consider α being the angle between the 
direction of movement vanim and the torso orien-
tation θanim, of an animation Ai, we can classify 
animations based on α and the velocity. For 
example, for an animation of walking sideways 
α = 90 degrees and for walking forwards α = 0 
degrees.  
To determine when to use each animation we 
classify them in a circle defined by tracks and 
sectors. A track is the area contained between 
two concentric circles. Each concentric circle 
has as radius the velocity of an animation,  vanim. 

Once the tracks are defined we divide them into 
sectors, each of which maps to a clip.  
All the animations used must satisfy the follow-
ing requirements: (1) must be time aligned, (2) 
v and α must be approximately the same 
throughout the animation clip (within a small 
threshold defined by the user), and (3) anima-
tion clips must be cyclical.  
Each animation clip could be used when the 
velocity of the agent v ≤ vanim, therefore we 
decide on which animation to assign to each 
sector depending on the α value. The decision 
points of when to switch from one animation 
sector to the next as the angle increases is de-
fined as being halfway between the α values of 
two neighboring animations. Figure 3 graphi-
cally represents the decision framework, where 
colors are used to represent the animation clips 
assigned per sector. We have chosen some ani-
mation clips with similar velocities or angles (v3 
≈ v4, v6 ≈ v7 ≈ v8, and α1≈ α2≈ α5) to graphically 
show the splitting of tracks into sectors. Only 
half of the circle of animation clips is shown 
due to symmetry. At any time during the simu-
lation we can run any animation backwards by 
using a negative dt and selecting the clip by 
flipping vertically over the x axis and mirroring 
in the y axis. 

4.1.1 Classifying Motion Clips 

Initially the algorithm starts by dividing the 
circle into tracks T1, T2,…, Tm, where each track 
is defined by the velocity of an animation clip 
from the library (vanim) and v1>v2>…>vn. Note 
that m≤n as two animations Ai and Aj with simi-
lar velocity (i.e. |vi-vj|<εv) will be assigned to 
the same track. Each track Ti is defined by its 
maximum and minimum velocity, },{ maxmin

iii vvT = . 

Starting from the outer track T1 (highest veloc-
ity), the algorithm proceeds by splitting each 
track into sectors based on the γ values defined 
as being halfway between the α values of two 
animations. 
Each sector Si,k inside track Ti is defined by the 
tuple: },,,{ max

,
min
,

maxmin
kikiii vv γγ  which corresponds to 

the minimum and maximum velocity, and 
minimum and maximum decision angles. 
For each step of the algorithm, a track Ti+1 will 
be split into at least as many sectors as con-
tained within Ti. For each sector 
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the same animation being assigned. Then fur-
ther splitting of those sectors will occur for each 
of the new animations with 

vianim vv ε<− +

max
1

 depend-

ing on the α values of the remaining animations. 
If we let αp be the angle of a new animation Ap 
and αq be the angle of the previous animation Aq 
that is assigned to a new sector Si+1,k, then if | 
αp- αq|<εα, the new animation Ap replaces Aq for 
that sector. For any other case a new sector is 
created and the angle limits γ between sectors 
are recalculated.  
The variety of movements that can be synthe-
sized with this method will depend upon the 
number of animation clips. The more clips we 
have, the more sectors we can define.  
During run time the APM will select the best 
animation clip based on the current velocity, v, 
of the agent, and the angle, φ, between the ve-
locity and the torso orientation, θ, provided by 
the CS. If a change of animation is required, 
then the APM will determine the weight, b, 
necessary for blending between animations.  

 
Figure 3 : Circular Decision Framework. 

4.2. Blending Factors 

At every frame the CS calculates the new posi-
tion for each agent based on the desired path to 
move between an initial position to a destina-
tion, while interacting with other agents, walls 
and obstacles. However, since the CS is not 
aware of the type of animation being used for 
the rendering, if we take that new position to 
translate the root of the skinned avatar and the 
angle θ to reorient it, we will observe that the 
figures appear to ‘skate’, and also that there is 
no coherence between the orientation of the 
avatar and the actual animation movement.  
To avoid foot-sliding and guarantee that the 
animation satisfies the constraints given by v 
and θ, we need to ensure that the figure appears 
to move according to v while the foot currently 
in contact with the floor stays in place, and the 
torso faces the direction given by θ. This could 

be done using inverse kinematics, but since we 
are simulating large crowds, we need a method 
that can be quickly calculated and applied to 
hundreds of 3D animated figures in real-time.  
Also, to avoid the time and cost of generating a 
large number of animation clips, we are inter-
ested in a limited number of clips that can be 
combined to achieve as many realistic anima-
tions as possible. We have a trade-off between 
the accuracy of our animations and the simplic-
ity, and therefore speed, of our calculations. 
Knowing the agent’s velocity v and the anima-
tion velocity vanim from the selected animation 
Ai, we can calculate the blending factor τ. 

[ ]1,0, ∈ττ
anim

=
v

v  

The dt needed by the CA module to blend be-
tween poses is: 

tdt ∆⋅=τ  

where ∆t is the elapsed time between consecu-
tive frames. At this point of our algorithm we 
have the new pose of the agent and thus can 
obtain the local coordinates of the root and the 
feet position. 
Knowing that the root movement is driven by 
the foot that is on the floor during two consecu-
tive poses, we update the root position in the 
global coordinates of the environment.  

4.3. Calculation of Root Displacement 

For the current pose PPPPt, we calculate the vector 
ut that goes from the foot on the floor to the root 
of the skeleton. Likewise for the pose PPPPt-1 in the 
previous frame we calculate ut-1 (see figure 4). 
The vector ut contains all the rotations that hap-
pen at the ankle and knee level and thus pro-
vides sufficient information about the leg 
movement. 
By subtraction of vectors we can calculate root 
displacement d between frames. The vector of 
displacement d, shown in red is: 

1−−= tt uud  

And the new position is thus: 
d+= −1tt pp  

The method is efficient enough to allow for fast 
calculation and extension to 3D is straight for-
ward. From the results shown in Figure 5 we 
can observe that it avoids foot sliding and pre-
serves the vertical root movement that appears 
when we walk fast. In the figure we have ren-
dered the root path in black. 



 
Figure 4 : Root displacement. 

  
Figure 5 : Path followed by one agent. 

4.4. Updating the Skeletal State 

Turns in the environment can be achieved by 
reorienting the figure according to the velocity 
vector v and adjusting the torso orientation ac-
cording to θ by modifying the skeletal configu-
ration. This will also orient the displacement 
vector to move the character in the direction 
indicated by the CS module.  
 

a) b)  

Figure 6 : Angles described in Table. 
 
The visual effect of this is that the foot on the 
floor will slightly rotate in place. This is almost 
unnoticeable to the human eye, especially at 
high velocities, and thus is a trade-off worth 
considering as we can achieve turns in any di-
rection without the requirement of having a 
large database of animation clips. 
For slower velocities, we can achieve higher 
realism by having a number of simulations 
where the torso orientation does not necessarily 
need to be aligned with v. To calculate the rota-
tions we use the following variables: 
 

w torso orientation vector. 

β angle in the x-z plane of the velocity vector v 

relative to the positive x-axis. 

φ angle of the velocity vector, v, relative to the 
orientation vector, w. 

α angle in the x-z plane of the velocity vector vanim 
of the animation clip Ai relative to its orientation 
vector wanim. 

Table 2 : Variables required for upper body rotation. 

To achieve movement in the direction given by 
v, the avatar is rotated by (β - α) so that the ve-
locity vector of the animation vanim matches v. 
Then the torso is oriented according to w: the 
angle ψ is calculated as the difference between 
φ and α (Figure 6) and propagated across the 
spine of the character by modifying the current 
skeletal state of the character’s pose. This al-
lows the agent to move the root in the direction 
indicated by v while the torso is facing the di-
rection indicated by w. 

4.5. The APM Algorithm 

The following table summarizes the APM algo-
rithm with references to the sections where each 
step was explained: 

Algorithm: APM Section 

φ←AngleBetween(w,v) 

Ai←SelectAnimation(v,φ) 
4.1 

if (Ai≠Ai-1) then 

b  ←Agent.BlendingFactor() 

dt ← CalculateDT (v, Ai) 

4.2 

Pt←getNextPose(Ai, Pt-1, dt) 

d←CalculateDisplacement(Pt, Pt-1) 
4.3 

α←GetAngleAnim(Ai) 

β←CalculateAngle(v) 

ψ ← α - φ 

agentCA.PropagateAngleSpine(Pt,ψ) 

4.4 

Algorithm 1 : The APM Algorithm 

With the parameters calculated by the APM, we 
apply an absolute rotation of (β- α) and add the 
displacement, d, to the previous position to ren-
der our character satisfying the requirement 
given by the CS. 

5. Results 

The method presented only needs a small set of 
animation clips to obtain visually plausible re-
sults. By increasing the number of animations 
and/or the quality of those animations (i.e. using 



motion capture data), we would obtain im-
proved results with no additional cost during 
simulation time. 
The animation library shown in the accompany-
ing videos consists of four walking forward 
animations, two side-step animations and four 
“walking on an angle” animations.  
Per agent and per frame, on a Intel Dual Core 
3GHz with 4GB of RAM, the root displacement 
computation is less than 0.8µs. The whole APM 
algorithm requires less than 0.021ms. There-
fore, we could incorporate the APM into any 
crowd simulation module, with an additional 
linear cost per frame of 0.021 ms times the 
crowd size. Since typically not all the agents in 
a crowd are visible simultaneously, we could 
apply the APM algorithm to only the few hun-
dred agents closest to the camera. 
 

 

Figure 7 : Path followed by an agent with 
close-ups of a turn. 

 
In order to satisfy the constraints given by the 
CA, our APM may need to slightly modify the 
position of the root given by the CS. Figure 7 
shows the path followed by an agent, with a 
zoomed view of a sharp. Each blue/green seg-
ment corresponds to 75 frames of the animation 
(3 seconds). We have represented the deviation 
introduced by the algorithm as a segment with a 
green/blue ending indicating the position given 
by the CS and a black one indicating the cor-
rected position calculated by the APM. 
Deviation is bigger where there are abrupt turns 
and blending simultaneously. We have calcu-
lated the average deviation between the CS 
position and the APM corrected position in 
order to determine the impact of our algorithm 
on the final path. Running at 25fr/s, on average 
we obtain a deviation of less than 7.78mm per 
frame. Larger deviations correspond to seg-
ments 13 and 14 which are when the agent is 
turning sharply (Figure 8). 

In Figure 9 we can see that deviations are larger 
at turns and reach maximum values when there 
are repulsion forces between agents (for exam-
ple at the doors where agents congregate). Most 
of the time the deviation stays under 1cm per 
frame. 
 

 
Figure 8 : Deviations in mm for each segment 

of the path shown in figure 7. 

 
 
Figure 9 : Paths for 20 agents showing the 

deviation with a color gradient scale.  

6. Conclusions 

We present a realistic, yet computationally in-
expensive, method to achieve natural animation 
without foot-sliding for crowds. Our goal was to 
free the crowd simulation module from the 
computational work of achieving natural look-
ing animations and focus instead on developing 
crowd behavior that looks realistic. Natural 
looking results can be obtained with a minimal 
library of animation clips and this method can 
be integrated with any crowd simulation soft-
ware. 
As our model requires a foot on the floor to 
calculate the root displacement, it has some 
limitations. Currently we cannot achieve run-
ning simulations where both feet are in the air 
for certain frames. We plan on addressing this 
problem in future work. 
The library employed for this work was hand 
created, and thus our original animations suffer 
from rigidity which affects the overall look of 
the crowd. Since the quality of the final crowd 
animation depends strongly on the set of anima-
tion clips available, having time aligned motion 



capture animation clips will achieve more natu-
ral looking results. 
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Abstract
Animating multiple interacting characters in real-time dynamic scenarios is a challenging task that requires not
only positioning the root of the character, but also placing the feet in the right spatio-temporal state. Prior work
either controls agents as cylinders by ignoring feet constraints, thus introducing visual artifacts, or use a small
set of animations which limits the granularity of agent control. In this work we present a planner that given any
set of animation clips outputs a sequence of footsteps to follow from an initial position to a goal such that it
guarantees obstacle avoidance and correct spatio-temporal foot placement. We use a best-first search technique
that dynamically repairs the output footstep trajectory based on changes in the environment. We show results of
how the planner works in different dynamic scenarios with trade-offs between accuracy of the resulting paths and
computational speed, which can be used to adjust the search parameters accordingly.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Animating groups of human characters in real time is a dif-
ficult but necessary task in many computer graphics appli-
cations, such as video games, training and immersive virtual
environments. There is a large amount of work in the crowd
simulation and pedestrian dynamics literature, but most ap-
plications still lack convincing character animation that offer
a variety of animation styles without noticeable artifacts.

Humans walking in the real world have a cognitive map
of the environment which they use for calculating their path
through waypoints (doors, corners, etc), Then, we navigate
along the path by choosing footsteps to avoid collisions with
nearby humans and obstacles. Likewise, a virtual character
can be simulated within an environment by first deciding a
high level path (sequence of waypoints) using a navigation
mesh [Mon09] [OP13] and then calculating the exact trajec-
tory to walk from one waypoint to the next one. That trajec-
tory is going to be defined by the chosen steering behavior
algorithm, the output of which is going to encode the state of
the agent over time. An agent state can be modeled by differ-
ent granularities going from a simple point and radius with
a velocity vector in a low level representation, to a complete
high resolution mesh with joint velocity vectors, rotational
angles, torques and any other elements that might improve

the simulation on a higher level representation. Intermediate
representations [SKRF11] can perform simulations in real-
time by using an inverted pendulum model of the lower body
of a biped which can be controlled to generate biomechani-
cally plausible footstep trajectories.

This paper focuses on the computation of natural footsteps
trajectories for groups of agents. Most work in the litera-
ture uses crowd simulation approaches (rules based models,
social forces, cellular automata models, continuum forces)
to calculate the root displacement between two consecutive
waypoints. This leads to smooth root trajectories, but with
many artifacts due to lack of constraints between the feet and
the floor. There are some approaches that do focus on correct
foot placement, but in most cases they are quite limited in
the range of animations available or else can only deal with
a small number of agents. Our work enforces foot placement
constraints and uses motion capture data to produce natu-
ral animations, while still meeting real-time constraints for
many interacting characters.

Figure 1 illustrates an example of four agents planning
their footstep trajectory towards their goal while avoiding
collision with other agents, and re-planning when necessary.
The resulting trajectories not only respect ground contact
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Figure 1: Footstep trajectories planning for four agents reaching goals in opposite directions

constraints, but also create more natural paths than tradi-
tional multi agent simulation methods.

This paper is organized as follows. We first examine pre-
vious approaches in crowd simulations and their methods.
Next we give an overview of our framework and explain in
detail our pre-process step, planning algorithm and anima-
tion system. Finally we show some of our results and present
a discussion about the strength of our method and its limita-
tions along with conclusions and future work.

2. Related Work

Crowd simulation approaches can be classified into two
main sets based on whether they only focus on calculating
the position of the root ignoring the animations, or whether
they plan respecting the underlying animations. The first set
focuses on simulating realistic behaviors regarding overall
character navigation and do not worry about animations. In
fact sometimes their goal is to simply model agents as cylin-
ders that move around a virtual environment avoiding colli-
sions. The second set, which carries out planning while be-
ing aware of the animation clips available, need to perform
some pre-process to analyze the set of animation clips avail-
able to plan paths respecting constraints between the feet and
the floor. In some cases, if the animation set is handmade,
then the analysis is not necessary because the animations
have already been built with specific parameters (such as
speed, angle of movement and distance between feet) which
are taken into consideration when planning.

The first group works with root velocities and forces
or rules working on a continuous space, or displace-
ments within a grid. Different models include social forces
[HFV00], rule-based models [Rey87], cellular automata
[TLCDC01], flow tiles [Che04], roadmaps [SAC∗07], con-
tinuum dynamics [TCP06], local fields [KSHF09], hybrid
methods [SKH∗11], and forces models parameterized by
psychological and geometrical rules [PAB07]. They can eas-
ily represent agents by discs or cylinders to illustrate their
steering behavior, but do not care about a final representa-
tion using 3D animated characters, so the output trajectory
needs to be used to synthesize an animation following it.
Synthesizing the animation from a small database can cause

artifacts such as foot-sliding that need additional work to be
removed [PSB11].

The second group works directly with the set of avail-
able animations to construct motion graphs [KGP08, ZS09,
RZS10, MC12], or precomputed search trees [LK06]. These
approaches try to reach the goal by connecting motions to
each other [WP95], sometimes limiting the movements of
the agents. Other methods try to use motion graphs in the
first group combining it with path planners [vBEG11]. Hav-
ing a large animation database reduces the limitations in
terms of freedom of movement, but also makes the planning
more time consuming. The ideal solution would be one that
could find a good trade-off between these two goals: free-
dom of movement and fast planning.

Some approaches have tried to change the simulation
paradigm by using more complex agent representations,
such as footsteps. They can be physically based but gener-
ated off-line [FM12]. Or they can be generated online from
an input path computed by a path planner [EvB10], or plan-
ning them using an inverse pendulum model instead of root
positions [SKRF11]. Recent work [KBG∗13] proposes the
use of multiple domains of control focusing searches in more
complex domains, only when necessary. The resulting be-
havior offers better results giving characters a better interac-
tivity with the environment and other agents, but they fall in
the first group of our classification since they do not take an-
imation into account and need another process to synthesize
it.

Some locomotion controllers are able to synthesize in
real-time animations according to velocity and orientation
parameters [TLP07]. Other locomotion controllers can accu-
rately follow a footstep trajectory by extracting and param-
eterizing the steps of a motion capture database [vBPE10].
However they all need a very large database and their com-
putational time does not allow to have many characters in
real-time.

Our work belongs to the second group of the classifica-
tion, since it uses an animation-based path planner. However
instead of pre-computing a search tree with a few handmade
animation clips, we pre-process motion capture data (which
allows us to have more natural looking animations and larger
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Figure 2: Diagram showing the process required for the dynamic footstep planning algorithm

variety), and extract actions from the input animations to
compute a graph on the fly with an intelligent pruning based
on logical transitions and a collision prediction system. Col-
lisions are predicted and avoided for both static and deter-
ministic dynamic obstacles, as well as for other agents since
we expose all known trajectories.

3. Overview

Figure 2 illustrates the process of dynamic footstep planning
for each character in real-time. The framework iterates over
all characters in the simulation to calculate each individual
foot step trajectory considering obstacles in the environment
as well as other agents’ calculated trajectories.

The Preprocess phase is responsible for extracting anno-
tated animation clips from a motion capture database. The
real-time Planner uses the annotated animations as transi-
tions between state nodes in order to perform a path plan-
ning task to go from an input Start State to a Goal State.
The output of the planner is a Plan consisting of a sequence
of actions A0,A1, ...,An, which are clips that the Animation

Engine must play in order to move the Character along
the computed path. Both state and plan of the Character
are then input to the World State and thus exposed to other
agents’ planners, together with the nearby static or dynamic
obstacles. The World State is used to prune and accelerate
the search in order to predict and avoid potential collisions.
The Time Manager is responsible for checking the elapsed
time between frames to keep track of the expiration time of
the current plan. Finally the Events Monitor is in charge of
detecting events that will force the planner to recompute a
new path. The Events Monitor receives information from the
World State, the Time Manager, Goal State and the charac-
ter’s current Plan. Events include: a possible invalid plan or
the detection of a new dynamic obstacle or the goal position
changing.

3.1. Events Monitor

The events monitor is the module of the system in charge of
deciding when a new path needs to be recomputed. Elements
that will trigger an event are:
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• Goal state changed: when the goal changes its position or
a new goal is assigned for the current character.
• New agent or deterministic dynamic obstacle nearby:

other agents or dynamic obstacles enter the surrounding
area of our character. A new path needs to be calculated
to take into account the potential collision.
• Collision against non-deterministic obstacle: sometimes

an unpredictable dynamic obstacle could lead to a colli-
sion (for example: a dynamic obstacle moved by the user),
so when the events monitor detects such situation it trig-
gers an event in order to react to it.
• Plan expiration: a way to ensure that each agent is tak-

ing into account the latest plans of every other agent is to
give every plan an expiration time and force re-planning
if this is reached. A time manager helps monitoring this
task, but instead of a time parameter this event can also be
measured and launched by a maximum number of actions
that we want to perform (play) before re-planning.

4. Preprocess

During an offline stage, we analyze a set or a database of an-
imation clips in order to extract the actions that our planner
will then use as transitions between states. Each action con-
sists of a sequence of skeleton configurations that perform
a single animation step at a time, i.e., starting with one foot
on the floor, until the other foot (swing foot) is completely
resting on the floor. Our preprocess should work with any an-
imation clip, since we tried both handmade and motion cap-
ture clips (from the CMU database [CMU13]). After analyz-
ing each animation clip, we calculate mirrored animations.
Mirroring animations is done in order to have each analyzed
animation clip with either feet starting on the floor. The out-
put of this stage is a set of annotated animations that can be
used by the planner and the animation engine. This set can be
easily serialized and stored to be reused for all instances of
the same character type (same skeleton and the same scale,
otherwise even if they share animations these could produce
displacements of different magnitudes), reducing both pre-
process time and the global memory consumption.

4.1. Locomotion Modes

In order to give our characters a wider variety and agility of
movements we define different locomotion modes that need
to be treated differently. Each animation clip will be tagged
with its locomotion mode. We thus have the following set of
locomotion modes:

• Walking: these are the main actions that will be used by
the planner and the agents since they represent the most
common way to move. We therefore have a wide variety
of walks going from very slow to fast and in different an-
gles (not just forward and backwards).
• Running: these are going to be treated in the same way as

the walking actions with an additional cost penalty (since

running consumes more energy than walking). We have
also noticed empirically that for running actions it is not
necessary to have as many different displacement angles
as for walking actions.

• Turns: turns are going to be clips of animation where the
agent turns in place or with a very small root displace-
ment. They are going to be defined by their turning angle
and velocity.

• Platform Actions: in this group we will find actions like
jumping or crouching in order to avoid some obstacles.
Such actions should have a high energy cost and should
only be used in case of an imminent danger of collision.

While turns and platform actions need to be performed
completely from start to end, and they do not have any intrin-
sic pattern we can easily detect, walking and running anima-
tions can be segmented by clips containing a single step. So
animations of both walking and running locomotion modes
will have a special treatment as we will need to extract the
footsteps and keep only the frames of the animation covering
a single step.

4.2. Footsteps Extraction

As previously mentioned in the paper, an action starts with
one foot on the floor and ends when the other foot is planted
on the floor. But animation clips, especially motion capture
animations, do not always start and end in this very specific
way. Therefore we need a foot plant extraction process to
determine the beginning and end ending of each animation
clip that will be used as an action.

Simply checking for the height of the feet in the motion
capture data is not enough, since it usually contains noise
and artifacts due to targeting. In most cases, when swing-
ing the foot forwards while walking, the foot can come very
close to the ground, or even traverse it.

Other techniques also incorporate the velocity of the foot
during foot plant, which should be small. However this so-
lution can also fail, since foot skating can introduce a large
velocity. We detect foot plants using a height and velocity
based detector similar to the method described in [vBE09],
where foot plant detection is based on both height and time.
First, the height-based test provides a set of foot plants, but
only those where the foot plant occurs in a group of adjacent
frames, are kept.

Our method combines this idea with changes on velocity
for more accurate results, so we detect a foot plant when for
a discretisized set of frames the foot is close to the ground for
a few adjacent frames and with a change in velocity (deceler-
ation, followed by being still for a few frames, and finishing
with an acceleration). Notice that this method works for any
kind of locomotion ranging from slow walking to running
including turns in any direction.
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4.3. Clip annotation

An analysis is performed by computing some variables over
the whole duration of the animation. Each analyzed anima-
tion clip is annotated with the following information:

Lmod Locomotion mode
Fsp Supporting Foot
Fsw Swing Foot
~vr Root velocity vector
~f Foot displacement
t Time duration
t0 Initial time

tend End time
α Movement angle
θ Rotation angle
P Set of Sampled positions

Table 1: Information stored in each annotated animation
clip.

Locomotion mode, indicates the type of animation (walk
short step, walk long step, run, walk jump, climb, turn, etc).
Supporting foot is the foot that is initially in contact with the
floor, and the swing foot corresponds to the foot that is mov-
ing in the air towards the next footstep. The supporting foot
is calculated automatically based on its height and velocity
vector from frame to frame.

The root velocity vector indicates, taking the starting
frame of the extracted clip as reference, the total local dis-
placement vector of the root during the whole step. We there-
fore know the magnitude, the speed in m/s and the angle of
its movement. Similarly, foot displacement tracks the move-
ment of the swing foot.

Movement angle in degrees indicates the angle between
the swing foot displacement vector and the initial root orien-
tation. Therefore an angle equal to 0 means an action moving
forward and 180 means it is a backward action. An Angle
equal to 90 means an action moving to the left if the swing
foot is the left one, or the right if the swing foot is the right
one. Finally the rotation angle is the angle between the root
orientation vector in the first and last frame of the clip.

t indicates the total time duration of the extracted clip,
with t0 and tend storing the start and end point of the original
animation that the extracted clip covers. These values will be
used by the animation engine to play the extracted clip.

P corresponds to a set of sampled positions for certain
joints of the character within an animation clip, and it is used
for collision detection (see section 5.5)

5. Planning Footstep Trajectories

In this section, we first present the high level path planning
on the navigation mesh. Then we define the problem domain

we are dealing with when planning footsteps trajectories.
Next we give details of the real-time search algorithm that
we use as well as the pruning carried out to accelerate the
search. Finally we explain how the collision detection and
prediction is performed.

Figure 3: High level path with local footstep trajectory be-
tween consecutive visible waypoints.

5.1. High Level Path Planning

Footstep trajectories are calculated between waypoints of
the high level path (see Figure 3). This path is calcu-
lated over the navigation mesh using Recast [Mon09]. An
A* algorithm is used to compute the high level path, and
then footstep trajectories are calculated between consecu-
tive visible waypoints. So given a sequence of waypoints
{wi,wi+1,wi+2, ...,wi+n}), if there is a collision-free straight
line between wi and wi+n, then the footstep trajectory is cal-
culated between those two waypoints, and any other inter-
mediate point is ignored. This provides more natural trajec-
tories as it avoids zig-zagging over unnecessary waypoints.
Waypoints are considered by the planner as goal states, and
each time that we change a waypoint the change of goal is
detected by the events monitor, thus forcing a new path to be
computed.

5.2. Problem Definition

The algorithm for planning footstep trajectories needs to cal-
culate the sequence of actions that each agent needs to fol-
low in order to go from their start position to their goal posi-
tion. This means solving the problem of moving in a footstep
domain between two given positions in a specific amount
of time. Therefore, characters calculate the best trajectory
based on their current state, the cost of moving to their des-
tination and a given heuristic. The cost associated with each
action is given by the bio-mechanical effort required to move
(i.e: walking has a smaller cost than running, stopping for a
few seconds may have a lower cost than wandering around a
moving obstacle). The problem domain that we are dealing
with is thus defined as:

Ω =
(
S,A,c

(
s,s′
)
,h(s,sgoal)

)
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Where S is the state space and is defined as the set of states
composed of the character’s own state self, the world com-
position environment, and the other agents state. The action
space A indicates the set of possible transitions in the state
space and thus will have an impact on the branching factor of
the planner. Each transition is an action, so we will have as
many transitions as extracted clips times the possible speed
variations we allow to introduce (we can for example repro-
duce a clip at half speed to obtain its displacement two times
slower). Actions are then going to be defined by their corre-
sponding annotated animation. c

(
s,s′
)

is the cost associated
with moving from state s to state s′. Finally h(s,sgoal) is the
heuristic function estimating the cost to go from s to sgoal .

5.3. Real-Time Planning Algorithm

Planning footsteps trajectories in real time requires finding
a solution in the problem domain Ω described earlier. The
planner solution consists of a sequence A0,A1, ...,An of ac-
tions. Our planner interleaves planning with execution, be-
cause we want to be able to replan while consuming (play-
ing) the action. For this purpose, we use a best-first search
technique (e.g., A*) in the footstep problem domain, defined
as follows:

• S: the state space will be composed of the character’s
own state (defined by position, velocity, and the collision
model chosen), the state of the other agents plus their plan,
and the state and trajectory of the deterministic dynamic
obstacles. For more details about collision models and ob-
stacles avoidance see section 5.5.
• A: the action space will consist of every possible action

that can be concatenated with the current one without
leading to a collision, so before adding an action we will
perform all necessary collision checks.
• c

(
s,s′
)
: the cost of going from one state to another will

be given by the energy effort necessary to perform the an-
imation:

c
(
s,s′
)
= M

∫ t=T

t=0
es + ew |v|2 dt

where M is the agent mass, T is the total time of the ani-
mation or action being calculated, v the speed of the agent
in the animation, and es and ew are per agent constants (for
an average human, es = 2.23 J

Kg.s and ew = 1.26 J.s
Kg.m2 )

[KWRF11].
• h(s,sgoal): the heuristic to reach the goal comes from the

optimal effort formulation:

h(s,sgoal) = 2Mcopt(s,sgoal)
√

esew

where copt(s,sgoal) is the cost of the optimal path to go
from s to sgoal , in our case we chose the euclidian distance
between s and sgoal [KWRF11]. The optimal effort for an
agent in a scenario is defined as the energy consumed in
taking the optimal route to the target while traveling at the
average walking speed: vav =

√
es
ew

= 1.33m/s

Taking all these components into consideration the plan-
ner can search for the path with least cost and output the foot-
step position with their time marks that the animation engine
will follow by playing the sequence of actions planned (see
figure 4).

Figure 4: Footsteps trajectory with time constraints that
need to be followed by the animation controller.

5.4. Pruning Rules

In order to accelerate the search we can add simple rules
to help prune the tree and reduce the branching factor. A
straight forward way to halve the size of the tree consists of
considering only consecutive actions starting with the oppo-
site foot. So given a current node with a supporting foot, ex-
pand the node only for transitions that have that same foot
as the swing foot. Actions which are not possible due to
locomotion constraints on speed or rate of turning are also
pruned to ensure natural character motion (so after a stay-
ing still animation, we will not allow a fast running anima-
tion). The next pruning applied is based on collision pre-
diction as we will see in the following section. The idea is
that when a node is expanded and a collision is detected, the
whole graph that could be expanded from it gets automati-
cally pruned. The pruning process reduces the branching fac-
tor of the search, and also ensures natural footstep selection

5.5. Collision Prediction

While expanding nodes the planning algorithm must check
for each expanded node whether the future state is collision
free or not. If it is collision free, then it maintains that node
and continues expanding it. Otherwise, it will be discarded.
In order to have large simulations in complex environments
we need to perform this pruning process in a very fast man-
ner.

In order to predict collisions against other agents or obsta-
cles (both dynamic or static), we introduce a multi-resolution
collision detection scheme which performs collision checks
for two resolution levels. Our lowest resolution collision de-
tection model is a simple cylinder centered at the root of the
agent with a fixed radius. The higher resolution model con-
sists of five cylinders around the end joints (head, hands and
feet) that are used to make finer collision tests Figure 5.
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We could introduce more collision models, where high
resolution ones will be executed only in case of detecting
collisions using the coarser ones. At the highest complexity
mode we could have the full mesh collision check, but for
the purpose of our simulation the 5 cylinders model gives us
enough precision to avoid agents walking with their arms in-
tersecting against other agents as they swing back and forth.
Compared against simpler approaches that only consider ob-
stacle detection against a cylinder, our method gives better
results since it allows us to have closer interactions between
agents. All obstacles have simple colliders (boxes, spheres,
capsules) to accelerate the collision checks by using a fast
physics ray casting test.

It is also important to mention that collision tests are not
only performed using the initial and end positions of the
expanded node, but also with sub-sampled positions inside
the animation (for the 5 cylinder positions). For example, an
agent facing a thin wall as a start position and the other side
of the wall as end position of its current walk forward step.
If we only check for possible collisions with those start and
end positions we would not detect that the agent is actually
going through the wall.

The sub-sample for each animation is performed off-line
and stored in the annotated animation. To save memory, this
sampling is performed at low frequencies and then in real
time intermediate positions can be estimated by linear inter-
polation.

Finally, we provide the characters with a surrounding
view area to maintain a list of obstacles and agents that are
potential threats to our path (see figure 6). For each agent, we
are only interested in those obstacles/agents that fall within
the view area in order to avoid running unnecessary collision
tests.

5.5.1. Static World

Static obstacles are part of the same static world that is used
to compute the navigation mesh with Recast [Mon09]. They

Figure 5: Collision model of 5 cylinders around the head,
the left and right hands, and the left and right foot.

Figure 6: When planning we only consider obstacles and
agents that are inside the view area. Obstacles A, B and
agent a are inside it and the agent will try to avoid them,
while it will ignore obstacles C, D and agents b and c .

do not need to have a special treatment since the high-level
path produces waypoints that avoid collisions with static ob-
stacles..

5.5.2. Deterministic Dynamic Obstacles and Other
Agents

Deterministic obstacles move with a predefined trajectory.
Other agents have precomputed paths which can be queried
to predict their future state. To avoid interfering with those
paths we allow access to their temporal trajectories. So, for
each expanded node with state time t we check for collisions
with every obstacle and agent that falls inside his view area
at their trajectory positions at time t. Figure 7 shows an ex-
ample of an agent avoiding two dynamic obstacles.

5.5.3. Unpredictable Dynamic Obstacles

Unlike deterministic dynamic obstacles and other agents,
unpredictable dynamic obstacles are impossible to be ac-
counted for while planning. Therefore they can be ignored
when expanding nodes, but we need a fast way to react to
them. This is the reason why we need the events monitor to
detect immediate collisions and force re-planning. Figure 8
shows an example where a wall is arbitrarily moved by the
user and the agent needs to continuously re-plan its trajec-
tory.

6. Animation Engine

The animation engine is in charge of playing the output se-
quence of actions given by the planner. These actions contain
all the data in the annotated animation. When a new action is

c© The Eurographics Association 2013.



A. Beacco, N. Pelechano & M. Kapadia / Dynamic Footsteps Planning for Multiple Characters

Figure 7: An agent planning with two dynamic obstacles
in front of him (top). After executing some steps the path is
re-planned. The blue obstacle indicates that it is not in his
nearby area anymore, so that obstacle is not considered in
the collision check of this new plan. (bottom)

played it sets t0 as the initial time of the animation. When the
current animation reaches tend the animation engine blends
the current animation with the next one in the queue.

The Animation Engine also tracks the global root posi-
tion and orientation, and applied rotation corrections by ro-
tating the whole character using the rotation values of the
annotated animation (rotation angle θ). The blending time
between actions can be user defined within a short time (for
example 0.5s).

7. Results

The presented framework has been implemented using the
ADAPT simulation platform [SMKB13] which works with
Unity Game Engine [Uni13] and C# scripts. Our current
framework can simulate around 20 agents at approximately
59-164 frames per second (depends on the maximum plan-
ning time allowed), and 40 agents at 22-61 frames per
second (INtel Core i7-2600k CPU @ 3.40GHz and 16GB
RAM). Figure 9 shows the frame rates achieved on average
for an increasing number of agents. The black line corre-
sponds to a maximum planning time of 0.01s, and the red
line corresponds to 0.05s. Additionally, by setting planner

Figure 8: An agent reacting to a non-deterministic obstacle
by re-planning his path.

parameters such as the horizon of the search, we can achieve
significant speedup at the expense of solution fidelity. For
example, we can produce purely reactive simulations where
the character only plans one footstep ahead by reducing the
search horizon to 1.

Figure 9: This graph shows the frames per second on av-
erage for different simulations with increasing number of
agents. We have used two values for the maximum planning
time: 0.01 resulting in higher frame rates, and 0.05 resulting
in lower frame rates but better quality paths

The results showed have been made with a database of 28
motion captured animations. This is a small number com-
pared to approaches based on motion graphs (generally hav-
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ing around 400 animation clips), but a large number com-
pared with techniques based on handmade animation (such
as pre-computed search trees). This decision allows us to
achieve results that look natural and yet can be used for real
time applications.

Our approach solves different scenarios where several
agents are simulated in real-time achieving natural looking
paths while avoiding other obstacles and characters (see ac-
companying videos). The quality of the results in terms of
natural paths and collision avoidance depends on the plan-
ner. The planner will be given a specific amount of time to
find a solution (which translates in how many nodes of the
graph are expanded). Obviously when we allow larger search
times (larger number of nodes to expand) the resulting tra-
jectory looks more natural and is collision free, but at the
expense of being more computationally expensive. Alterna-
tively, if we drastically reduce the search time (smaller num-
ber of nodes to expand) we may end up having collisions as
we can see in the resulting videos and in Figure 10.

Interleaving planning with execution provides smooth an-
imations, since not all the characters plan their paths simu-
lateneously. At any time, the new plan is calculated with the
start position being the end position of the current action.

We have also shown how the Events Monitor can suc-
cessfully plan routes when deterministic obstacle invalidate
a character’s plan, as well as efficiently react to non deter-
ministic obstacles (see Figures 7 and 8)

8. Conclusions and Future Work

We have presented a multi-agent simulation approach where
planning is done in the action space of available animations.
Animation clips are analyzed and actions are extracted and
annotated, in order to be used in real time to expand a search
tree. Nodes are only expanded if they are collision free. To
predict collisions we sample animations and use a new col-
lision model with colliders for each end joint (head, hands
and feet). This way we are able to simulate agents avoiding
more detailed collisions. The presented framework handles
both deterministic and non-deterministic obstacles, since the
former can be taken into consideration when planning, while
the later needs a completely reactive behavior.

Unlike pre-computed search trees our set of transitions is
composed of actions, and mainly footsteps, which allows us
to build online the search tree and to dynamically prune it,
considering not only start and goal positions, but also de-
parture and arrival times. An events monitor can help us to
decide when to re-plan the path, based on the environment
situation such as obstacle proximity or velocity.

We would like to further extend the hierarchical nature of
this work to add granularity (both in models and domains)
to adaptively switch between them [KCS10, Lac02, SG10].
Solutions from a coarser domain could also be reused to

accelerate the search into a finer domain, using techniques
such as tunneling [GCB∗11]. Another idea would be to have
a special class of actions constituting a reactive domain that
would only be used in case of an imminent threat. Since non-
deterministc obstacles invalidating the current plan force
to replan constantly, it would be interesting to carry out
a quantitative study on the impact of the number of non-
deterministic obstacles in the frame rate obtained for differ-
ent number of agents.

As Illustrated in 9, the computational complexity of our
framework scales linearly with number of agents. By re-
ducing the search depth and maximum planning time, we
can simulate a larger crowd of characters at interactive rates.
Choosing the optimal value of these parameters that balance
computational speed and agent behavior is an interesting re-
search direction, and the subject of future work. Our frame-
work is not memory bound, and is amenable to paralleliza-
tion with each agent planning on an independent thread.

Notice that memory is required per animation ( to store
sub-sampled animations) and not per agent in the simula-
tion, therefore increasing the size of the simulated group of
agents would not have an impact on the memory require-
ments of our system. If we wanted to simulate crowds of
characters we would need more CPU power, but not mem-
ory as long as we had more instances of characters sharing
the same skeleton and animations.

We would also like to improve our base search algorithm
with a faster one taking into account repairing capacities
such as ARA* [LGT03]. Having more characters and dif-
ferent sets of actions that can be used depending on the
situation, like a reaction domain, would also accelerate the
search and give better results to our simulations in constantly
changing dynamic virtual environments.
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uum crowds. In ACM Transactions on Graphics (TOG) (2006),
vol. 25, ACM, pp. 1160–1168. 2

[TLCDC01] TECCHIA F., LOSCOS C., CONROY-DALTON R.,
CHRYSANTHOU Y.: Agent behaviour simulator (abs): A plat-
form for urban behaviour development. 2

[TLP07] TREUILLE A., LEE Y., POPOVIĆ Z.: Near-optimal
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Abstract

This paper presents a real-time animation system for fully-embodied virtual humans that satisfies accurate foot placement con-
straints for different human walking and running styles. Our method offers a fine balance between motion fidelity and character
control, and can efficiently animate over sixty agents in real time (25 FPS) and over a hundred characters at 13 FPS. Given a
point cloud of reachable support foot configurations extracted from the set of available animation clips, we compute the Delaunay
triangulation. At runtime, the triangulation is queried to obtain the simplex containing the next footstep, which is used to compute
the barycentric blending weights of the animation clips. Our method synthesizes animations to accurately follow footsteps, and
a simple IK solver adjusts small offsets, foot orientation, and handles uneven terrain. To incorporate root velocity fidelity, the
method is further extended to include the parametric space of root movement and combine it with footstep based interpolation. The
presented method is evaluated on a variety of test cases and error measurements are calculated to offer a quantitative analysis of the
results achieved.

Keywords:
Character animation, Crowd simulation, Footsteps controller

1. Introduction

Crowd simulation research has matured in recent years with
important applications in training, building design, psycholog-
ical studies, and video-games. All these applications benefit
from having fully-embodied virtual human characters animated
in real-time while accurately satisfying control objectives with-
out any noticeable artifacts.

Algorithms that generate center of mass (COM) trajecto-
ries [1, 2, 3, 4] lead to ambiguities when trying to superimpose
a fully articulated virtual human to follow them, thus produc-
ing foot-sliding artifacts when no suitable animation is found,
or when the root orientation and the displacement vector of the
animation do not match. Different animations can be blended
by tweaking some of the upper body joints [5] to minimize ar-
tifacts, at the expense of constant updates to account for the de-
coupling between the crowd simulation and the animation sys-
tem.

Footstep-based control systems [6, 7] output a list of space-
time foot-plants to define a fine-grained trajectory with fewer
ambiguities that can solve more complex scenarios (e.g., com-
plex manipulation tasks requiring careful control of the lower
body, or collaborative tasks, such as careful sidestepping to
make way for another agent in a narrow corridor). To realis-
tically represent such simulations, we need a method to synthe-
size animations that accurately follow the output trajectory, i.e.,
accurate placement of feet with space-time constraints. This
problem is traditionally known as the stepping stone problem.

Moreover, the output trajectory can be modified by external per-
turbations such as uneven terrain.

We present an online animation synthesis technique for fully
embodied virtual humans that satisfies foot placement constraints
for a large variety of locomotion speeds and styles (see Fig.
1). Given a database of motion clips, we precompute multiple
parametric spaces based on the motion of the root and the feet.
A root parametric space is used to compute a weight for each
available animation based on root velocity. Two foot paramet-
ric spaces are based on a Delaunay triangulation of the graph of
possible foot landing positions. For each foot parametric space,
blending weights are calculated as the barycentric coordinates
of the next footstep position for the triangle in the graph that
contains it. These weights are used for synthesizing animations
that accurately follow the footstep trajectory while respecting
the singularities of the different walking styles captured.

Blending weights calculated as barycentric coordinates are
used to reach the desired foot landing by interpolating between
several proximal animations, and IK is used to adjust the final
position of the support foot to correct for minor offsets, foot
step orientation and the angle of the underlying floor.

Since foot parametric space only considers final landing po-
sitions of the feet without taking into account root velocity, this
may lead to the selection of animations that satisfy position
constraints but introduce discontinuities in root velocity. To in-
corporate root velocity fidelity we present a method that can
integrate both foot positioning and root velocity fidelity. Our
method also allows the system to recover nicely when the input
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Figure 1: An autonomous virtual human navigating a challenging obstacle course (a), walking over a slope (b), exercising careful foot placement constraints
including side-stepping (c), speed variations (d), and stepping back (e). The system can handle multiple agents in real time (f).

foot trajectory contains steps that are not possible to perform
with the given set on animations (for example, due to extreme
distance between steps).

The presented method is evaluated on a variety of test cases
and error measurements are calculated to offer a quantitative
analysis of the results achieved. Our framework can efficiently
animate over sixty agents in real time (25 FPS) and over a hun-
dred characters at 13 FPS, without compromising motion fi-
delity or character control, and can be easily integrated into ex-
isting crowd simulation packages. We also provide the user
with control over the trade-off between footstep accuracy and
root velocity.

2. Related Work

Locomotion synthesis can be tackled from different points
of view depending on how the character is being controlled.
If a user controls the character with a 3rd person controller, it
is common to work on a root velocity basis, because the user
wants to move the character around in an agile way. In such
cases, like video-games, real-time response is critical and arti-
facts such as foot skating can be ignored. Optimization based
approaches [8] are able to synthesize animations that conform
to velocity and orientation constraints. However, they need a
very large database and their computational time does not al-
low many characters in real-time. Semi-procedural animation
systems [9] work with a small set of animations and use inverse
kinematics only over the legs to ensure ground contact and to
adapt the feet to possible slopes of the terrain, but they are un-
able to follow footstep trajectories.

Animation systems for autonomous agents must be com-
putationally efficient to animate a multitude of characters in
real-time, and need to follow different control trajectories, de-
pending on the controller used. Controllers that account for an-
imation constraints while computing control decisions such as
motion graphs [10, 11, 12, 13] or precomputed search trees [14]
can simply playback the animation sequence. These approaches
try to reach the goal by connecting series of motion[15], which
sometimes limits the movements of the agents. The main issues
with motion graphs are that they require a very large amount
of animation clips (over 400) and have a high computational
cost which makes them not suitable for large groups of agents
in real-time. Precomputed search trees can handle groups, but

work with a few animation clips and are unable to synthesize
new animations.

Approaches that ignore animation constraints produce cen-
ter of mass trajectories for the animation system to follow. Dif-
ferent models include social forces [2], rule-based approaches [1],
flow tiles [16], roadmaps [17], continuum dynamics [3], and
force models parametrized by psychological and geometrical
rules [4]. These techniques can easily simulate hundreds and
thousands of characters in real-time, but do not account for
locomotion constraints, thus producing artifacts such as foot-
sliding which require correction and simulation updates [5].

Considering the root velocity as the input parameter for
character control, numerous approaches can synthesize smooth,
versatile and more plausible locomotion animations [18, 9]. Some
approaches have also used the idea of selecting animations from
a Delaunay triangulation of all the available animation clips
[19, 20]. But all of these approaches are restricted to the root
for performing character control.

There has been a recent surge in approaches that produce
footstep trajectories for character control. They can be phys-
ically based but generated off-line [21], be generated online
from an input path computed by a path planner [6], or use sim-
plified control dynamics to produce bio-mechanically plausi-
ble footstep trajectories for crowds [7]. These approaches of-
ten show their animation results off-line using tools such as 3D
Max [22].

Footstep-driven animation systems [23] produce unnatural
results using procedural methods. The work in [24] uses a sta-
tistical dynamic model learned from motion capture data in ad-
dition to user-defined space-time constraints (such as footsteps)
to solve a trajectory optimization problem. In [25] random
samples of footsteps make a roadmap going from one point
to another which is used to find a minimum-cost sequence of
motions matching it and then retarget to the exact foot place-
ments. The work in [26, 27] performs a global optimization
over an extracted center of mass trajectory to maximize the
physical plausibility and perceived comfort of the motion, in
order to satisfy the footprint constraints. Recent solutions [6,
28, 29] adopt a greedy nearest-neighbor approach over larger
motion databases. To ensure spatial constraints, the character
is properly aligned with the footsteps and reinforced with in-
verse kinematics, while temporal constraints are satisfied us-
ing time warping. These techniques achieve highly accurate re-
sults in terms of foot positioning, but their computational cost
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makes them unsuitable for real-time animation of large groups
of agents.

Comparison to Prior Work. Our method produces visually
appealing results with foot placement constraints, using only a
handful of motion clips, and can seamlessly follow footstep-
based control trajectories while preserving the global appear-
ance of the motion. Compared to [9], we exploit the combi-
nation of multiple parameter spaces for footstep-precision con-
trol. This reduces the dimensionality of the problem, compared
to [29]. Unlike previous work in the literature, our method can
synthesize animations for a large number of characters in real
time, following footstep trajectories for different walking styles
and even running motions with a small flying phase.

3. Framework Overview

Animating characters in real time animations has different
requirements depending on the application. In many applica-
tions, the user only wants to control the direction of movement
and speed of the root, but there are other situations where a
finer control of the foot positioning is required. For example,
the user may want to respect different walking gaits depending
on the terrain, to make the character step over stones to cross
a river, or walk through some space full of holes whilst avoid-
ing falling. For this purpose we have developed a framework to
animate virtual characters following footstep trajectories, while
still being able to follow trajectories based on the movement of
the COM when necessary.

Online locomotion systems [9] traditionally produce syn-
thesized motions that follow a COM trajectory, with procedural
corrections for uneven terrain. These methods can nicely fol-
low COM trajectories, but they lack control over the style of
walking and the kind of steps. For instance, we cannot control
whether in order to walk fast, the character will move with large
distances between steps or with a fast sequence of short steps.
This is the main issue we address in our work: to provide an
animation system that is able to accurately follow footstep tra-
jectories while meeting real-time constraints, and that can scale
to handle large groups of animated characters .

For this purpose, we introduce two parametric spaces based
on the position of each foot: Ω fL and Ω fR , and switch between
the two depending on the swing foot, as well as a parametric
space based on the root movement Ω fR . Our technique takes
into account both displacement (from Ω fL and Ω fR ) and speed
(from Ωr) to ensure the satisfaction of both spatial and temporal
constraints. Our system provides the user with the flexibility
to choose between different control granularities ranging from
exact foot positioning to exact root velocity trajectories. Fig. 2
shows our framework.

4. Footstep-based Locomotion

The main goal of the Footstep-based Locomotion Controller
is to accurately follow a footstep trajectory, i.e., to animate a
fully articulated virtual human to step over a series of foot-
plants with space and velocity constraints. The system must

meet real-time constraints for a group of characters, should be
robust enough to handle sparse motion clips, and needs to pro-
duce synthesized results that are void of artifacts such as foot
sliding and collisions.

4.1. Motion Clip Analysis

From a collection of cyclic motion clips1, we need to extract
individual footsteps. Each motion clip contains two steps, one
starting with the left foot on the floor, and one starting with
the right foot. A step is defined as the action where one foot
of the character starts to lift-off the ground, moves in the air
and finishes when it is again planted on the floor. We say that
a footstep corresponds to one foot when that foot is the one
performing the action previously described. The foot that stays
in contact with the floor for most of the duration of the footstep
is called the supporting foot, since it supports the weight of the
body. This applies even for running motions, where the support
foot goes into fly mode for a short phase of the footstep, but it is
still the one supporting the weight during most of the footstep.

During an offline analysis, each motion clip mi is annotated
with the following information: (1) vr

i : Root velocity vector. (2)
dL

i : Displacement vector of the left foot. (3) dR
i : Displacement

vector of the right foot.
Similar to [9], animations are analyzed in place, that is, we

ignore the original root forward displacement, but keep the ver-
tical and lateral deviations of the motion. This allows an auto-
matic detection of foot events, such as lifting, landing or plant-
ing, from which we can deduce the displacement vector of each
foot. For example, the displacement vector of the left foot dL

i
is obtained by subtracting the right foot position at the instant
of time when the left foot lands, from the right foot position
at the instant of time when the left foot is lifting off. These
displacements will be later used to move the whole character,
eliminating any foot sliding. By adding dL

i to dR
i and knowing

the time duration of the clip, we can calculate the average root
velocity vector vr

i of the clip mi.
This average velocity is used to classify and identify an-

imations, by providing an example point which is the input
for the polar gradient band interpolator ( where each example
point represents a velocity in a 2D parametric space). Gradi-
ent band interpolation specifies an influence function associ-
ated with each example, which creates gradient bands between
the example point and each of the other example points. These
influence functions are normalized to get the weight functions
associated with each example. However the standard gradient
band interpolation is not well suited for interpolation of exam-
ples based on velocities. The polar gradient band interpolation
method is based on reasoning that in order to get more desir-
able behavior for the weight functions of example points that
represent velocities, the space in which the interpolation takes
place should take on some of the properties of a polar coordi-
nate system. It allows for dealing with differences in direction

1Although cyclic animations are not strictly required by our method, they
help find smoother transitions between consecutive footsteps and are preferred
by most standard animation systems [9].
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Figure 2: Online selection of the blend weights to accurately follow a footstep trajectory. Ωr uses a gradient band polar based interpolator [9] to give a set of weights
w j, which are then used by the barycentric coordinates interpolator to tradeoff between footstep and COM accuracy.

and magnitude rather than differences in the Cartesian vector
coordinate components. For more details we refer the reader to
[9].

Each motion clip is then split into two animation steps AL
i

for the left foot and AR
i for the right foot. For each foot, we need

to calculate all the possible positions that can be reached based
on the set of animation steps available. Since the same analysis
is performed for both feet separately, from now on we will not
differentiate between left and right for the ease of exposition.
For each individual step animation Ai and given an initial root
position, we want to extract the foot landing position pi, if the
corresponding section of its original clip was played. This is
calculated by summing the root displacement during the sec-
tion of the animation with the distance vector between the root
projection over the floor and the foot position in the last frame.

The set {pi|∀i ∈ [1, n]} where n is the number of step an-
imations, provides a point cloud. Fig. 3 shows the Delaunay
triangulation that is calculated for the point cloud of landing
positions. This triangulation is queried in real time to deter-
mine the simplex that contains the next footstep in the input
trajectory. Once the triangle is selected, we will use its three
vertices p1, p2 and p3 to compute the blending weights for each
of the corresponding animations A1, A2 and A3.

4.2. Footstep and Root Trajectories
Our system can work with both footstep trajectories and

COM trajectories. A footstep trajectory will be given as an or-
dered list of space-time positions with orientations, whether it
is precomputed or generated on-the-fly.

The input footstep trajectory may be accompanied by its as-
sociated root trajectory (a space-time curve, rather than a list of
points, and an orientation curve), or else we can automatically
compute it from the input footsteps by interpolation. This is

Figure 3: Delaunay triangulation for the vertices representing the landing posi-
tions (pi, pi+1, pi+2,...) of the left foot when the root, R is kept in place.

achieved by computing the projection of the root on the ground
plane, as the midpoint of the line segment joining two consec-
utive footsteps. The root orientation is then computed as the
average between the orientation vectors of each set of consec-
utive steps. This provides us with a sequence of root positions
and orientations which can be interpolated to approximate the
motion of the root over the course of the footstep trajectory.

4.3. Online Selection

During run time, the system animates the character towards
the current target footstep. If the target is reached, the next foot-
step along the trajectory is chosen as the next target. For each
footstep q j in the input trajectory {q1, q2, q3, ..., qm} we need to
align the Delaunay triangulation graph with the current root po-
sition and orientation. Then the triangle containing the next foot
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position is selected as the best match to calculate the weights re-
quired to nicely blend between the three animations in order to
achieve a footstep that will land as close as possible to the de-
sired destination position q j (Fig. 4). Notice that these weights
are applied equally to all the joints in the skeleton, which means
that at this stage we cannot accurately adjust the specific foot
orientation required by each footstep in the input trajectory.

Figure 4: By matching root position and orientation, we can determine the
triangle containing the destination position for the landing position q j.

4.4. Interpolation

Footstep parameters change between successive footplants,
remaining constant during the course of a single footstep (sev-
eral frames of motion). Therefore we need to compute the best
interpolation for each footstep, blend smoothly between con-
secutive steps, and apply the right transformation to the root in
order to avoid foot-sliding or intersections with the ground.

To meet these requirements, we use a barycentric coordi-
nates based interpolator in Ω fL and Ω fR , and constrain the so-
lution based on the weights computed in Ωr. This allows us to
animate a character at the granularity of footsteps, while simul-
taneously accounting for the global motion of the full body.

If we only consider the footstep parametric space, then the
vertices of the selected triangle are those that can provide the
best match for the desired foot position. The barycentric co-
ordinates of the desired footstep are calculated for the selected
triangle as the coordinates that satisfy:

q j = λ1 · p1 + λ2 · p2 + λ3 · p3, (1)
λ1 + λ2 + λ3 = 1

where p1, p2 and p3 are the positions of the foot landing if we
run animation steps A1, A2 and A3 respectively. The calculated
barycentric coordinates are then used as weights for the blend-
ing between animations. A nice property of the barycentric co-
ordinates is that the sum equals 1, which is a requirement for
our blending. Finally in order to move the character towards
the next position, we need to displace the root of the character
adequately to avoid foot sliding. The final root displacement

Figure 5: Offsets for different landing positions in a triangle, between barycen-
tric coordinates interpolation (black dots) and blending the whole skeleton us-
ing SLERP (blue dots).

vector, dr
j is calculated as the weighed sum of the root’s dis-

placement of the three selected animation steps (Eq. 2), and
changes in orientation of the input root trajectory are applied as
rotations over the ball of the supporting foot.

dr
j = λ1 · dr

1 + λ2 · dr
2 + λ3 · dr

3 (2)

This provides a final root displacement that is the result of
interpolating between the three root displacements in order to
avoid any foot sliding. It is important to notice that the barycen-
tric coordinates provide the linear interpolation required be-
tween three points in 2D space to obtain the position q j. This
is an approximation of the real landing position that our char-
acter will reach, as the result of blending the different poses of
the three animation clips, using spherical linear interpolation
(SLERP) with a simple iterative approach as described in [30].

Therefore there will be an offset between the desired posi-
tion q j and the position reached after interpolating the three an-
imations. To illustrate this offset, Fig. 5 shows the points sam-
pled to compute barycentric coordinates in black, and in blue
the real landing positions achieved after applying the barycen-
tric weights to the animation engine and performing blending
using SLERP. In order to correct this small offset at the same
time that we adjust the feet to the elevation of the terrain and
orient the footstep correctly, we incorporate a fast and simple
IK solver.

4.5. Inverse Kinematics
An analytical IK solver modifies the leg joints in order to

reach the desired position at the right time with a pose as close
as possible to the original motion capture data. For footstep-
based control, the desired foot position is already encoded in the
footstep trajectory, and for COM trajectories the final position is
calculated by projecting the current position of the foot over the
terrain. The controller feeds the IK system with the end position
and orientation for each footstep. This allows the system to
handle footsteps on uneven terrain.

5. Incorporating Root Movement Fidelity

In some scenarios the user may be more interested in fol-
lowing root velocities than in placing the feet at exact footsteps
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or with specific walking styles. We present a solution to include
root movement based interpolation in our current barycentric
coordinates based interpolator through a user controlled param-
eter λ4.

For this purpose, we incorporate the locomotion system pre-
sented by Johansen [9] to produce synthesized motions that
follow a COM trajectory with correction for uneven terrain.
During offline analysis, a parametric space is defined using all
the root velocity vectors extracted from the clips in the motion
database. For example, a walk forward clip at 1.5 m/s, and a
left step clip at 0.5 m/s produces a parametric space using the
root velocity vectors going from the forward direction to the
90o direction, and with speeds from 0.5 m/s to 1.5 m/s.

Given a desired root velocity we define a parametric space
Ωr, and a gradient band interpolator in polar space [9] is created
to compute the weights for each animation clip to produce the
final blended result. The gradient band interpolator does not en-
sure accuracy of the produced parameter values but it does en-
sure smooth interpolation under dynamically and continuously
changing parameter values, as with a player-controlled char-
acter. Once the different clips are blended with the computed
weights, the system predicts the support foot position at the end
of the cycle and projects it on the ground to find the exact posi-
tion where it should land.

The root movement based interpolator will select a set of k
animations Ar

1 to Ar
k with their corresponding weights: w1, ...,wk.

Each of those animations provides a landing position pr
1, ..., pr

k,
and if we only interpolated these animations we would obtain
the landing point r.

In order to incorporate the output of the polar gradient band
interpolator in the barycentric coordinates based interpolator
we proceed as indicated in Algorithm 1.

The algorithm first checks whether a vertex of the current
triangle 〈p1, p2, p3〉 can be replaced by any of the three vertices
with highest weights selected by the polar band interpolator, pr

j,
j ∈ [1, k] (lines 1-13 in the algorithm). This replacement takes
place if the distance between the two landing positions pi and
pr

j is within a user input threshold ε (line 7), and the resulting
triangle still contains the desired landing position q j (function
IsInTriangle returns true if q j is inside the new triangle). This
means that there is another animation that also provides a valid
triangle and has a root velocity that is closer to the input root
velocity.

Next, function CalculateRootLanding computes the landing
position reached after blending the animations given by the root
movement interpolator (Eq. 3).

r =

k∑

i=1

wi · pr
i (3)

Finally, ComputeWeights calculates the three λi for the next
footstep q j by incorporating a user provided λ4 and the result of
the polar band interpolator r (Eq. 4).

q j = λ1 · p1 + λ2 · p2 + λ3 · p3 + λ4 · r (4)

Algorithm 1 Incorporating root movement fidelity
Input:

- The target position q j,
- The current triangle 〈p1, p2, p3〉,
- Root landing positions

〈
pr

1, ..., pr
k

〉
,

- Animation weights 〈w1, ...,wk〉 |w1 ≥ ... ≥ wk,
- A user input threshold ε,
- A user input weight parameter λ4

Output: λ1, λ2, λ3
1: for i = 1to 3 do
2: u← (i + 1) mod 3
3: v← (i + 2) mod 3
4: j← 1
5: replaced ← false
6: while j ≤ 3 ∧ ¬replaced do
7: if

∥∥∥∥pi − pr
j

∥∥∥∥ ≤ ε ∧ IsInTriangle
(
q j,

〈
pr

j, pu, pv

〉)

then
8: pi ← pr

j
9: replaced ← true

10: end if
11: j← j + 1
12: end while
13: end for
14: r ← CalculateRootLanding

(〈
pr

1, ..., pr
k

〉
, 〈w1, ...,wk〉

)

15: 〈λ1, λ2, λ3〉 ← ComputeWeights (〈p1, p2, p3〉 , λ4, r)

and λi are defined using the following relationship:

λ1 + λ2 + λ3 + λ4 = 1 (5)

Since wi and pr
i are known ∀i ∈ {1, ..., k}, and λ4 is a user in-

put, we have a linear system, where λ4 determines the trade-off

between following footsteps accurately (if λ4 = 0), and simply
following root movement (if λ4 = 1).

As the user increases λ4 there will be a value β ∈ [0, 1] for
which λ1, λ2 or λ3 will be negative, when solving the system
of equations formed by eq.4 and eq.5. In order to avoid anima-
tion artifacts it is necessary to deal only with positive weights,
therefore we guarantee that the system will only reproduce q j

accurately as long as λ4 < β. If we further increase λ4 beyond
the value β then the algorithm will provide the blending values
that correspond to a new point q′ which is the result of a linear
interpolation between q j and point r. When λ4 = 1 the result-
ing blending will be exclusively the one provided by the root
movement trajectory since λ1 = λ2 = λ3 = 0. Fig. 6 illustrates
this situation.

Time Warping. Incorporating root velocity in the interpola-
tion, does not always guarantee that the time constraints as-
signed per footstep will be satisfied. Therefore once we have
the final set of animations to interpolate between, with their
corresponding weights λi, i ∈ {1, 2, 3} and w j, j ∈ [1, k], we
need to apply time warping. Each input footstep fm has a time
stamp τm indicating the time at which position qm should be
reached (where m ∈ [1,M] and M is the number of footsteps in
the input trajectory). The total time of the current motion, T can
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p1 
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p3 

r 

0≤λ4<β 

qj 

λ4=1 

Figure 6: When solving the system of equations given by eq.4 and eq.5, the
value of either λ1, λ2 or λ3 will be negative when λ4 ≥ β. Therefore we need
to calculate the barycentric coordinates for a new point q′which moves linearly
from q j to r as the user increases the value of λ4 from β to 1. This means
solving the system of equations for q′ instead of q j, as it is the closest point to
the desired landing position which guarantees that all weights in eq. 5 will be
positive.

be calculated as the weighted sum of the time of the animation
steps being interpolated: T =

∑3
i=1(λi · t(Ai)) +

∑k
j=1(w j · t(A j)).

Therefore the time warping factor that needs to be applied can
be calculated as: warpm = (τm − τm−1)/T .

Outside the Convex-Hull. The footstep parametric space de-
fines a convex-hull delimiting the area where our character can
land its feet. When our target footstep position falls inside this
area, clips can be interpolated to reach that desired position.
But if it falls outside this convex-hull we still want the system to
consider and try to reach it. Our solution to handle this problem
consists of projecting orthogonally the input landing position q
over the convex-hull to a new position qpro j. Our system then
gives the blending weights for qpro j and applies IK to adjust the
final position. We include a parameter to define a maximum
distance for the IK to set an upper limit on the correction of the
landing position. It is important to notice that even if the in-
put trajectory has some footsteps that are unreachable with the
current data base of animation clips, our system will provide
a synthesized animation that will follow the input trajectory as
closely as possible, until it recovers and catches up with future
steps in the input trajectory. This situation is similar to the sce-
narios where the user increases λ4 and then reduces it again.

6. Results

The animation system described in the paper is implemented
in C# using the Unity 3D Engine [31]. The footstep trajectories
used to animate the characters are generated using the method
described in [7] or are created by the user. Some difficult sce-
narios, exercising careful footstep selection, are shown in Fig.
1 and Fig. 7. Agents carefully plant their feet over pillars (Fig.
7-a) or use stepping stones to avoid falling into the water (Fig.
7-b). We show our ability to handle over a hundred agents at 13
FPS (Fig. 7-c and Fig. 9). The supplementary video demon-

strates additional results ( high resolution video2, low resolution
video3).
Obstacle Course. We exercise the locomotion dexterity of a
single animated character in an obstacle course. The character
follows a footstep trajectory with different walking gaits , alter-
nating running and walking phases (Fig. 1-a,b), and including
sidesteps (Fig. 1-c) and backward motion (Fig. 1-e).
Stepping Stone Problem. Stepping stone problems (Fig. 7-
b) require careful footstep level precision where constraints re-
quire the character to place their feet exactly on top of the stones
in order to successfully navigate the environment. Our frame-
work can be coupled with footstep-based controllers to solve
these challenging benchmarks.
Integration with Crowd Simulator. We integrate our ani-
mation system with footstep-based simulators [7]; our charac-
ter follows the simulated trajectories without compromising its
motion fidelity while scaling to handle large crowds of charac-
ters (Fig. 7-c).

It is important to mention that the quality of the results de-
pends strongly on the quality of the clips available from the
motion capture library. As can be seen in the video, the least
precise movements in our results are side steps and back steps.
This is due to two reasons: (1) we had a small number of an-
imations compared to other walking gaits, and thus triangles
covering that space have larger areas, and (2) interpolation ar-
tifacts appear when blending between animations that move in
opposite directions (for example a backwards step with a for-
ward step). We believe that having a better and denser sam-
pling in these areas will improve the results. For steps falling in
triangles of smaller areas, and with all the vertices in the same
quartile we have obtained results of high quality even for diffi-
cult animations such as running or performing small jumps.

6.1. Foot Placement Accuracy

The presented barycentric coordinates interpolator assumes
a small offset between the results of linearly interpolating land-
ing positions from the set of animations being blended, and the
actual landing position when calculating spherical linear inter-
polation over the set of quaternions. This small offset depends
on the area of the triangle, so as we incorporate more anima-
tions into our data base, we obtain a denser sampling of landing
positions and thus reduce both the area of the triangles and the
offset. We believe this is a convenient trade off since such a
small offset can be eliminated with a simple analytical solver
but the efficiency of computing barycentric coordinates offers
great performance. It is also important to notice that if exact
foot location is not necessary, and the user only needs to indi-
cate small areas for stepping as in the water scenario, then it is
not necessary to apply the IK correction. Fig. 8 shows the offset
between the landing position and the footstep. The magnitude
of the error is illustrated as the height of the red cylinders that
are located at the exact location where the foot first strikes.

2https://www.dropbox.com/s/o1b9w73qd45fmip/videoCAG.mp4?dl=0
3https://www.dropbox.com/s/ptdz788f2k9ad3g/videoCAGlowRes.mp4?dl=0
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(a) (b) (c)

Figure 7: (a) Agents accurately following a footstep trajectory and avoiding falls by carefully stepping over pillars. (b) The stepping stone problem is solved with
characters avoiding falls into the water. (c) A crowd of over 100 agents simulated at interactive rates.

Figure 8: The red columns show the small offset between landing position and
the footstep when the IK corrections are not being applied.

6.2. Performance

Fig. 9 shows the frame rate we obtain as we double the
number of agents. It is important to notice that increasing the
number of animations would enhance the quality and accuracy
of the results, with just a small overhead on the performance.

The average time of the locomotion controller is 0.43ms,
this process includes blending animations, IK, the polar band
interpolator and our barycentric coordinates based interpolator.
The computational cost of our footstep interpolator is 0.2 ms,
which is amortized over several frames as the interpolation in
Ω fL or Ω fR only need to be performed once per footstep. This
time is divided between computing the root movement polar
band interpolator which takes 0.155ms and our barycentric co-
ordinates interpolator which takes 0.045ms. Performance re-
sults were measured on an Intel Core i7-2600k CPU at 3.40GHz
with 16GB RAM.

Figure 9: Performance of the Footstep Locomotion System in frames per sec-
ond as the number of agents increases.

7. Conclusions and Future Work

We have presented a system that uses multiple parameter
spaces to animate fully embodied virtual humans to accurately
follow a footstep trajectory respecting root velocities, using a
relatively small number of animation clips (24 in our exam-
ples). Our method is fast enough to be used with tens of char-
acters in real time (25 FPS) and over a hundred characters at
13 FPS. The method can handle uneven terrain, and can be eas-
ily extended to introduce additional locomotion behaviors by
grouping new sets of animation clips and generating different
parametric spaces. For example, walking and running motions
can be blended together, but if we wanted to add crawling mo-
tions or jumping motions, it would be better to separate them in
different parametric spaces for each style. This will avoid un-
natural interpolations that can appear when blending between
very different styles. Having different parametric spaces re-
quires some sort of classification, which could initially be done
manually but it could also be based on the characteristics of the
motion, such as changes in acceleration, maximum heights of
the root, length of fly phase, etc. Assuming we can extract the
parametric spaces for different animation types, it would also
be necessary in some cases to have additional transition clips to
switch between very different locomotion types, i.e. crawling
and walking.

We do not run physical or biomechanical simulations, and
use interpolation and blending between motion capture anima-
tions. Our method accuracy depends on the variety of animation
clips, while its quality and efficiency depends on the number of
clips. A trade-off between efficiency and accuracy is therefore
necessary, for which we have found a good equilibrium.

Limitations. In order to reduce the dimensionality of the prob-
lem, we have not included in our parametric space the orienta-
tion of the previous footstep. Ignoring the final orientation of
the character at the end of the previous step can induce some
discontinuities between footsteps. We mitigate this effect by
blending between footsteps automatically for a small amount of
time (about 0.2 seconds) at the advantage of reducing the com-
putational time and thus making our method suitable for large
groups of agents in real time. Regarding the selection of ani-
mation at the end of each footstep, notice that in our database,
left and right animation steps are extracted from complete ani-
mation cycles that are usually consistent in parameters such as

8



velocity, acceleration and walking gait. Therefore for a given
sequence of steps, the most likely animation steps to be chosen
will be those extracted from the same set of animation cycles,
thus resulting in smooth and natural transitions between very
similar steps. When the characteristics of the steps change dras-
tically, then our method needs to blend between steps from very
different animation cycles. So in general, alternating left/right
steps results in natural transitions with smooth continuity when
blending animations, and only when the input step trajectory
changes drastically between each pair of steps, we may observe
transitions between animations that feel unnatural. This can
happen if the step trajectory is done manually with artifacts due
to the user’s lack of experience creating footstep trajectories,
or for example when the input trajectory forces the character to
walk over artificially located steps, like crossing a river by step-
ping over stones. We would like to empathize that this situation
would also look awkward in the real world and thus the result
of our synthesized animation may be the desired one.

Future Work. For future work we would like to extend our
barycentric coordinates interpolator to 3D space with the third
coordinate being the root velocity. This will free our system
from the polar band interpolator which not only takes longer to
compute but also selects too many animations which results in
slower blending. One thing to explore could be to interleave the
execution of the Footstep-based Locomotion Controller from
different characters in different frames, ensuring we do not ex-
ecute it for all the agents in the crowd.
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