

	Classification	
	- Nested models	
	O based on a nested subdivisions of the surface domain	
\bigcirc each cell in the subdivision is refined		
${ }^{\prime}$		
		Evolutionary mod
s		- based on the
		O different mes of modificatio
EG99 Tutorial		

Nested models as MTs

- A node of the tree is not necessarily a node of the MT
- Nodes of the MT are obtained by node clustering
- Clustering rule: if an edge e of a triangle t splits during refinement, then

O the same split must occur in refining triangle t ' adjacent to t along e

O the meshes refining t and t^{\prime} must be clustered

- Propagation: many nodes of the tree can be clustered to form one node of the MT because of edge splits

	... Quadtree surface ...		
Octree [Wilhelms and Van Gelder, 1994]			
- Extension of quadtree to volume data	- Extension of quadtree to volume data		
O Subdivision of a cubic universe into octants			
- Data field within each octant approximated through tri-linear patch			
- Same problems as quadtree with cracks between octants of different levels			
(2)			
EG99 Tutorial 10			

Restricted quadtree [Von Herzen \& Barr, 1987]

Merging triangles from different levels without cracks:
O Adjacent quadrants can differ by one level

- Each quadrant is triangulated
- Linear interpolation is used on each triangle

Restricted quadtree and wavelets [Gross et al., 1996]

- Quadtree subdivision naturally adapt to computation of wavelet coefficients at grid vertices
- LOD refers to detail relevance in wavelet space, rather than absolute approximation error on surface
- Selective refinement: vertices are selected according to their LOD, and the resulting quadtree is triangulated a posteriori
- Two quadtree levels are allowed between adjacent quadrants
- More complex lookup table is necessary to obtain all triangulation patterns

Hierarchy of right triangles
[Lindstrom et al., 1996, Evans et al., 1997, Duchaineau et al., 1997, Pajarola, 1998]

Each triangle is recursively bisected by splitting it along its longest edge

Binary tree representation

MT corresponding to a hierarchy of right triangles:

- cluster triangles of the same level that share a short edge
- each node is formed of four triangles (except at the boundary)
- two types of nodes:

O squares

O diamonds

- each node has two parents and four sons (except at the boundary, root, and leaves)

- Different models are characterized by:

O data structures
O error evaluation
O traversal algorithms

- Trade-off between space complexity and time efficiency

[Duchaineau et al., 1997, Evans et al., 1997]
- Data structure: binary tree of triangles
- Error: a priori evaluation

M Selective refinement: top-down traversal of the tree, by forcing splits where necessary

- no need for numerical computation during refinement
${ }^{(2)} \quad \nabla$ expensive data structure

- Codes for triangles [Hebert, 1995]

O Reference domain: unit square [0,1]x[0,1]

- Quadtree subdivision:
a quadrant is identified by its center
the center of a quadrant at level m is encoded by a sequence of m quaternary digits ($2 m$ bits)

$$
\sum_{i=1}^{m} 2^{-i} \sigma_{i}
$$

where all σ_{i} are pairs of signs: $(-1,-1)(-1,1)(1,-1)(1,1)$

| ...Hierarchy of right triangles... |
| :--- | :--- | :--- |
| O For each level of the quadtree there are two levels in the tree |
| of triangles: each quadrant is subdivided in two possible ways |
| O Triangles in a quadrant are identified by a pair of digits (I,t) |
| where I is the type of subdivision, and tis the index of a |
| triangle in the subdivision (total 4 bits) |

- Topological relations are evaluated by algebraic manipulation of codes. From a triangle we can obtain:
- vertices

O parent triangle
O sons
O adjacent triangles at the same level
O adjacent triangle at the previous level
O adjacent triangles at the next level

- Relations among triangles and nodes are evaluated by algebraic manipulation of codes. From a node we can obtain:
O triangles in it
O triangles in its floor
O parent nodes
O child nodes

The algorithm for selective refinement for MT can be implemented efficiently on a hierarchy of right triangles encoded by the implicit data structure

Multi-tetra framework [Maubach, 1994, Zhou et al., 1997]

- Extension of hierarchy of right triangles to volume data:

O Subdivision of a cubic universe into twelve tetrahedra
O Recursive bisection of each tetrahedron at the midpoint of its longest edge

- Implicit data structure as in the 2D case [Hebert, 1994]

Quaternary triangulations

- Recursive subdivision of a triangular domain into four triangles by joining the edge midpoints
- Applicable as a refinement scheme to an arbitrary surface mesh at low resolution
- Topological constraints on positions of vertices (needs re-meshing)
- Supports methods based on wavelets

- A mesh made of triangles from different levels has cracks

Adaptive hierarchical triangulations

- Based on irregular triangulations
- Suitable for sparse data sets
- Error driven subdivision rule: refine a triangle by inserting vertices that cause the largest errors
- Vertices can be inserted inside a triangle and/or on its edges
- More adaptive than models based on fixed subdivision rules
- May contain elongated triangles (slivers)
[Pavlidis and Scarlatos, 1990/92]
- Find the vertex causing the largest error inside the triangle and the vertices causing the largest error along each edge
- Select only vertices whose error is beyond a given threshold

- Use predefined subdivision patterns
[De Floriani and Puppo, 1992/95]
- Insert the vertex causing the largest
- Insert the vertex causing the achieved
- At each insertion compute the Delaunay triangulation
 -

Evaluation of treelike models

Regular subdivisions

- Pros:

O easy to handle
O compact data structures
O regular shape of regions
O support wavelets

- Cons:

O only regular data: topological constraints

- quadtrees and right triangles only for terrain
O less adaptive than irregular triangulations

Irregular subdivisions

- Pros:

O suitable for arbitrary data and for arbitrary surfaces
O more adaptive than regular subdivisions

- Cons:

O elongated triangles
O cumbersome data structures
O selective refinement not easy

Evolutionary models

Store the evolution of a mesh through either refinement or simplification algorithm based on local modifications

- Partial order is given by relations among components of the mesh (vertices, faces, etc...) before and after each local modification
- Different models characterized by:

O types of surfaces supported

- construction method

O information stored (geometry, connectivity, topology, interference, attributes, error, etc...)
O operations supported - efficiency of algorithms

- Models based on vertex insertion / vertex decimation

O [De Floriani, 1989]
O [de Berg and Dobrindt, 1995]
O [Cignoni et al., 1995/97]

- [Brown, 1996/97]

O [Klein and Strasser, 1996]
O [De Floriani et al., 1996/97/98]

vertex decimation

- Models based on vertex split / edge collapse

O [Hoppe, 1996/97/98]
O [Xia et al., 1996/97]
O [Maheswari et al., 1997]
O [Gueziec et al., 1998]
O [Kobbelt et al., 1998]

Construction through refinement

- Method applied only to build models based on vertex insertion

O Start from a coarse mesh at low resolution built on a small subset of data
O Perform iterative local refinements until all data have been inserted as vertices of the mesh

- The initial mesh is the root of an MT
- Each local refinement generates a node of an MT formed of new triangles inserted in the mesh
- Difficult to apply to generic manifold surfaces

...Construction through refinement...

- Greedy refinement:
O at each step, insert vertex causing the largest error
O mesh update based on either Delaunay or data dependent triangulation
Δ good heuristic to reduce the number of points to achieve a given accuracy
- inserting vertices of bounded degree guarantees linear growth
method cannot guarantee that accuracy improves at every refinement step
∇ fragments may pile-up in a high hierarchy: low expressive power low performance of traversal algorithms

...Construction through refinement...

Extension to 3D [Cignoni et al., 1994/1997]

- Iterative insertion of vertices in a Delaunay tetrahedrization
- Vertex selection rule as in 2D
- Applicable to convex and curvilinear volume data sets

Construction through simplification

- Any local simplification rule can be used (vertex decimation, edge collapse, etc.)
O Start from mesh at full resolution, based on all data
O Perform iterative local simplifications
- The final mesh is the root of an MT
- Each simplification step generates a node formed of triangles eliminated from the mesh
- The new portion of mesh generated by a simplification step is the floor of the corresponding node
(2)
- Applicable to generic manifold surfaces

...Construction through simplification...

- Vertex decimation:

O node: a star of triangles surrounding the removed vertex
O floor of a node: a star-shaped triangulated polygon

- Key issues:

O selection of vertices to remove
O triangulation method
O degree of vertices (size of fragments)
O error estimation
O height of the resulting hierarchy

...Construction through simplification...

- Greedy decimation:

O at each step, remove vertex causing the least error increase
O mesh update based on either Delaunay triangulation or heuristics

- result similar to greedy refinement
Δ removing vertices of bounded degree guarantees linear growth
∇ components may pile-up in an unbalanced DAG

...Construction through simplification...

- Edge collapse on midpoint:

O node: cycle of triangles surrounding the collapsed edge
O floor: star of triangles surrounding the vertex resulting from collapse

- Edge collapse on endpoint:

O node: star of triangles surrounding the endpoint
O floor: fan of triangles centered at endpoint
O equivalent to decimation with special update rule

...Construction through simplification...

Illegal edge collapse: one or more triangles flip over because of collapse operation.

...Construction through simplification...

- Edge collapsing rules:

O Greedy: collapse an edge at each step:

$$
\triangleleft \text { the shortest edge }
$$

\diamond the edge causing the least error increase
\triangleleft an edge surrounded by almost coplanar faces
O Independent set:
\triangleleft two edges are independent if they have disjoint influence regions
\diamond select a maximal set of independent edges and collapse them all together

- Results similar to decimation:
Δ removing vertices of bounded degree guarantees bounded width and linear growth
Δ removing an independent set guarantees logarithmic height
∇ in greedy collapse fragments may pile-up in a high hierarchy

...Construction through simplification...

Extension to 3D [Cignoni et al., 1997]

- Edge collapse in a tetrahedrization: collapse an edge and the star of tetrahedra surrounding it
- Edge selection as in 2D
- Applicable to all kinds of volume data sets

Data structures

Relevant information on evolutionary models

- Geometry: coordinates of vertices
- Connectivity: triples of vertices forming triangles
- Topology: adjacency, boundary, co-boundary relations
o local topology: among elements of a single node
O global topology: among components of different nodes
- Spatial interference: relations among nodes and triangles that have spatial interference
- Additional information: accuracy, material, surface normal, etc.

...Data structures...

- Different data structures characterized by the amount of information stored
- Trade-off between spatial complexity and efficiency
o compact data structures more suitable to storage and transmission
O extended data structures more suitable to complex operations:
\triangleleft selective refinement
\diamond spatial queries
- Compactness can be achieved by exploiting properties of special models

...Data structures...

Linear sequences: store sequences of local modifications that produce a refined mesh starting at a coarse mesh

- List of vertices [Klein \& Strasser, 1996] :

O store initial mesh plus sequence of vertices in suitable order
O each vertex in the sequence is inserted iteratively to refine mesh
O mesh is updated with Delaunay (implicit) rule at each insertion

- very compact
$\boldsymbol{\nabla}$ suitable only to explicit and parametric surfaces
∇ local update requires numerical computation
∇ selective refinement is computationally expensive
$\boldsymbol{\nabla}$ no connectivity, topological, and interference information maintained

...Data structures...

- List of triangles [Cignoni et al., 1995] :

O store all triangles appearing during refinement/simplification
O each triangle is tagged with a life: range of accuracies through which it "survives" during refinement/simplification
O life is used to extract meshes at a given (uniform) LOD
O extended to 3D for volume data [Cignoni et al., 1997]

A applicable to all kinds of surface
Δ extraction of a uniform LOD very efficient
Δ moderately compact
∇ selective refinement not possible
$\boldsymbol{\nabla}$ no topology and interference maintained

...Data structures...

- Progressive Meshes [Hoppe, 1996/98]:

O store initial coarse mesh plus a sequence of vertex splits (inverse operation of edge collapse) in suitable order
O each vertex split is maintained in compressed format
O each vertex split gives a node of a corresponding MT
O a uniform LOD is extracted by expanding the sequence up to the desired level
Δ compact
Δ extraction of a uniform LOD efficient without numerical computation

- suitable additional structures to maintain attributes
∇ selective refinement needs additional information
∇ no connectivity, topology and interference maintained

...Data Structures...

Explicit MT representation [De Floriani et al., 1996/98]

- Geometry: vertex coordinates
- Connectivity:

O for each triangle: error + references to its three vertices

- DAG structure:

O for every $\operatorname{arc}\left(\boldsymbol{T}_{\boldsymbol{j}} \boldsymbol{T}_{\boldsymbol{i}}\right)$: links to source and destination node, link to the set of triangles of $\boldsymbol{T}_{\boldsymbol{j}}$ which form the floor of $\boldsymbol{T}_{\boldsymbol{i}}$
O for every node: link to the sets of its incoming and outcoming arcs

...Data structures...

...Explicit MT representation...
\triangle Supports selective refinement efficiently

- Supports spatial queries efficiently
∇ High storage cost
∇ No topology

Compressed hierarchies:

- Key ideas:

O each node of an MT is a local modification that can be encoded in compressed form
O hierarchical links among nodes are encoded explicitly

- Different structures for models based on edge collapse (PM):

O [Xia et al., 1996/97]
O [Hoppe, 1997]
O [Gueziec et al., 1998]

- One structure for models based on vertex decimation:

O [De Floriani et al., 1997/98]

...Data structures...

Compressed hierarchies for PMs

Vertex tree (forest) [Xia et al., 1996/97]

- Binary forest of vertices
topmost level: vertices of the base mesh
children of a vertex: vertices resulting from split
O Vertex split can be encoded in compressed form
O Rule for selective refinement: a vertex can split if and only if all boundary vertices of the corresponding fragment belong to the current mesh \rightarrow need for additional interference links
) For each vertex:
parent-child relation in forest
\triangleleft additional links to vertices that must exist in order to allow split
More compact than explicit MT
Less general than explicit MT
No control on accuracy of triangles

...Data structures...

Compressed hierarchies for MT based on decimation

Implicit MT [De Floriani et al., 1997/98]
O Each node corresponds to vertex insertion/decimation

- Partial order of nodes is maintained

O Array of vertices, each entry storing vertex coordinates
O Array of arcs - for every arc a:
\triangleleft indexes of source and destination nodes
\triangleleft index of next arc with same destination node
O Array of nodes - for every node n:
\checkmark index of first outgoing and incoming arcs
\triangleleft number of outgoing arcs
\triangleleft maximum error of its triangles
\triangleleft compressed information to perform vertex insertion/decimation

...Data structures...

Hypertriangulation [Cignoni et al., 1995/97]

- Interpretation of an MT in a higher dimensional space:
triangles of a new node are lifted along a "resolution axis" and welded on floor at the node boundary

Selective refinement

- Top-down traversal of hierarchy:

O on generic MT [Puppo, 1996, De Floriani et al., 1997/98]
O on PM [Hoppe, 1997, Xia et al., 1997]
O on restricted quadtrees [Von Herzen and Barr, 1987, Gross et al., 1996]
O on hierarchy of right triangles [Evans et al., 1997, Duchaineau et al., 1997]
O on hierarchy of irregular triangles [De Floriani \& Puppo, 1995]

- Bottom-up traversal of hierarchy:

O on PM [Xia et al., 1996]
O on hierarchy of right triangles [Lindstrom et al., 1996]

- Breadth-first traversal of surface:

O on hypertriangulation [Cignoni et al., 1995/97]
O on hierarchical triangulation [De Floriani \& Puppo, 1995]

Top-down on MT

- Visit DAG starting at cut just below its root
- Recursively move cut below a node n when a triangle labeling an arc entering n has accuracy worse than LOD

Algorithm on explicit MT:
Δ Optimally efficient (on MT with linear growth)
A Applicable to all models
∇ Needs expensive data structure
Algorithm on implicit MT:
Δ Lighter data structure
∇ Slower

- Output mesh larger
- Applicable only to special models

Top-down on PM (vertex forest or DAG)

- Visit forest/DAG starting at topmost level
- Recursively expand a vertex when accuracy worse than LOD
- Find all vertices that constrain selected vertices
- Perform all splits corresponding to selected vertices in the default order
- Fast

マ Needs expensive data structure

Top-down on tree of right triangles

- Visit tree starting at its root
- Recursively refine a triangle when accuracy worse than LOD
- Propagate vertex dependencies to obtain a conforming mesh
- Easy and fast if all vertex dependencies are available

Top-down on trees of irregular triangles

- Visit tree starting at its root
- Recursively expand a triangle when accuracy worse than LOD
- Triangulate mesh a posteriori to make it conforming
- Easy and fast
v No control on error of triangles generated a posteriori

Bottom-up on PM (vertex forest):

- Visit forest starting at leaves
- Recursively discard leaves that can be collapsed
- Perform splits corresponding to selected vertices in default order

Bottom-up on hierarchy of right triangles:

- Visit tree starting at leaves
- Recursively merge sibling leaves when possible
- All vertices must be analyzed even to extract a coarse LOD

...Selective refinement..

Breadth-first traversal of domain on hypertriangulations and on hierarchical triangulations

- Start with a triangle where highest LOD is required
- Incrementally add triangles adjacent to the boundary of current triangulation through global adjacencies
- Each time a boundary edge e is crossed, select a triangle which is as coarse as possible, satisfied the LOD, and is compatible with current mesh
- Supports dynamic local refinement/abstraction of detail (resolution editing)
- Ideal for propagating LOD through the surface rather than through space
- Applicable only for LOD monotonically decreasing with distance from a given point
- Computational complexity is super-linear
- Needs expensive data structure

	...Discussion...	
Types of surfaces supported		
	- All types: O MT, PM, HyT, quaternary triangulations	
\bigcirc		
M	- Explicit and parametric surfaces only:	
D E L	o quadtrees, restricted quadtrees, hierarchies of right triangles (problems with trimming curves)	
s	O Adaptive hierarchical triangulations	
(2)		
	EG99 Tutorial	77

Expressive power

- Number of different meshes that can be extracted
- Possibility to adapt a mesh to arbitrary LOD
- Ratio accuracy/size

More expressive, higher ratio

- Explicit MT

PM, Implicit MT
HyT
Quaternary triangulations
Hierarchy of right triangles, quadtree, restricted quadtree,
Less expressive, lower ratio

Adaptive hierarchical triangulations

