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Advancad Illumination

big brown bat

Data sets available at the
UTCT data archive, DIGIMORPH
pterosaur skull http://utct.tacc.utexas.edu
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Light Transport

Wave-Particle Duality

® Photons

® Quantum of light (the smallest possible packet of light at a given
wavelength)
@ Photoelectric effect (van Lenard,1902)

® Wave Theory (Maxwell)

@ Electro-magnetic wave characteristics of light
® Effects such as intederence and diffraction

® Quantum Mechanics (Einstein)
@ Universal theory of lighttransport
® probabilistic characteristics of the motions of atoms and photons
(quantum optics)
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Light Transport

Wave-Particle Duality

® Photons

® Quantum of light (the smallest possible packet of light at a given
wavelength)
® Photoelectric effect (van Lenard, 1902)
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Scattering Effects
Single and Multiple Scattering
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Scattering Effects

When a photon hits a surface, it changes
both direction and energy

® Single Scattering: q
® Light is scattered once betfore #

it reaches the eye
® Local illumination model

® Multiple Scattering
® Soft shadows V

® Translucency
® Color bleeding
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Single Scattering

Phong illumination with point light sources

W Aﬁ
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Single Scattering

Environment Light

ILa,mbert

Irradiance Map
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Single Scattering

Environment Light

ILa,mbert

Irradiance Map

IReflect

Environment Map
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Single Scattering

Environment Light

ILa,mbert

Irradiance Map

-[ Specular
Reflection Map
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Single Scattering
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Single Scattering

Environment Light

n

ILa,mbert

Irradiance Map

I

Specular

Reflection Map
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Mafth Notation

3

® Surface lllumination

L(x,w,) = Jo+ f(
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Math Notation \

Mathematical Model
L(x,w,) = / p(X,w, — w;) L(X,w;) dw;
Q0

infegrates over the entire sphere/hemisphere

® Integral must be solved for every
intersection point

® Fredholm Equation (cannot be
solved analytically)
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Numerical Integration
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Numerical Integration

Equidistant Sampling
f(:Z?) Approximation integral
by a Riemann sum

. al b—a
| f@iz =Y pa)E
“ i=0

Stochastic Sampling
f(:l?) Uniformly distributed samples

Approximation by sum

: N b—a
[ f@iz =Y pa)
@ i=0
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Stochastic Sampling

O o

Cons:
® Slower convergence
than Riemann sum

Pros:

@ Better Scalability for multidimensional functions:
increase number of samples in arbitrary steps
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Stochastic Sampling

Lr Ol

Cons:
® Slower convergence
than Riemann sum

Pros:
@ Better Scalability for multidimensional functions:

increase number of samples in arbitrary steps

@ Noise instead of Aliasing

® Independentof sampling grid: m“‘“““‘““““
Clever placement of | ;
samples will improve the M

convergencel!

Eurographics 2009 ﬁ

Blind Monhte-Carlo Sampling

® Example: Filtering an Environment Map

Given an Environment Map Calculate an Irradiance Map

(i.e. photograph: fisheye or For each pixel of the irradiance map:

mirror bqll) o Determine n random directions
on the hemisphere

Sample the Environment Map and

Average the results
(incl. cos-term)

LDR Sample
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Rendering

® Calculate the radiance from a point

@® depending on the incoming light on the sphere/hemisphere
® depending on the phase function/BRDF

Deterministic Blind Monte-Carlo Importance Sampling
Uniform sampling of the Randomized sampling of the Place samples where
sphere/hemisphere. sphere/hemisphere. contributionis high
High computational load Visually better images for Faster!

good approximation fewer samples, slow convergence
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Importance Sampling

Stochastic Sampling
f(x)

Non-uniformly distributed
samples

Approximation by sum
/bf(x)d:c ~ XN: fz:)

Clever placement of samples

Many samples where function is high

Probability
Distribution
Function (PDF)

Few samples where function is low
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Sampling a Specular Lobe

® Simple Approach
Specular term  f(p) = cos®(¢) = (r-v)*

Non-optimal, but easy to implement
Idea: uniform distribution of directions restricted to a cone

Precompute random unit vectors
with uniform PDF

Randomly pick one vector p
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® Simple Approach
Specular term  f(¢) = cos®(¢) = (r-v)*

Non-optimal, but easy to implement
Idea: uniform distribution of directions restricted to a cone

Precompute random unit vectors
with uniform PDF
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Sampling a Specular Lobe

® Simple Approach
Specular term  f(p) = cos®(¢) = (r-v)*

Non-optimal, but easy to implement
Idea: uniform distribution of directions restricted to a cone

Precompute random unit vectors
with uniform PDF

Randomly pick one vector p
Negate vector, if (r - p) <0
Blend with vector I and normalize

s=ar+(l—-—a)p
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Sampling a Specular Lobe

® Simple Approach
Specular term  f(¢) = cos®(¢) = (r-v)*

Non-optimal, but easy to implement
Idea: uniform distribution of directions restricted to a cone

Precompute random unit vectors
with uniform PDF

Randomly pick one vector p

Negate vector, if (r-p) <0

Blend with vector I and normalize
s=ar+(l—a)p

Blend weight c@ controls the size

of the specular highlight and can
be calculated from shininess s
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Stochastic Sampling

’ o fl)
/Qf(w)d:r N;p(l‘@)

® What is the ideal PDF for sampling a given function f(x)?
@® Variance is minimal, if

p(z) = A- f(x)
@ )\ must be chosen to normalize the distribution
® Problem:

b
/ p(z)de=1 = p(x)=

f(z)
f; f(z)dx

® The ideal PDF requires knowing the integral beforehand!
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Stochastic Sampling
L(3,60,)|= /Qf(x, w; — wo)“L(x,wi) cos 6;|dw;

Although we do not know the integral completely,
we still know parts of it

pw;) = f(x,w; — w,) cosb;
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Solld Angle

AHemisphere - / 1 dw
)+

du = rdf du

ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING
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Solid Angle

A isph :/ 1dw
Hemisphere - de

du = rdb
dv =r sinfdo

ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING
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Solid Angle

AHemisphere — /Q+ ldw =27 a d'fU

du = r db
dv =1 sinfdo

Area (yellow)

dA = r? sinfdo do

Solid Angle:
do = — sin0do do S
2 ¢

Unit of solid angle: Steradian [sr]
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Sampling a Specular Lobe

® Ideal Sampling

f(w;) = cos™(6;) p(w; f +f(wc;))dw
0 )
2m o
COS / / cos"(0)sin(0) dfdep = 1 1)
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Sampling a Specular Loba
® Ideal Sampling

f(w;)
f(w;)dw

f(wi) = cos™(0;) p(w;) = T

1
p(0;,0;) = =) cos™ @, sin 0,
2
/ N
p(0i) = (n+ 1) cos™ ; sin 6, p(¢il0;) = o
® Convertto CDF and invert
1

6; = cos 1 61( =) O; = 2m&o
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IMmportance Sampling

Literature:

e M. Pharr, G. Humphries: Physically Based Rendering,
Morgan Kauffman (Elsevier), 2004

e M. Colbert, J. Kiivinek, GPU-Based Importance Sampling
in H.Nguyen (edt.): GPU Gems 3, Addison-Wesley, 2008
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GPU Ray-Casting

o Calculate First Intersection with Isosurface

@ Rasterize the front faces of the
bounding box

For each fragment, cast a ray
@® Find first intersaction point with
isosurface by sampling along the ray

ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING
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GPU Ray-Casting

' Calculate First Intersection with Isosurface

@ Rasterize the front faces of the
bounding box

For each fragment, cast a ray

® Find first intersaction point with

isosurface by sampling along the ray
@ interval bisection

ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING
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GPU Ray-Casting

o Calculate First Intersection with Isosurface

Rasterize the front faces of the

bounding box

For each fragment, cast a ray

Find first intersaction point with

isosurface by sampling along the ray
@ interval bisection

Store the infersection point in

render farget 0

Estimate the gradient vector using

central differences

Store the gradient vector in
render target |
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MRTO: xyz-coordinates of first
intersection point with isosurface

MRT1: xyz-components of
gradient vector (color coded)
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Deferred Shading

Single Scattering (no shadows)
® Diffuse term:

@ Sample irradiance cube
using gradient direction

ADVANCED ILLUMINATION TECHNIQUES FOR GPU-BASED VOLUME RAYCASTING
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Deferred Shading

Single Scattering (no shadows)
® Diffuse term:

@ Sample irradiance cube
using gradient direction

® Specular term:

@ Calculate random directions
on the specular lobe

@ Sample environment cube

ADVANCED ILLUMINATION TECHNIQUES FOR

VOLUME RAYCASTING
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Deferred Shading

Single Scattering (no shadows)
® Diffuse term:

@ Sample irradiance cube
using gradient direction

® Specular term:

@® Calculate random directions
on the specular lobe

@® Sample environment cube

® Weighteach sample with
its BRDF/phase function and
its probability distribution
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High Quality Iseosurface

Single Scattering

Eurographics 2009 i




High Quality Isosurface

Ambient Occlusion
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High Quality Isosurface
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Our First Implementation

Why not use a pre-filtered
environmentmap?¢

You can, but

@ itonly works for one
specular exponent
per object

@® Variable shininess may be
used to visualize additional
surface properfies
(e.g. gradient magnitude)
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Single Scattering Example
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Single Scattering Example

Eurographics 2009 i

Multiple Scattering \

Mathematical Model
L(x,w,) = / (X, wo — w;) L(x,w;) dw;
Q0

infegrates over the entire sphere/hemisphere

® Integral must be solved for every
intersection point

® Fredholm Equation (cannot be
solved analytically)

Numerical Solution:

@® Number of rays grows exponentially

® Much workload spent for little
contribution
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Multiple Scattering A

Mathematical Model
L(x, w,) = / p(X,wo — w;) L(x,w;) dw;
Q0

infegrates over the entire sphere/hemisphere

Quantum Optics
® Trace the path of single photons
® Photons are scattered

randomly \&
® Probability of scattering

direction given by

BRDF/phase function
® Monte Carlo path tracing
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Phase Function Modeal

® Scattering of light at every point inside the volume

@ Too expensive (exiremely slow convergence)

@ Not practicable. Controlling the visual appearance is difficult
® |dea: Restrict scattering events to a fixed number of

isosurfaces only.
specular

r reflection

1.:.;:: ..... ?:}. }_ V
~——

A%

diffuse transmission

reflection .

refractive

non- I'Efl'(lCﬂ‘u‘e

Eurographics 2009 i




GPU Ray-Casting

Scattering Pass

® Start at first isosurface and
trace inwards

® Account for absorption
along the rays

® Proceed until next
isosurtface

® Calculate scattering event

® Sample the environment
on exit

Eurographics 2009 i

GPU Ray-Casting

Scattering Pass
Simplitying Assumption:
® Absorption on the ,way in”
is same as on the ,way out”
® Abort the ray inside the volume

square the absorption and
sample irradiance map

® Notvery accurate but
goodvisual results
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Scattering Pass

preview in real-fime final version in '2-1 seconds
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Final Composite

Multiply

Blend
using
Fresnel term
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Path Tracihg

Primary rays: 1 Primary rays: 8 Primary rays: 64
Secondary rays: 64 Secondary rays: 8 Secondary rays: 1

Examples

Different scattering cone
angles for the ,inward-looking”
(transmissive) Phong-lobe

refractive
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Scattering Effects
Light Map Approaches
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3D Light Map
— 1000 |:I BNE

e T OintoeEE— - >
S = it

S i [ [ [

S i ]

— -OOooOO0Eg--

® Direct light by shadow volume or deep shadow map

® Consider the exchange of radiantenergy between
neighbouring voxels

® Approximate by blur operation (like [Kniss, 2002])
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Generate a 3D Light Map

® Based on Shadow Volume

® Calculate shadow volume for direct light as in

e U. Behrens and R. Ratering. Adding Shadows to a Texture-
Based Volume Renderer. In Proc. IEEE Symposium on Volume
Visualization, 1998, p.39-46.

® Blurthe direct light slice by slice

Ny —
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o
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0= = [
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Generate a 3D Light Map

® Based on Shadow Volume

® Calculate shadow volume for direct light as in

e U. Behrens and R. Ratering. Adding Shadows to a Texture-
Based Volume Renderer. In Proc. IEEE Symposium on Volume
Visualization, 1998, p.39-46.

® Blurthe direct light slice by slice
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Scattering 3D Light Map

Direct light

Direct plus
indirect light
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Calculate @ 3D Light Map

® Based on Deep Shadow Map
@ Resample the deep shadow map on a uniform voxel grid
@ Coarsegrid resolutionis sufficient due to the low-frequent

nature of volumetric scattering
image plane

I SR T [— - .......H“.“...-)-
ﬁ .......... o o o ).
N o o0—o o _— —%..HH..‘....-)-

Eurographics 2009 ﬁ




Scattering Deep Shadow Map

Direct
light

Direct plus
indirect light
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Light Map Approaches

Shadow Volume Appraoch

® Calculated in Model Space
® |imited by Resolution of Shadow Volume

@ High Memory Requirements

Deep Shadow Map Appraoch

® Calculated in Screen Space
® [imited by Resolution of Shadow Volume

® Reduced Memory Requirements
® High Precision
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High Dynamic Range

Direct light and shadows Direct light, shadows and translucency
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SUuary

Scattering Effects

® Single Scattering \
@ Filtered Enwronmenchtps\
@ Monte-Carlo Integration

® Multiple Scattering

@® Monte-Carlo Integration
® 3D Light Maps
(Shadow Volume/Deep Shadow Map)
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