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Abstract

This full-day tutorial covers high-quality real-time volume rendering techniques for consumer graphics hardware.
In addition to the traditional field of scientific visualization, the interest in applying these techniques for visual
arts and real-time rendering is steadily growing. This tutorial covers applications for science, visual arts and en-
tertainment, such as medical visualization, visual effects and computer games. Participants will learn techniques
for harnessing the power of consumer graphics hardware and high-level shading languages for real-time render-
ing of volumetric data and effects. Beginning with a short theoretical part, the basic texture-based approaches
are explained. These basic algorithms are improved and expanded incrementally throughout the tutorial. Special
attention is paid to latest developments in GPU ray casting.
We will cover local and global illumination, scattering, and participating media. GPU optimization techniques
are explained in detail, such as pre-integration, space leaping, occlusion queries, early ray termination and level-
of-detail. We will show efficient techniques for clipping and voxelization, and for rendering implicit surfaces.
Participants will learn to deal with large volume data, segmented volumes and to apply higher-order filtering, and
non-photorealistic techniques to improve image quality. Further presentations cover multi-dimensional classifi-
cation and transfer function design, as well as techniques for volumetric modeling, animation and deformation.
Participants are provided with code samples covering important implementation details usually omitted in publi-
cations.

1. Prerequisites

Participants should have a working knowledge of computer
graphics and some background in graphics programming
APIs such as OpenGL or DirectX. Familiarity with GPU
shading languages is helpful, but not necessarily required.

2. Level of Difficulty

Intermediate.

3. Intended Audience

The basic modules will be of value for all people who want
to learn more about real-time volume graphics. The ad-
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vanced topics are intended for scientists, who want to vi-
sualize large data, and for graphics and game programmers
who want to generate convincing visual effects and render
participating media.

4. Syllabus

This section gives a detailed structure of the tutorial.

1 Theoretical Background [15 min]

• Physical Model of Light Transport
• Volume Rendering Integral

2 GPU Programming [15 min]

• The Graphics Pipeline
• Vertex and Fragment Processing
• The High-level Shading Language Cg
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3 Basic GPU-Based Volume Rendering [30 min]

• 2D Texture-Based Volume Rendering
• 3D Texture-Based Approach
• 2D Multi-Textures-Based Approach
• Vertex Programs

4 GPU-Based Ray-Casting [30 min]

• Basic Structure of Ray-Casting
• Performance Aspects and Acceleration Methods
• Object-Order Empty Space Skipping
• Isosurface Ray-Casting
• Ray-Casting of Unstructured Grids

COFFEE BREAK

5 Transfer Functions [30 min]

• Classification
• Pre- versus Post-Classification
• Pre-Integrated Transfer Functions

6 Local Volume Illumination [30 min]

• Gradient-Based Illumination
• Local Illumination Models
• Pre-Computed Gradients
• On-the-fly Gradients
• Environment Mapping

7 Global Volume Illumination [30 min]

• Volumetric Shadows
• Phase Functions
• Translucent Volume Lighting

LUNCH BREAK

8 Improving Performance [20 min]

• Swizzling of volume data
• Asynchronous Data Upload
• Empty Space Leaping
• Occlusion Culling
• Early Ray-Termination
• Deferred Shading
• Image Downscaling

9 Improving Image Quality [20 min]

• Sampling Artifacts
• Filtering Artifacts
• Classification Artifacts
• Shading Artifacts
• Blending Artifacts

10 Advanced Transfer Functions [20 min]

• Image Data Versus Scalar Field
• Multi-Dimensional Transfer Functions
• Engineering Multi-Dimensional Transfer Functions
• Transfer Function User Interfaces

11 Game Developer’s Guide to Volume Graphics
[30 min]

• Volume Graphics in Games
• Differences From Stand-Alone Volume Rendering
• Integrating Volumes With Scene Geometry
• A Simple Volume Ray-Caster for Games
• Volumetric Effects and Simulation
• Integrating Volumes With Scene Shadowing and Lighting

COFFEE BREAK

12 Volume Modeling, Deformation and Animation
[30 min]

• Rendering into a 3D Texture
• Voxelization
• Procedural Modeling
• Compositing and Image Processing
• Deformation in Model Space
• Deformation in Texture Space
• Deformation and Illumination
• Animation Techniques

13 Non-Photorealistic and Illustrative Techniques
[30 min]

• Basic NPR Shading Models
• Contour Rendering
• Surface and Isosurface Curvature
• Deferred Shading of Isosurfaces
• Curvature-Based Isosurface Illustration

14 Large Volume Data [30 min]

• Memory Performance Considerations
• Bricking
• Multi-Resolution Volume Rendering
• Build-in Texture Compression
• Wavelet Compression
• Packing Techniques
• Vector Quantization

5. Course History

We have presented a course with a subset of these topics be-
fore at SIGGRAPH 2002 (with a narrow focus on scientific
visualization) and at SIGGRAPH 2004. The course notes
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have evolved into a book that was published by A K Pe-
ters, Ltd. at SIGGRAPH 2006. For 2006, the course has been
redesigned from a didactic point of view and the scope has
been again broadened to keep it state-of-the-art and take into
account the growing interest of game developers and the vi-
sual arts communities.

6. Course Presenter Information

Klaus Engel,
Siemens Corporate Research, Princeton, USA,
klaus.engel@scr.siemens.com

Klaus Engel is a researcher for Siemens Corporate Re-
search, Inc. in Princeton/NJ. He received a PhD from the
University of Stuttgart in 2002 and a Diplom (Masters)
of computer science from the University of Erlangen in
1997. He has presented the results of his research at inter-
national conferences and in journals, including IEEE Vi-
sualization, Visualization Symposium, IEEE Transactions
on Visualization and Computer Graphics and Graphics
Hardware. In 2000 and 2001, his papers Interactive Vol-
ume Rendering on Standard PC Graphics Hardware Us-
ing Multi-Textures and Multi-Stage Rasterization and "High-
Quality Pre-Integrated Volume Rendering Using Hardware-
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visualization, he was working in the area of computer games
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Joe recently finished his Ph.D. in computer science at the
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Synthesis". His research interests include scientific visual-
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graphics to several scientific projects in medicine, geology
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Real-Time Volume Graphics

This tutorial covers high-quality real-time volume rendering techniquesAbstract
for consumer graphics hardware. In addition to the traditional field of
scientific visualization, the interest in applying these techniques for visual
arts and real-time rendering is steadily growing. This tutorial covers
applications for science, visual arts and entertainment, such as medical
visualization, visual effects and computer games. Participants will learn
techniques for harnessing the power of consumer graphics hardware and
high-level shading languages for real-time rendering of volumetric data
and effects. Beginning with a short theoretical part, the basic texture-
based approaches are explained. These basic algorithms are improved
and expanded incrementally throughout the tutorial. Special attention
is paid to latest developments in GPU ray casting.

We will cover local and global illumination, scattering, and partic-
ipating media. GPU optimization techniques are explained in detail,
such as pre-integration, space leaping, occlusion queries, early ray termi-
nation and levelof- detail. We will show efficient techniques for clipping
and voxelization, and for rendering implicit surfaces. Participants will
learn to deal with large volume data, segmented volumes and to apply
higher-order filtering, and non-photorealistic techniques to improve im-
age quality. Further presentations cover multi-dimensional classification
and transfer function design, as well as techniques for volumetric mod-
eling, animation and deformation. Participants are provided with code
samples covering important implementation details usually omitted in
publications.

Participants should have a working knowledge of computer graphics andPrerequisites
some background in graphics programming APIs such as OpenGL or
DirectX. Familiarity with GPU shading languages is helpful, but not
necessarily required.

Intermediate.Level of
Difficulty
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Course Syllabus

MORNING

Theoretical Background [Ch. Rezk Salama] 9:00 – 9:15
• Physical Model of Light Transport
• Volume Rendering Integral

GPU Programming [Ch. Rezk Salama] 9:15 – 9:30
• The Graphics Pipeline
• Vertex and Fragment Processing
• The High-Level Shading Language Cg

Basic GPU-Based Volume Rendering [Ch. Rezk Salama] 9:30 – 10:00
• 2D Texture-Based Volume Rendering
• 3D Texture-Based Approach
• 2D Multi-Textures-Based Approach
• Vertex Programs

GPU-Based Ray-Casting [M. Hadwiger] 10:00-10:30
• Basic Structure of Ray-Casting
• Performance Aspects and Acceleration Methods
• Object-Order Empty Space Skipping
• Isosurface Ray-Casting
• Ray-Casting of Unstructured Grids

COFFEE BREAK 10:30-11:00
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Transfer Functions [K. Engel]11:00-11:30
• Classification
• Pre- versus Post-Classification
• Pre-Integrated Transfer Functions

Local Volume Illumination [Ch. Rezk Salama]11:30-12:00
• Gradient-Based Illumination
• Local Illumination Models
• Pre-Computed Gradients
• On-the-fly Gradients
• Environment Mapping

Global Volume Illumination [J. Kniss]12:00-12:30
• Volumetric Shadows
• Phase Functions
• Translucent Volume Lighting

LUNCH BREAK12:30-14:00

AFTERNOON

Improving Performance [K. Engel]14:00-14:20
• Swizzling of Volume Data
• Asynchronous Data Upload
• Empty Space Leaping
• Occlusion Culling
• Early Ray-Termination
• Deferred Shading
• Image Downscaling

Improving Image Quality [K. Engel]14:20-14:40
• Sampling Artifacts
• Filtering Artifacts
• Classification Artifacts
• Shading Artifacts
• Blending Artifacts
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Advanced Transfer Functions [J. Kniss] 14:40-15:00
• Image Data Versus Scalar Field
• Multi-Dimensional Transfer Functions
• Engineering Multi-Dimensional Transfer Functions
• Transfer Function User Interfaces

Game Developer’s Guide to Volume Graphics [M. Hadwiger] 15:00-15:30
• Volume Graphics in Games
• Differences From Stand-Alone Volume Rendering
• A Simple Volume Ray-Caster for Games
• Volumetric Effects and Simulation
• Integrating Volumes with Scene Shadowing and Lighting

COFFEE BREAK 15:30-16:00

Volume Modeling, Deformation and Animation [Ch. Rezk Salama] 16:00-16:30
• Rendering into a 3D Texture
• Voxelization
• Procedural Modeling
• Compositing and Image Processing
• Deformation in Model Space
• Deformation in Texture Space
• Deformation and Illumination
• Animation Techniques

Non-Photorealistic and Illustrative Techniques [M. Hadwiger] 16:30-17:00
• Basic NPR Shading Models
• Contour Rendering
• Surface and Isosurface Curvature
• Deferred Shading of Isosurfaces
• Curvature-Based Isosurface Illustration

Large Volume Data [K. Engel] 17:00-17:30
• Memory Performance Considerations
• Bricking
• Multi-Resolution Volume Rendering
• Built-in Texture Compression
• Wavelet Compression
• Packing Techniques
• Vector Quantization
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Volume Rendering

In traditional modeling, 3D objects are created using surface representa-
tions such as polygonal meshes, NURBS patches or subdivision surfaces.
In the traditional modeling paradigm, visual properties of surfaces, such
as color, roughness and reflectance, are modeled by means of a shading
algorithm, which might be as simple as the Phong model or as complex
as a fully-featured shift-variant anisotropic BRDF. Since light transport
is evaluated only at points on the surface, these methods usually lack
the ability to account for light interaction which is taking place in the
atmosphere or in the interior of an object.

Contrary to surface rendering, volume rendering [28, 9] describes a
wide range of techniques for generating images from three-dimensional
scalar data. These techniques are originally motivated by scientific visu-
alization, where volume data is acquired by measurement or numerical
simulation of natural phenomena. Typical examples are medical data
of the interior of the human body obtained by computed tomography
(CT) or magnetic resonance imaging (MRI). Other examples are com-
putational fluid dynamics (CFD), geological and seismic data, as well
as abstract mathematical data such as 3D probability distributions of
pseudo random numbers.

With the evolution of efficient volume rendering techniques, volumet-
ric data is becoming more and more important also for visual arts and
computer games. Volume data is ideal to describe fuzzy objects, such
as fluids, gases and natural phenomena like clouds, fog, and fire. Many
artists and researchers have generated volume data synthetically to sup-
plement surface models, i.e., procedurally [11], which is especially useful
for rendering high-quality special effects.

Although volumetric data are more difficult to visualize than sur-
faces, it is both worthwhile and rewarding to render them as truly three-
dimensional entities without falling back to 2D subsets.
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Figure 1.1: Voxels constituting a volumetric object after it has been discretized.

1.1 Volume Data

Discrete volume data set can be thought of as a simple three-dimensional
array of cubic elements (voxels1) [22], each representing a unit of space
(Figure 1.1).

Although imagining voxels as tiny cubes is easy and might help to vi-
sualize the immediate vicinity of individual voxels, it is more appropriate
to identify each voxel with a sample obtained at a single infinitesimally
small point from a continuous three-dimensional signal

f(~x) ∈ IR with ~x ∈ IR3. (1.1)

Provided that the continuous signal is band-limited with a cut-off-
frequency νs, sampling theory allows the exact reconstruction, if the sig-
nal is evenly sampled at more than twice the cut-off-frequency (Nyquist
rate). However, there are two major problems which prohibit the ideal
reconstruction of sampled volume data in practise.

• Ideal reconstruction according to sampling theory requires the con-
volution of the sample points with a sinc function (Figure 1.2a) in
the spacial domain. For the one-dimensional case, the sinc function
reads

sinc(x) =
sin(πx)

πx
. (1.2)

The three-dimensional version of this function is simply obtained
by tensor-product. Note that this function has infinite extent.
Thus, for an exact reconstruction of the original signal at an arbi-
trary position all the sampling points must be considered, not only

1volume elements
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those in a local neighborhood. This turns out to be computation-
ally intractable in practise.

• Real-life data in general does not represent a band-limited signal.
Any sharp boundary between different materials represents a step
function which has infinite extent in the frequency domain. Sam-
pling and reconstruction of a signal which is not band-limited will
produce aliasing artifacts.

In order to reconstruct a continuous signal from an array of voxels
in practise the ideal 3D sinc filter is usually replaced by either a box
filter (Figure 1.2a) or a tent filter (Figure 1.2b). The box filter calcu-
lates nearest-neighbor interpolation, which results in sharp discontinu-
ities between neighboring cells and a rather blocky appearance. Trilinear
interpolation, which is achieved by convolution with a 3D tent filter, rep-
resents a good trade-off between computational cost and smoothness of
the output signal.

In Part 7 of these course notes, we will investigate higher-order recon-
struction methods for GPU-based real-time volume rendering [17, 18].

1.2 Direct Volume Rendering

In comparison to the indirect methods, which try to extract a surface de-
scription from the volume data in a preprocessing step, direct methods
display the voxel data by evaluating an optical model which describes
how the volume emits, reflects, scatters, absorbs and occludes light [30].
The scalar value is virtually mapped to physical quantities which describe
light interaction at the respective point in 3D-space. This mapping is

0 11 -1
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Figure 1.2: Reconstruction filters for one-dimensional signals. In practise, box
filter(A) and tent filter(B) are used instead of the ideal sinc-filter(C).
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termed classification (see Part 4 of the course notes) and is usually per-
formed by means of a transfer function. The physical quantities are then
used for images synthesis. Different optical models for direct volume
rendering are described in section 1.2.1.

During image synthesis the light propagation is computed by inte-
grating light interaction effects along viewing rays based on the optical
model. The corresponding integral is known as the volume rendering
integral, which is described in section 1.2.2. Naturally, under real-world
conditions this integral is solved numerically. Optionally, the volume
can be shaded according to the illumination from external light sources,
which is the topic of Part 3.

1.2.1 Optical Models

Almost every direct volume rendering algorithms regards the volume
as a distribution of light-emitting particles of a certain density. These
densities are more or less directly mapped to RGBA quadruplets for com-
positing along the viewing ray. This procedure, however, is motivated
by a physically-based optical model.

The most important optical models for direct volume rendering are
described in a survey paper by Nelson Max [30], and we only briefly
summarize these models here:

• Absorption only. The volume is assumed to consist of cold,
perfectly black particles that absorb all the light that impinges on
them. They do not emit, or scatter light.

• Emission only. The volume is assumed to consist of particles
that only emit light, but do not absorb any, since the absorption
is negligible.

• Absorption plus emission. This optical model is the most com-
mon one in direct volume rendering. Particles emit light, and oc-
clude, i.e., absorb, incoming light. However, there is no scattering
or indirect illumination.

• Scattering and shading/shadowing. This model includes scat-
tering of illumination that is external to a voxel. Light that is scat-
tered can either be assumed to impinge unimpeded from a distant
light source, or it can be shadowed by particles between the light
and the voxel under consideration.
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• Multiple scattering. This sophisticated model includes support
for incident light that has already been scattered by multiple par-
ticles.

The optical model used in all further considerations will be the one of
particles simultaneously emitting and absorbing light. The volume ren-
dering integral described in the following section also assumes this par-
ticular optical model. More sophisticated models account for scattering
of light among particles of the volume itself, and also include shadowing
and self-shadowing effects.

1.2.2 The Volume Rendering Integral

Every physically-based volume rendering algorithms evaluates the vol-
ume rendering integral in one way or the other, even if viewing rays are
not employed explicitly by the algorithm. The most basic volume ren-
dering algorithm is ray-casting, covered in Section 1.2.3. It might be
considered as the “most direct” numerical method for evaluating this in-
tegral. More details are covered below, but for this section it suffices to
view ray-casting as a process that, for each pixel in the image to render,
casts a single ray from the eye through the pixel’s center into the vol-
ume, and integrates the optical properties obtained from the encountered
volume densities along the ray.

Note that this general description assumes both the volume and the
mapping to optical properties to be continuous. In practice, of course, the
volume data is discrete and the evaluation of the integral is approximated
numerically. In combination with several additional simplifications, the
integral is usually substituted by a Riemann sum.

We denote a ray cast into the volume by ~x(t), and parameterize it by
the distance t from the eye. The scalar value corresponding to a position
along the ray is denoted by s

(
~x(t)

)
. If we employ the emission-absorption

model, the volume rendering equation integrates absorption coefficients
κ(s) (accounting for the absorption of light), and emissive colors c(s)
(accounting for radiant energy actively emitted) along a ray. To keep
the equations simple, we denote emission c and absorption coefficients κ
as function of the eye distance t instead of the scalar value s:

c(t) := c
(
s
(
~x(t)

))
and κ(t) := κ

(
s
(
~x(t)

))
(1.3)

Figure 1.3 illustrates the idea of emission and absorption. An amount
of radiant energy, which is emitted at a distance t = d along the viewing
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Figure 1.3: An amount of radiant energy emitted at t = d is partially absorbed
along the distance d.

ray is continuously absorbed along the distance d until it reaches the eye.
This means that only a portion c′ of the original radiant energy c emitted
at t = d will eventually reach the eye. If there is a constant absorption
κ = const along the ray, c′ amounts to

c′ = c · e−κd . (1.4)

However, if absorption κ is not constant along the ray, but itself depend-
ing on the position, the amount of radiant energy c′ reaching the eye
must be computed by integrating the absorption coefficient along the
distance d

c′ = c · e−
R d
0 κ(t̂) dt̂ . (1.5)

The integral over the absorption coefficients in the exponent,

τ(d1, d2) =

∫ d2

d1

κ(t̂) dt̂ (1.6)

is also called the optical depth. In this simple example, however, light was
only emitted at a single point along the ray. If we want to determine the
total amount of radiant energy C reaching the eye from this direction,
we must take into account the emitted radiant energy from all possible
positions t along the ray:

C =

∫ ∞

0

c(t) · e−τ(0, t) dt (1.7)

In practice, this integral is evaluated numerically through either back-to-
front or front-to-back compositing (i.e., alpha blending) of samples along
the ray, which is most easily illustrated in the method of ray-casting.
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1.2.3 Ray-Casting

Ray-casting [28] is an image-order direct volume rendering algorithm,
which uses straight-forward numerical evaluation of the volume rendering
integral (Equation 1.7). For each pixel of the image, a single ray2 is cast
into the scene. At equi-spaced intervals along the ray the discrete volume
data is resampled, usually using tri-linear interpolation as reconstruction
filter. That is, for each resampling location, the scalar values of eight
neighboring voxels are weighted according to their distance to the actual
location for which a data value is needed. After resampling, the scalar
data value is mapped to optical properties via a lookup table, which
yields an RGBA quadruplet that subsumes the corresponding emission
and absorption coefficients [28] for this location. The solution of the
volume rendering integral is then approximated via alpha blending in
either back-to-front or front-to-back order.

The optical depth τ (Equation 1.6), which is the cumulative absorp-
tion up to a certain position ~x(t) along the ray, can be approximated by
a Riemann sum

τ(0, t) ≈ τ̃(0, t) =

bt/∆tc∑
i=0

κ(i ·∆t) ∆t (1.8)

with ∆t denoting the distance between successive resampling locations.
The summation in the exponent can immediately be substituted by a
multiplication of exponentiation terms:

e−τ̃(0, t) =

bt/∆tc∏
i=0

e−κ(i·∆t)∆t (1.9)

Now, we can introduce opacity A, well-known from alpha blending, by
defining

Ai = 1− e−κ(i·∆t)∆t (1.10)

and rewriting equation 1.9 as:

e−τ̃(0, t) =

bt/dc∏
i=0

(1− Aj) (1.11)

This allows opcaity Ai to be used as an approximation for the absorption
of the i-th ray segment, instead of absorption at a single point.

2assuming super-sampling is not used for anti-aliasing
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Similarly, the emitted color of the i-th ray segment can be approxi-
mated by:

Ci = c(i ·∆t) ∆t (1.12)

Having approximated both the emissions and absorptions along a ray,
we can now state the approximate evaluation of the volume rendering
integral as (denoting the number of samples by n = bT/δtc):

C̃ =
n∑

i=0

Ci

i−1∏
j=0

(1− Ai) (1.13)

Equation 1.13 can be evaluated iteratively by alpha blending in either
back-to-front, or front-to-back order.

1.2.4 Alpha Blending

Equation 1.13 can be computed iteratively in back-to-front order by step-
ping i from n− 1 to 0:

C ′
i = Ci + (1− Ai)C

′
i+1 (1.14)

A new value C ′
i is calculated from the color Ci and opacity Ai at the cur-

rent location i, and the composite color C ′
i+1 from the previous location

i + 1. The starting condition is C ′
n = 0.

Note that in all blending equations, we are using opacity-weighted
colors [40], which are also known as associated colors [6]. An opacity-
weighted color is a color that has been pre-multiplied by its associated
opacity. This is a very convenient notation, and especially important
for interpolation purposes. It can be shown that interpolating color
and opacity separately leads to artifacts, whereas interpolating opacity-
weighted colors achieves correct results [40].

The following alternative iterative formulation evaluates equa-
tion 1.13 in front-to-back order by stepping i from 1 to n:

C ′
i = C ′

i−1 + (1− A′
i−1)Ci (1.15)

A′
i = A′

i−1 + (1− A′
i−1)Ai (1.16)

New values C ′
i and A′

i are calculated from the color Ci and opacity Ai at
the current location i, and the composited color C ′

i−1 and opacity A′
i−1

from the previous location i − 1. The starting condition is C ′
0 = 0 and

A′
0 = 0.
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Note that front-to-back compositing requires tracking alpha values,
whereas back-to-front compositing does not. In a hardware implementa-
tion, this means that destination alpha must be supported by the frame
buffer (i.e., an alpha valued must be stored in the frame buffer, and
it must be possible to use it as multiplication factor in blending op-
erations), when front-to-back compositing is used. However, since the
major advantage of front-to-back compositing is an optimization com-
monly called early ray termination, where the progression along a ray is
terminated as soon as the cumulative alpha value reaches 1.0, and this
is difficult to perform in hardware, GPU-based volume rendering usually
uses back-to-front compositing.

1.2.5 The Shear-Warp Algorithm

The shear-warp algorithm [26] is a very fast approach for evaluating
the volume rendering integral. In contrast to ray-casting, no rays are
cast back into the volume, but the volume itself is projected slice by
slice onto the image plane. This projection uses bi-linear interpolation
within two-dimensional slices, instead of the tri-linear interpolation used
by ray-casting.

The basic idea of shear-warp is illustrated in figure 1.4 for the case of
orthogonal projection. The projection does not take place directly on the
final image plane, but on an intermediate image plane, called the base
plane, which is aligned with the volume instead of the viewport. Further-
more, the volume itself is sheared in order to turn the oblique projection
direction into a direction that is perpendicular to the base plane, which
allows for an extremely fast implementation of this projection. In such a
setup, an entire slice can be projected by simple two-dimensional image
resampling. Finally, the base plane image has to be warped to the final
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Figure 1.4: The shear-warp algorithm for orthogonal projection.
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Figure 1.5: The shear-warp algorithm for perspective projection.

image plane. Note that this warp is only necessary once per generated
image, not once per slice. Perspective projection can be accommodated
similarly, by scaling the volume slices, in addition to shearing them, as
depicted in figure 1.5.

The clever approach outlined above, together with additional opti-
mizations, like run-length encoding the volume data, is what makes the
shear-warp algorithm probably the fastest software method for volume
rendering. Although originally developed for software rendering, we will
encounter a principle similar to shear-warp in hardware volume render-
ing, specifically in the chapter on 2D-texture based hardware volume
rendering (3.2). When 2D textures are used to store slices of the vol-
ume data, and a stack of such slices is texture-mapped and blended in
hardware, bi-linear interpolation is also substituted for tri-linear interpo-
lation, similarly to shear-warp. This is once again possible, because this
hardware method also employs object-aligned slices. Also, both shear-
warp and 2D-texture based hardware volume rendering require three
slice stacks to be stored, and switched according to the current viewing
direction. Further details are provided in chapter 3.2.

1.3 Maximum Intensity Projection

Maximum intensity projection (MIP) is a variant of direct volume ren-
dering, where, instead of compositing optical properties, the maximum
value encountered along a ray is used to determine the color of the corre-
sponding pixel. An important application area of such a rendering mode,
are medical data sets obtained by MRI (magnetic resonance imaging)
scanners. Such data sets usually exhibit a significant amount of noise
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that can make it hard to extract meaningful iso-surfaces, or define trans-
fer functions that aid the interpretation. When MIP is used, however,
the fact that within angiography data sets the data values of vascular
structures are higher than the values of the surrounding tissue, can be
exploited easily for visualizing them.

In graphics hardware, MIP can be implemented by using a maximum
operator when blending into the frame buffer, instead of standard alpha
blending. Figure 1.6 shows a comparison of direct volume rendering and
MIP used with the same data set.

A B

Figure 1.6: A comparison of direct volume rendering (A), and maximum intensity
projection (B).



Graphics Hardware

For hardware accelerated rendering, a virtual scene is modeled by the
use of planar polygons. The process of converting such a set of poly-
gon into a raster image is called display traversal. The majority of 3D
graphics hardware implement the display traversal as a fixed sequence of
processing stages [15]. The ordering of operations is usually described as
a graphics pipeline displayed in Figure 2.1. The input of such a pipeline
is a stream of vertices, which are initially generated from the description
of a virtual scene by decomposing complex objects into planar polygons
(tessellation). The output is the raster image of the virtual scene, that
can be displayed on the screen.

The last couple of years have seen a breathtaking evolution of con-
sumer graphics hardware from traditional fixed-function architectures
(up to 1998) over configurable pipelines to fully programmable floating-
point graphics processors with more than 100 million transistors in 2002.
With forthcoming graphics chips, there is still a clear trend towards
higher programmability and increasing parallelism.

2.1 The Graphics Pipeline

For a coarse overview the graphics pipeline can be divided into three
basic tiers.

Geometry Processing computes linear transformations of the incom-
ing vertices in the 3D spacial domain such as rotation, translation
and scaling. Groups of vertices from the stream are finally joined
together to form geometric primitives (points, lines, triangles and
polygons).

Rasterization decomposes the geometric primitives into fragments.
Each fragment corresponds to a single pixel on the screen. Raster-
ization also comprises the application of texture mapping.
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Figure 2.1: The standard graphics pipeline for display traversal.

Fragment Operations are performed subsequently to modify the frag-
ment’s attributes, such as color and transparency. Several tests are
applied that finally decide whether the incoming fragment is dis-
carded or displayed on the screen.

For the understanding of the new algorithms that have been devel-
oped within the scope of this thesis, it is important to exactly know the
ordering of operations in this graphics pipeline. In the following sections,
we will have a closer look at the different stages.

2.1.1 Geometry Processing

The geometry processing unit performs so-called per-vertex operations,
i.e operations that modify the incoming stream of vertices. The geometry
engine computes linear transformations, such as translation, rotation and
projection of the vertices. Local illumination models are also evaluated
on a per-vertex basis at this stage of the pipeline. This is the reason
why geometry processing is often referred to as transform & light unit
(T&L). For a detailed description the geometry engine can be further
divided into several subunits, as displayed in Figure 2.2.

Modeling Transformation: Transformations which are used to
arrange objects and specify their placement within the virtual scene
are called modeling transformations. They are specified as a 4× 4
matrix using homogenous coordinates.

Viewing Transformation: A transformation that is used to specify
the camera position and viewing direction is termed viewing trans-
formation. This transformation is also specified as a 4× 4 matrix.
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Figure 2.2: Geometry processing as part of the standard graphics pipeline.

Modeling and viewing matrices can be pre-multiplied to form a
single modelview matrix.

Lighting/Vertex Shading: After the vertices are correctly placed
within the virtual scene, the Phong model [33] for local illumina-
tion is calculated for each vertex by default. On a programmable
GPU, an alternative illumination model can be implemented using
a vertex shader. Since illumination requires information about nor-
mal vectors and the final viewing direction, it must be performed
after modeling and viewing transformation.

Primitive Assembly: Rendering primitives are generated from the in-
coming vertex stream. Vertices are connected to lines, lines are
joined together to form polygons. Arbitrary polygons are usually
tessellated into triangles to ensure planarity and to enable interpo-
lation in barycentric coordinates.

Clipping: Polygon and line clipping is applied after primitive assembly
to remove those portions of geometry which are is not displayed on
the screen.

Perspective Transformation: Perspective transformation computes
the projection of the geometric primitive onto the image plane.

Perspective transformation is the final step of the geometry process-
ing stage. All operations that are located after the projection step are
performed within the two-dimensional space of the image plane.

2.1.2 Rasterization

Rasterization is the conversion of geometric data into fragments. Each
fragment corresponds to a square pixel in the resulting image. The
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Figure 2.3: Rasterization as part of the standard graphics pipeline.

process of rasterization can be further divided into three different sub-
tasks as displayed in Figure 2.3.

Polygon rasterization: In order to display filled polygons, rasteriza-
tion determines the set of pixels that lie in the interior of the poly-
gon. This also comprises the interpolation of visual attributes such
as color, illumination terms and texture coordinates given at the
vertices.

Texture Fetch: Textures are two-dimensional raster images, that are
mapped onto the polygon according to texture coordinates speci-
fied at the vertices. For each fragment these texture coordinates
must be interpolated and a texture lookup is performed at the re-
sulting coordinate. This process generates a so-called texel, which
refers to an interpolated color value sampled from the texture map.
For maximum efficiency it is also important to take into account
that most hardware implementations maintain a texture cache.

Fragment Shading: If texture mapping is enabled, the obtained texel
is combined with the interpolated primary color of the fragment in
a user-specified way. After the texture application step the color
and opacity values of a fragment are final.

2.1.3 Fragment Operations

The fragments produced by rasterization are written into the frame
buffer, which is a set of pixels arranged as a two-dimensional array. The
frame buffer also contains the portion of memory that is finally displayed
on the screen. When a fragment is written, it modifies the values already
contained in the frame buffer according to a number of parameters and
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Figure 2.4: Fragment operations as part of the standard graphics pipeline.

conditions. The sequence of tests and modifications is termed fragment
operations and is displayed in Figure 2.4.

Alpha Test: The alpha test allows the discarding of a fragment con-
ditional on the outcome of a comparison between the fragments
opacity α and a specified reference value.

Stencil Test: The stencil test allows the application of a pixel stencil
to the visible frame buffer. This pixel stencil is contained in a so-
called stencil-buffer, which is also a part of the frame buffer. The
stencil test conditionally discards a fragment, if the stencil buffer
is set for the corresponding pixel.

Depth Test: Since primitives are generated in arbitrary sequence, the
depth test provides a mechanism for correct depth ordering of par-
tially occluded objects. The depth value of a fragment is therefore
stored in a so-called depth buffer. The depth test decides whether
an incoming fragment is occluded by a fragment that has been
previously written by comparing the incoming depth value to the
value in the depth buffer. This allows the discarding of occluded
fragments.

Alpha Blending: To allow for semi-transparent objects, alpha blending
combines the color of the incoming fragment with the color of the
corresponding pixel currently stored in the frame buffer.

After the scene description has completely passed through the graph-
ics pipeline, the resulting raster image contained in the frame buffer can
be displayed on the screen or written to a file. Further details on the ren-
dering pipeline can be found in [36, 15]. Different hardware architectures
ranging from expensive high-end workstations to consumer PC graphics
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boards provide different implementations of this graphics pipeline. Thus,
consistent access to multiple hardware architectures requires a level of
abstraction, that is provided by an additional software layer called appli-
cation programming interface (API). We are using OpenGL [36] as API
and Cg as shading language throughout these course notes, although
every described algorithm might be as well implemented using DirectX
and any high-level shading language.

2.2 Programmable GPUs

The first step towards a fully programmable GPU was the introduc-
tion of configurable rasterization and vertex processing in late 1999.
Prominent examples are NVidia’s register combiners or ATI’s fragment
shader OpenGL extensions. Unfortunately, it was not easy to access
these vendor-specific features in a uniform way, back then.

The major innovation provided by today’s graphics processors is the
introduction of true programmability. This means that user-specified
micro-programs can be uploaded to graphics memory and executed di-
rectly by the geometry stage (vertex shaders) and the rasterization unit
(fragment or pixel shaders). Such programs must be written in an
assembler-like language with the limited instruction set understood by
the graphics processor (MOV, MAD, LERP and so on). However, high-level
shading languages which provide an additional layer of abstraction were
introduced quickly to access the capabilities of different graphics chips in
an almost uniform way. Popular examples are Cg introduced by NVidia,
which is derived from the Stanford Shading Language. The high-level
shading language (HLSL) provided by Microsoft’s DirectX 8.0 uses a
similar syntax. The terms vertex shader and vertex program, and also
fragment shader and fragment program have the same meaning, respec-
tively.

2.2.1 Vertex Shaders

Vertex shaders are user-written programs which substitute major parts
of the fixed-function computation of the geometry processing unit. They
allow customization of the vertex transformation and the local illumina-
tion model. The vertex program is executed once per vertex: Every time
a vertex enters the pipeline, the vertex processor receives an amount of
data, executes the vertex program and writes the attributes for exactly
one vertex. The vertex shader cannot create vertices from scratch or
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remove incoming vertices from the pipeline.

The programmable vertex processor is outlined in Figure 2.5. For
each vertex the vertex program stored in the instruction memory is ex-
ecuted once. In the loop outlined in the diagram, an instruction is first
fetched and decoded. The operands for the instruction are then read
from input registers which contain the original vertex attributes or from
temporary registers. All instruction are vector operations, which are
performed on xyzw-components for homogenous coordinates or RGBA-
quadruplets for colors. Mapping allows the programmer to specify, du-
plicate and exchange the indices of the vector components (a process
known as swizzling) and also to negate the respective values. If all the
operands are correctly mapped the instruction is eventually executed
and the result is written to temporary or output registers. At the end
of the loop the vertex processor checks whether or not there are more
instructions to be executed, and decides to reenter the loop or terminate
the program by emitting the output registers to the next stage in the
pipeline.

A simple example of a vertex shader is shown in the following code
snippet. Note that in this example the vertex position is passed as a
2D coordinate in screen space and no transformations are applied. The
vertex color is simply set to white.

// A simple vertex shader

struct myVertex {
float4 position : POSITION;

float4 color : COLOR;

};

myVertex main (float2 pos : POSITION)

{
myVertex result;

result.position = float4(pos,0,1);

result.color = float4(1, 1, 1, 1);

return result;

}
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Figure 2.5: The programmable vertex processing unit executes a vertex program
stored in local video memory. During the execution a limited set of input-, output-
and temporary registers is accessed.

2.2.2 Fragment Shaders

Pixel shaders refer to programs, which are executed by the rasterization
unit. They are used to compute the final color and depth values of a
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fragment. The fragment program is executed once per fragment: Every
time that polygon rasterization creates a fragment, the fragment proces-
sor receives a fixed set of attributes, such as colors, normal vectors or
texture coordinates, executes the fragment program and writes the final
color and z-value of the fragment to the output registers.

The diagram for the programmable fragment processor is shown in
Figure 2.6. For each fragment the fragment program stored in instruction
memory is executed once. The instruction loop of the fragment processor
is similar to the vertex processor, with a separate path for texture fetch
instructions. At first an instruction is first fetched and decoded. The
operands for the instruction are read from the input registers which con-
tain the fragments attributes or from temporary registers. The mapping
step again computes the component swizzling and negation.

If the current instruction is a texture fetch instruction, the fragment
processor computes the texture address with respect to texture coordi-
nates and level of detail. Afterwards, the texture unit fetches all the
texels which are required to interpolate a texture sample at the give co-
ordinates. These texels are finally filtered to interpolate the final texture
color value, which is then written to an output or temporary register.

If the current instruction is not a texture fetch instruction, it is
executed with the specified operands and the result is written to the
respective registers. At the end of the loop the fragment processor
checks whether or not there are more instructions to be executed, and
decides to reenter the loop or terminate the program by emitting the
output registers to the fragment processing stage. As an example, the
most simple fragment shader is displayed in the following code snippet:

// The most simple fragment shader

struct myOutput {
float4 color : COLOR;

};

myOutput main (float4 col : COLOR)

{
myOutput result;

result.color = col;

return result;

}
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For more information on the programmable vertex and fragment
processors, please refer to the Cg programming guide [14]

Figure 2.6: For each fragment, the programmable fragment processor executes
a micro-program. In addition to reading the input and temporary registers, the
fragment processor is able to generate filtered texture samples from the texture
images stored in vide memory.
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Sampling a Volume Via
Texture Mapping

As illustrated in the introduction to these course notes, the most funda-
mental operation in volume rendering is sampling the volumetric data
(Section 1.1). Since this data is already discrete, the sampling task per-
formed during rendering is actually a resampling, which means that the
continuous signal must reconstructed approximately as necessary to sam-
pling it again in screen space. The ray casting approach, that we have
examined in the previous part is a classical image-order approach, be-
cause it divides the resulting image into pixels and then computes the
contribution of the entire volume to each pixel.

Image-order approaches, however, are contrary to the way rasteri-
zation hardware generates images. Graphics hardware usually uses an
object-order approach, which divides the object into primitives and then
calculates which set of pixels are influenced by a primitive.

As we have seen in the introductory part, the two major operations
related to volume rendering are interpolation and compositing, both of

Figure 3.1: Rendering a volume by compositing a stack of 2D texture-mapped slices
in back-to-front order. If the number of slices is too low, they become visible as
artifacts.
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which can efficiently be performed on modern graphics hardware. Tex-
ture mapping operations basically interpolate a texture image to obtain
color samples at locations that do not coincide with the original grid.
Texture mapping hardware is thus an ideal candidate for performing
repetitive resampling tasks. Compositing individual samples can eas-
ily be done by exploiting fragment operations in hardware. The major
question with regard to hardware-accelerated volume rendering is how
to achieve the same – or a sufficiently similar – result as the ray-casting
algorithm.

In order to perform volume rendering in an object-order approach, the
resampling locations are generated by rendering a proxy geometry with
interpolated texture coordinates (usually comprised of slices rendered as
texture-mapped quads), and compositing all the parts (slices) of this
proxy geometry from back to front via alpha blending. The volume data
itself is stored in 2D- or 3D-texture images. If only a density volume is
required, it can be stored in a single 3D texture with each texel corre-
sponding to a single voxel. If the volume is too large to fit into texture
memory, it must be split onto several 3D textures. Alternatively, volume
data can be stored in a stack of 2D textures, each of which corresponds
to an axis-aligned slice through the volume.

There are several texture-based approaches which mainly differ in the
way the proxy geometry is computed.

Polygon Slices Final Image3D Texture

Figure 3.2: View-aligned slices used as proxy geometry with 3D texture mapping.
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Polygon Slices Final Image2D Textures

Figure 3.3: Object-aligned slices used as proxy geometry with 2D texture mapping.

3.1 Proxy Geometry

The first thing we notice if we want to perform volume rendering with
rasterization hardware is, that hardware does not support any volumet-
ric rendering primitives. Supported primitives comprise points, lines and
planar polygons. In consequence, if we want to utilize rasterization hard-
ware for volume rendering, we have to convert our volumetric representa-
tion into rendering primitives supported by hardware. A set of hardware
primitives representing out volumetric object is called a proxy geometry.
Ideally, with respect to the traditional modeling paradigm of separating
shape from appearance, the shape of the proxy geometry should not have
any influence on the final image, because only the appearance, i.e. the
texture, is important.

The conceptually simplest example of proxy geometry is a set of
view-aligned slices (quads that are parallel to the viewport, usually also
clipped against the bounding box of the volume, see Figure 3.2), with
3D texture coordinates that are interpolated over the interior of these
slices, and ultimately used to sample a single 3D texture map at the cor-
responding locations. 3D textures, however, often incur a performance
penalty in comparison to 2D textures. This penalty is mostly due texture
caches which are optimized for 2D textures.

One of the most important things to remember about the proxy geom-
etry is that it is intimately related to the type of texture (2D or 3D) used.
When the orientation of slices with respect to the original volume data
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(i.e., the texture) can be arbitrary, 3D texture mapping is mandatory,
since a single slice would have to fetch data from several different 2D
textures. If, however, the proxy geometry is aligned with the original
volume data, texture fetch operations for a single slice can be guaran-
teed to stay within the same 2D texture. In this case, the proxy geometry
is comprised of a set of object-aligned slices (see Figure 3.3), for which
2D texture mapping capabilities suffice. The following sections describe
different kinds of proxy geometry and the corresponding resampling ap-
proaches in more detail.

3.2 2D-Textured Object-Aligned Slices

If only 2D texture mapping capabilities are used, the volume data must
be stored in several two-dimensional texture maps. A major implication
of the use of 2D textures is that the hardware is only able to resample
two-dimensional subsets of the original volumetric data.

The proxy geometry in this case is a stack of planar slices, all of which
are required to be aligned with one of the major axes of the volume
(either the x, y, or z axis), mapped with 2D textures, which in turn
are resampled by the hardware-native bi-linear interpolation [7]. The
reason for the requirement that slices must be aligned with a major axis
is that each time a slice is rendered, only two dimensions are available for
texture coordinates, and the third coordinate must therefore be constant.
Now, instead of being used as an actual texture coordinate, the third
coordinate selects the texture to use from the stack of slices, and the

image planeimage planeimage planeimage plane image plane

B EA C D

Figure 3.4: Switching the slice stack of object-aligned slices according to the viewing
direction. Between image (C) and (D) the slice stack used for rendering has been
switched.
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CA B

Figure 3.5: The location of sampling points changes abruptly (C), when switching
from one slice stack (A), to the next (B).

other two coordinates become the actual 2D texture coordinates used
for rendering the slice. Rendering proceeds from back to front, blending
one slice on top of the other (see Figure 3.3).

Although a single stack of 2D slices can stores the entire volume, one
slice stack does not suffice for rendering. When the viewpoint is rotated
about the object, it would be possible that imaginary viewing rays pass
through the object without intersecting any slices polygons. This cannot
be prevented with only one slice stack. The solution for this problem is
to actually store three slice stacks, one for each of the major axes. During
rendering, the stack with slices most parallel to the viewing direction is
chosen (see Figure 3.4).

Under-sampling typically occurs most visibly along the major axis of
the slice stack currently in use, which can be seen in Figure 3.1. Ad-
ditional artifacts become visible when the slice stack in use is switched
from one stack to the next. The reason for this is that the actual loca-
tions of sampling points change abruptly when the stacks are switched,
which is illustrated in Figure 3.5. To summarize, an obvious drawback
of using object-aligned 2D slices is the requirement for three slice stacks,
which consume three times the texture memory a single 3D texture would
consume. When choosing a stack for rendering, an additional consider-
ation must also be taken into account: After selecting the slice stack, it
must be rendered in one of two directions, in order to guarantee actual
back-to-front rendering. That is, if a stack is viewed from the back (with
respect to the stack itself), it has to be rendered in reversed order, to
achieve the desired result.

The following code fragment (continued on the next page) shows how
both of these decisions, depending on the current viewing direction with
respect to the volume, could be implemented:
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GLfloat modelview matrix[16];

GLfloat modelview rotation matrix[16];

// obtain the current viewing transformation

// from the OpenGL state

glGet( GL MODELVIEW MATRIX, modelview matrix );

// extract the rotation from the matrix

GetRotation( modelview matrix, modelview rotation matrix );

// rotate the initial viewing direction

GLfloat view vector[3] = {0.0f, 0.0f, -1.0f};
MatVecMultiply( modelview rotation matrix, view vector );

// find the largest absolute vector component

int max component = FindAbsMaximum( view vector );

// render slice stack according to viewing direction

switch ( max component ) {
case X:

if ( view vector[X] > 0.0f )

DrawSliceStack PositiveX();

else

DrawSliceStack NegativeX();

break;

case Y:

if ( view vector[Y] > 0.0f )

DrawSliceStack PositiveY();

else

DrawSliceStack NegativeY();

break;

case Z:

if ( view vector[Z] > 0.0f )

DrawSliceStack PositiveZ();

else

DrawSliceStack NegativeZ();

break;

}
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Opacity Correction

In texture-based volume rendering, alpha blending is used to compute
the compositing of samples along a ray. As we have seen in Section 1.2.4,
this alpha blending operation is actually numerical approximation to the
volume rendering integral. The distance ∆t (see Equation 1.8) between
successive resampling locations most of all depends on the distance be-
tween adjacent slices.

The sampling distance ∆t is easiest to account for if it is constant
for all “rays” (i.e., pixels). In this case, it can be incorporated into the
numerical integration in a preprocess, which is usually done by simply
adjusting the transfer function lookup table accordingly.

In the case of view-aligned slices the slice distance is equal to the
sampling distance, which is also equal for all “rays” (i.e., pixels). Thus,
it can be accounted for in a preprocess.

When 2D-textured slices are used, however, ∆t not only depends on
the slice distance, but also on the viewing direction. This is shown in
Figure 3.6 for two adjacent slices. The sampling distance is only equal to
the slice distance when the stack is viewed perpendicularly to its major
axis (d3). When the view is rotated, the sampling distance increases.
For this reason, the lookup table for numerical integration (the transfer
function table, see Part 5 ) has to be updated whenever the viewing
direction changes. The correct opacity α̃ for a sampling distance ∆t
amounts to

α̃ = 1− (1− α)
∆t
∆s (3.1)

with α referring to the opacity at the original sampling rate ∆s which is
accounted for in the transfer function.

This opacity correction is usually done in an approximate manner,
by simply multiplying the stored opacities by the reciprocal of the cosine
between the viewing vector and the stack direction vector:

// determine cosine via dot-product

// vectors must be normalized!

float cor cos = DotProduct3( view vector, slice normal);

// determine correction factor

float opac cor factor =

( cor cos != 0.0f ) ? (1.0f / cor cos) : 1.0f;

Note that although this correction factor is used for correcting opacity
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Figure 3.6: The distance between adjacent sampling points depends on the viewing
angle.

values, it must also be applied to the respective RGB colors, if these are
stored as opacity-weighted colors, which usually is the case [40].

Discussion

The biggest advantage of using object-aligned slices and 2D textures for
volume rendering is that 2D textures and the corresponding bi-linear
interpolation are a standard feature of all 3D graphics hardware archi-
tectures, and therefore this approach can practically be implemented
anywhere. Also, the rendering performance is extremely high, since bi-
linear interpolation requires only a lookup and weighting of four texels
for each resampling operation.

The major disadvantages of this approach are the high memory re-
quirements, due to the three slice stacks that are required, and the re-
striction to using two-dimensional, i.e., usually bi-linear, interpolation
for texture reconstruction. The use of object-aligned slice stacks also
leads to sampling and stack switching artifacts, as well as inconsistent
sampling rates for different viewing directions. A brief summary is con-
tained in table 3.1.

2D-Textured Object-Aligned Slices

Pros Cons

⊕ very high performance ª high memory requirements
⊕ high availability ª bi-linear interpolation only

ª sampling and switching ar-
tifacts
ª inconsistent sampling rate

Table 3.1: Summary of volume rendering with object-aligned slices and
2D textures.
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3.3 2D Slice Interpolation

Figure 3.1 shows a fundamental problem of using 2D texture-mapped
slices as proxy geometry for volume rendering. In contrast to view-
aligned 3D texture-mapped slices (section 3.4), the number of slices can-
not be changed easily, because each slice corresponds to exactly one slice
from the slice stack. Furthermore, no interpolation between slices is per-
formed at all, since only bi-linear interpolation is used within each slice.
Because of these two properties of that algorithm, artifacts can become
visible when there are too few slices, and thus the sampling frequency
is too low with respect to frequencies contained in the volume and the
transfer function.

In order to increase the sampling frequency without enlarging the
volume itself (e.g., by generating additional interpolated slices before
downloading them to the graphics hardware), inter-slice interpolation
has to be performed on-the-fly by the graphics hardware itself. On the
graphics boards hardware which support multi-texturing, this can be
achieved by binding two textures simultaneously instead of just one when
rendering the slice, and performing linear interpolation between these
two textures [34].

In order to do this, we have to specify fractional slice positions, where
the integers correspond to slices that actually exist in the source slice
stack, and the fractional part determines the position between two ad-
jacent slices. The number of rendered slices is now independent of the
number of slices contained in the volume, and can be adjusted arbitrarily.

For each slice to be rendered, two textures are activated, which corre-
spond to the two neighboring original slices from the source slice stack.
The fractional position between these slices is used as weight for the
inter-slice interpolation. This method actually performs tri-linear inter-
polation within the volume. Standard bi-linear interpolation is employed
for each of the two neighboring slices, and the interpolation between the
two obtained results altogether achieves tri-linear interpolation.

On-the-fly interpolation of intermediate slices can be implemented as
a simple fragment shader in Cg, as shown in the following code snippet.
The two source slices that enclose the position of the slice to be rendered
are configured as texture0 and texture1, respectively. The two calls to
the function tex2D interpolate both texture images bi-linearly, using the
x- and y- components of the texture coordinate. The third linear inter-
polation step which is necessary for trilinear interpolation is performed
subsequently using the lerp function and the z- component of the tex-
ture coordinate. The final fragment contains the linearly interpolated
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result corresponding to the specified fractional slice position.

// Cg fragment shader for 2D slice interpolation

half4 main (float3 texcoords : TEXCOORD0,

uniform sampler2D texture0,

uniform sampler2D texture1) : COLOR0

{
float4 t0 = tex2D(texture0,texcoords.xy);

float4 t1 = tex2D(texture1,texcoords.xy);

return (half4) lerp(t0, t1, texcoords.z);

}

Discussion

The biggest advantage of using object-aligned slices together with on-the-
fly interpolation between two 2D textures for volume rendering is that
this method combines the advantages of using only 2D textures with the
capability of arbitrarily controlling the sampling rate, i.e., the number of
slices. Although not entirely comparable to tri-linear interpolation in a
3D texture, the combination of bi-linear interpolation and a second linear
interpolation step ultimately allows tri-linear interpolation in the volume.
The necessary features of consumer hardware, i.e., multi-texturing with
at least two simultaneous textures, and the ability to interpolate between
them, are widely available on consumer graphics hardware.

Disadvantages inherent to the use of object-aligned slice stacks still
apply, though. For example, the undesired visible effects when switching
slice stacks, and the memory consumption of the three slice stacks. A

2D Slice Interpolation

Pros Cons

⊕ high performance ª high memory requirements
⊕ tri-linear interpolation ª switching effects
⊕ available on consumer hard-

ware
ª inconsistent sampling rate

for perspective projection

Table 3.2: Summary of 2D slice interpolation volume rendering.
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Figure 3.7: Sampling locations on view-aligned slices for parallel (A), and perspec-
tive projection (B), respectively.

brief summary is contained in table 3.2.

3.4 3D-Textured View-Aligned Slices

In many respects, 3D-textured view-aligned slices are the simplest type
of proxy geometry (see Figure 3.2). In this case, the volume is stored
in a single 3D texture map, and 3D texture coordinates are interpolated
over the interior of the proxy geometry polygons. These texture coor-
dinates are then used directly for indexing the 3D texture map at the
corresponding location, and thus resampling the volume.

The big advantage of 3D texture mapping is that it allows slices to
be oriented arbitrarily within the 3D texture domain, i.e., the volume
itself. Thus, it is natural to use slices aligned with the viewport, since
such slices closely mimic the sampling used by the ray-casting algorithm.
They offer constant distance between samples for orthogonal projection
and all viewing directions, as outlined in Figure 3.7(A). Since the graph-
ics hardware is already performing completely general tri-linear interpo-
lation within the volume for each resampling location, proxy slices are
not bound to original slices at all. The number of slices can easily be
adjusted on-the-fly and without any restrictions. In case of perspective
projection, the distance between successive samples is different for adja-
cent pixels, however, which is depicted in Figure 3.7(B). Artifacts caused
by a not entirely accurate opacity compensation, however, are only no-
ticeable for a large field-of-view angle of the viewing frustum. If this is
the case, spherical shells must be employed instead of planar slices as
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described in Section 3.5.

Discussion

The biggest advantage of using view-aligned slices and 3D textures for
volume rendering is that hardware-accelerated tri-linear interpolation is
employed for resampling the volume at arbitrary locations. Apart from
better image quality compared to bi-linear interpolation, this allows the
rendering of slices with arbitrary orientation with respect to the volume,
making it possible to maintain a constant sampling rate for all pixels and
viewing directions. Additionally, a single 3D texture suffices for storing
the entire volume, if there is enough texture memory available.

The major disadvantage of this approach is that tri-linear interpola-
tion is significantly slower than bi-linear interpolation, due to the require-
ment for using eight texels for every single output sample, and texture
fetch patterns that decrease the efficiency of texture caches. A brief
summary is contained in table 3.3.

3.5 3D-Textured Spherical Shells

All types of proxy geometry that use planar slices (irrespective of whether
they are object-aligned, or view-aligned), share the basic problem that
the distance between successive samples used to determine the color of
a single pixel is different from one pixel to the next in the case of per-
spective projection. This fact is illustrated in Figure 3.7(B).

When incorporating the sampling distance in the numerical approx-
imation of the volume rendering integral, this pixel-to-pixel difference
cannot easily be accounted for. A possible solution to this problem is
the use of spherical shells instead of planar slices [27]. In order to attain
a constant sampling distance for all pixels using perspective projection,
the proxy geometry has to be spherical, i.e., be comprised of concentric

3D-Textured View-Aligned Slices

Pros Cons

⊕ high performance ª availability still limited
⊕ tri-linear interpolation ª inconsistent sampling rate

for perspective projection

Table 3.3: Summary of 3D-texture based volume rendering.
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spherical shells. In practice, these shells are generated by clipping tes-
sellated spheres against both the viewing frustum and the bounding box
of the volume data.

The major drawback of using spherical shells as proxy geometry is
that they are more complicated to setup than planar slice stacks, and
they also require more geometry to be rendered, i.e., parts of tessellated
spheres.

This kind of proxy geometry is only useful when perspective pro-
jection is used, and can only be used in conjunction with 3D texture
mapping. Furthermore, the artifacts of pixel-to-pixel differences in sam-
pling distance are often hardly noticeable, and planar slice stacks usually
suffice even when perspective projection is used.

3.6 Slices vs. Slabs

An inherent problem of using slices as proxy geometry is that the number
of slices directly determines the (re)sampling frequency, and thus the
quality of the rendered result. Especially when high frequencies (“sharp
edges”) are contained in the employed transfer functions, the required
number of slices can become very high. Even though the majority of
texture based implementations allow the number of slices to be increased
on demand via interpolation done entirely on the graphics hardware, the
fill rate demands increase dramatically.

A very elegant solution to this problem arrives with the use of slabs
instead of slices, together with pre-integrated classification [12], which
is described in more detail in Part 7 of these course notes.. A slab
is not a new geometrical primitive, but simply the space between two
adjacent slices. During rendering, the solution of the integral of ray
segments which intersect this space is properly accounted for by looking
up a pre-computed solution. This solution is a function of the scalar
values of both the back slice to the front slice. It is obtained from a
pre-integrated lookup table stored as a 2D texture. Geometrically, a
slab can be rendered as a slice with its immediately neighboring slice
(either in the back, or in front) projected onto it. For further details on
pre-integrated volume rendering, we refer you to Part 7.



Components of a
Hardware Volume Renderer

This chapter presents an overview of the major components of a texture-
based hardware volume renderer from an implementation-centric point
of view. The goal of this chapter is to convey a feeling of where the
individual components of such a renderer fit in, and in which order they
are executed. Details are covered in subsequent chapters. The compo-
nent structure presented here is modeled after separate portions of code
that can be found in an actual implementation of a volume renderer for
consumer graphics cards. They are listed in the order in which they are
executed by the application code, which is not necessarily the same as
they are “executed” by the graphics hardware itself!

4.1 Volume Data Representation

Volume data has to be stored in memory in a suitable format, usually
already prepared for download to the graphics hardware as textures.
Depending on the type of proxy geometry used, the volume can either
be stored in a single block, when view-aligned slices together with a
single 3D texture are used, or split up into three stacks of 2D slices,
when object-aligned slices together with multiple 2D textures are used.
Usually, it is convenient to store the volume only in a single 3D array,
which can be downloaded as a single 3D texture, and extract data for
2D textures on demand.

Depending on the complexity of the rendering mode, classification,
and illumination, there may even be several volumes containing all the
information needed. Likewise, the actual storage format of voxels de-
pends on the rendering mode and the type of volume, e.g., whether the
volume stores densities, gradients, gradient magnitudes, and so on. Con-
ceptually different volumes may also be combined into the same actual
volume, if possible. For example, combining gradient and density data
in RGBA voxels.
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Although it is often the case that the data representation issue is
part of a preprocessing step, this is not necessarily so, since new data
may have to be generated on-the-fly when the rendering mode or specific
parameters are changed.

This component is usually executed only once at startup, or only ex-
ecuted when the rendering mode changes.

4.2 Volume Textures

In order for the graphics hardware to be able to access all the required
volume information, the volume data must be downloaded and stored in
textures. At this stage, a translation from data format (external format)
to texture format (internal format) might take place, if the two are not
identical.

This component is usually executed only once at startup, or only ex-
ecuted when the rendering mode changes.

How and what textures containing the actual volume data have to be
downloaded to the graphics hardware depends on a number of factors,
most of all the rendering mode and type of classification, and whether
2D or 3D textures are used.

The following example code fragment downloads a single 3D texture.
The internal format is set to GL INTENSITY8, which means that a single
8 bit value is stored for each texel. For uploading 2D textures instead of
3D textures , similar commands have to be used to create all the slices
of all three slice stacks.

// bind 3D texture target

glBindTexture( GL TEXTURE 3D, volume texture name 3d );

glTexParameteri( GL TEXTURE 3D, GL TEXTURE WRAP S, GL CLAMP );

glTexParameteri( GL TEXTURE 3D, GL TEXTURE WRAP T, GL CLAMP );

glTexParameteri( GL TEXTURE 3D, GL TEXTURE WRAP R, GL CLAMP );

glTexParameteri( GL TEXTURE 3D, GL TEXTURE MAG FILTER, GL LINEAR );

glTexParameteri( GL TEXTURE 3D, GL TEXTURE MIN FILTER, GL LINEAR );

// download 3D volume texture for pre-classification

glTexImage3D( GL TEXTURE 3D, 0, GL INTENSITY8,

size x, size y, size z,

GL COLOR INDEX, GL UNSIGNED BYTE, volume data 3d );
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4.3 Transfer Function Tables

Transfer functions are usually represented by color lookup tables. They
can be one-dimensional or multi-dimensional, and are usually stored as
simple arrays.

Transfer functions may be downloaded to the hardware in basically
one of two formats: In the case of pre-classification, transfer functions
are downloaded as texture palettes for on-the-fly expansion of palette
indexes to RGBA colors. If post-classification is used, transfer func-
tions are downloaded as 1D, 2D, or even 3D textures (the latter two
for multi-dimensional transfer functions). If pre-integration is used, the
transfer function is only used to calculate a pre-integration table, but
not downloaded to the hardware itself. Then, this pre-integration table
is downloaded instead. This component might even not be used at all,
which is the case when the transfer function has already been applied to
the volume textures themselves, and they are already in RGBA format.

This component is usually only executed when the transfer function
or rendering mode changes.

The following code fragment demonstrated the use
of the OpenGL extensions GL ext paletted texture und
GL ext shared texture palette for pre-classification. It uploads
a single texture palette that can be used in conjunction with an indexed
volume texture for pre-classification. The respective texture must have
an internal format of GL COLOR INDEX8 EXT. The same code can be used
for rendering with either 2D, or 3D slices, respectively:

// download color table for pre-classification

glColorTableEXT(

GL SHARED TEXTURE PALETTE EXT,

GL RGBA8,

256 * 4,

GL RGBA,

GL UNSIGNED BYTE,

opacity corrected palette );

If post-classification is used instead, the same transfer function table can
be used, but it must be uploaded as a 1D texture instead:
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// bind 1D texture target

glBindTexture( GL TEXTURE 1D, palette texture name );

glTexParameteri( GL TEXTURE 1D, GL TEXTURE WRAP S, GL CLAMP );

glTexParameteri( GL TEXTURE 1D, GL TEXTURE MAG FILTER, GL LINEAR );

glTexParameteri( GL TEXTURE 1D, GL TEXTURE MIN FILTER, GL LINEAR );

// download 1D transfer function texture for post-classification

glTexImage1D( GL TEXTURE 1D, 0, GL RGBA8, 256 * 4, 0,

GL RGBA, GL UNSIGNED BYTE, opacity corrected palette );

If pre-integration is used, a pre-integration texture is uploaded as a 2D
texture instead of the transfer function table (see Part 7).

4.4 Fragment Shader Configuration

Before the volume can be rendered using a specific rendering mode, the
fragment shader has to be configured accordingly. How textures are
stored and what they contain is crucial for the fragment shader. Likewise,
the format of the shaded fragment has to correspond to what is expected
by the alpha blending stage (section 4.5).

This component is usually executed once per frame, i.e., the entire
volume can be rendered with the same fragment shader configuration.

The code that determines the operation of the fragment shader
is highly dependent on the underlying hardware architecture (sec-
tion 2.2.2). The code for configuring the fragment shader also de-
pends on the shading language that is used. The following code snippet
shows how to create a fragment shader using Cg with the multivendor
ARB fragment program OpenGL profile:

// create the fragment shader

CGprogram myShader = cgCreateProgram(context,

CG SOURCE,

programString,

CG PROFILE ARBFP1,

"main",

args);

cgGLLoadProgram(myShader);
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If the fragment shader is loaded to the graphics board, it can be
bound and enabled as many times as necessary:

// bind the fragment shader

cgGLBindProgram(myShader);

cgGLEnableProfile(CG PROFILE ARBFP1);

// use the shader

cgGLDisableProfile(CG PROFILE ARBFP1);

4.5 Blending Mode Configuration

The blending mode determines how a fragment is combined with the
corresponding pixel in the frame buffer. In addition to the configuration
of alpha blending, we also configure alpha testing in this component, if it
is required for discarding fragments to display non-polygonal iso-surfaces.
The configuration of the blending stage and the alpha test usually stays
the same for an entire frame.

This component is usually executed once per frame, i.e., the entire
volume can be rendered with the same blending mode configuration.

For direct volume rendering, the blending mode is more or less
standard alpha blending. Since color values are usually pre-multiplied
by the corresponding opacity (also known as opacity-weighted [40], or
associated [6] colors), the factor for multiplication with the source color
is one:

// enable blending

glEnable( GL BLEND );

// set blend function

glBlendFunc( GL ONE, GL ONE MINUS SRC ALPHA );

For non-polygonal iso-surfaces, alpha testing has to be configured
for selection of fragments corresponding to the desired iso-values. The
comparison operator for comparing a fragment’s density value with the
reference value is usually GL GREATER, or GL LESS, since using GL EQUAL

is not well suited to producing a smooth surface appearance (not many
interpolated density values are exactly equal to a given reference value).
Alpha blending must be disabled for this rendering mode. More de-
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tails about rendering non-polygonal iso-surfaces, especially with regard
to illumination, can be found in Part 4

// disable blending

glDisable(GL BLEND );

// enable alpha testing

glEnable(GL ALPHA TEST );

// configure alpha test function

glAlphaFunc(GL GREATER, isovalue );

For maximum intensity projection, an alpha blending equation of
GL MAX EXT must be supported, which is either a part of the imaging
subset, or the separate GL EXT blend minmax extension. On consumer
graphics hardware, querying for the latter extension is the best way to
determine availability of the maximum operator.

// enable blending

glEnable(GL BLEND );

// set blend function to identity (not really necessary)

glBlendFunc(GL ONE,GL ONE );

// set blend equation to max

glBlendEquationEXT(GL MAX EXT );

4.6 Texture Unit Configuration

The use of texture units corresponds to the inputs required by the frag-
ment shader. Before rendering any geometry, the corresponding textures
have to be bound. When 3D textures are used, the entire configuration
of texture units usually stays the same for an entire frame. In the case
of 2D textures, the textures that are bound change for each slice.

This component is usually executed once per frame, or once per slice,
depending on whether 3D, or 2D textures are used.

The following code fragment shows an example for configuring two
texture units for interpolation of two neighboring 2D slices from the z
slice stack (section 3.3):
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// configure texture unit 1

glActiveTextureARB(GL TEXTURE1 ARB );

glBindTexture( GL TEXTURE 2D, tex names stack z[sliceid1]);

glEnable( GL TEXTURE 2D );

// configure texture unit 0

glActiveTextureARB( GL TEXTURE0 ARB );

glBindTexture( GL TEXTURE 2D, tex names stack z[sliceid0]);

glEnable( GL TEXTURE 2D );

4.7 Proxy Geometry Rendering

The last component of the execution sequence outlined in this chapter, is
getting the graphics hardware to render geometry. This is what actually
causes the generation of fragments to be shaded and blended into the
frame buffer, after resampling the volume data accordingly.

This component is executed once per slice, irrespective of whether 3D
or 2D textures are used.

Explicit texture coordinates are usually only specified when render-
ing 2D texture-mapped, object-aligned slices. In the case of view-aligned
slices, texture coordinates can easily be generated automatically, by ex-
ploiting OpenGL’s texture coordinate generation mechanism, which has
to be configured before the actual geometry is rendered:

// configure texture coordinate generation

// for view-aligned slices

float plane x[] = { 1.0f, 0.0f, 0.0f, 0.0f };
float plane y[] = { 0.0f, 1.0f, 0.0f, 0.0f };
float plane z[] = { 0.0f, 0.0f, 1.0f, 0.0f };
glTexGenfv( GL S, GL OBJECT PLANE, plane x );

glTexGenfv( GL T, GL OBJECT PLANE, plane y );

glEnable( GL TEXTURE GEN S );

glEnable( GL TEXTURE GEN T );

glEnable( GL TEXTURE GEN R );

The following code fragment shows an example of rendering a single
slice as an OpenGL quad. Texture coordinates are specified explicitly,
since this code fragment is intended for rendering a slice from a stack of
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object-aligned slices with z as its major axis:

// render a single slice as quad (four vertices)

glBegin( GL QUADS );

glTexCoord2f( 0.0f, 0.0f );

glVertex3f( 0.0f, 0.0f, axis pos z );

glTexCoord2f( 0.0f, 1.0f );

glVertex3f( 0.0f, 1.0f, axis pos z );

glTexCoord2f( 1.0f, 1.0f );

glVertex3f( 1.0f, 1.0f, axis pos z );

glTexCoord2f( 1.0f, 0.0f );

glVertex3f( 1.0f, 0.0f, axis pos z );

glEnd();

Vertex coordinates are specified in object-space, and transformed to
view-space using the modelview matrix. In the case of object-aligned
slices, all the glTexCoord2f() commands can simply be left out. If
multi-texturing is used, a simple vertex program can be exploited for
generating the texture coordinates for the additional units, instead of
downloading the same texture coordinates to multiple units. On the
Radeon 8500 it is also possible to use the texture coordinates from unit
zero for texture fetch operations at any of the other units, which solves
the problem of duplicate texture coordinates in a very simple way, with-
out requiring a vertex shader or wasting bandwidth.
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Introduction

The volume rendering of abstract data values requires the assignment
of optical properties to the data values to create a meaningful image.
It is the role of the transfer function to assign these optical properties,
the result of which has profound effect on the quality of the rendered
image. While the transformation from data values to optical properties
is typically a simple table lookup, the creation of a good transfer function
to create the table can be a difficult task.

In order to make the discussion of transfer function design more un-
derstandable, we dissect it into two distinct parts; Classification and
Optical Properties. The first chapter focuses on the conceptual role of
the transfer function as a feature classifier. The following chapter covers
the second half of the transfer function story; how optical properties are
assigned to the classified features for image synthesis.



Classification and
Feature Extraction

Classification in the context of volume graphics is defined as ”the process
of identifying features of interest based on abstract data values”. In typ-
ical volume graphics applications, especially volume visualization, this is
effectively a pattern recognition problem in which patterns found in raw
data are assigned to specific categories. The field of pattern recognition
is mature and widely varying, and an overview of general theory and
popular methods can be found in the classic text by Duda, Hart, and
Stork [10]. Traditionally, the transfer function is not thought of as a
feature classifier. Rather, it is simply viewed as a function that takes the
domain of the input data and transforms it to the range of red, green,
blue, and alpha. However, transfer functions are used to assign specific
patterns to ranges of values in the source data that correspond to fea-
tures of interest, for instance bone and soft tissue in CT data, whose
unique visual quality in the final image can be used to identify these
regions.

Why do we need a transfer function anyway? Why not store the
optical properties in the volume directly? There are at least two good
answers to these questions. First, it is inefficient to update the entire
volume and reload it each time the transfer function changes. It is much
faster to load the smaller lookup table and let the hardware handle the
transformation from data value to optical properties. Second, evaluating
the transfer function (assigning optical properties) at each sample prior
to interpolation can cause visual artifacts. This approach is referred to
as pre-classification and can cause significant artifacts in the final ren-
dering, especially when there is a sharp peak in the transfer function.
An example of pre-classification can be seen on the left side of Figure 6.1
while post-classification (interpolating the data first, then assigning op-
tical properties) using the exact same data and transfer function is seen
on the right.
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Figure 6.1: Pre-classification (left) verses post-classification (right)

6.1 The Transfer Function as a Feature

Classifier

Often, the domain of the transfer function is 1D, representing a scalar
data value such as radio-opacity in CT data. A single scalar data value,
however, need not be the only quantity used to identify the difference
between materials in a transfer function. For instance, Levoy’s volume
rendering model [28] includes a 2D transfer function, where the domain is
scalar data value cross gradient magnitude. In this case, data value and
gradient magnitude are the axes of a multi-dimensional transfer func-
tion. Adding the gradient magnitude of a scalar dataset to the transfer
function can improve the ability of the transfer function to distinguish
materials from boundaries. Figures 6.2(c) and 6.2(d) show how this kind
of 2D transfer function can help isolate the leaf material from the bark
material of the Bonsai Tree CT dataset. It is important to consider
any and all data values or derived quantities that may aid in identifying
key features of interest. Other derived quantities, such as curvature or
shape metrics [23], can help define important landmarks for generating
technical illustration-like renderings as seen in Figure 6.3. See [24] for
examples of more general multi-dimensional transfer functions applied to
multivariate data. Examples of visualizations generated using a transfer
function based on multiple independent (not derived) scalar data values
can be seen in Figure 6.4.

6.2 Guidance

While the transfer function itself is simply a function taking the input
data domain to the rgba range, the proper mapping to spectral space
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Figure 6.2: 1D (a and c) verses 2D (b and d) transfer functions.

Figure 6.3: Using curvature and shape measures as axes of the transfer function.
The upper small images show silhouette edges, the lower small images show ridge
valley emphasis, and the large images show these combined into the final illustration.
Images courtesy of Gordon Kindlman, use by permission.

(optical properties) is not intuitive and varies based on the range of
values of the source data as well as the desired goal of the final volume
rendering. Typically, the user is presented with a transfer function editor
that visually demonstrates changes to the transfer function. A naive
transfer function editor may simply give the user access to all of the
optical properties directly as a series of control points that define piece-
wise linear (or higher order) ramps. This can be seen in Figure 6.5.
This approach can make specifying a transfer function a tedious trial
and error process. Naturally, adding dimensions to the transfer function
can further complicate a user interface.

The effectiveness of a transfer function editor can be enhanced with
features that guide the user with data specific information. He et al. [20]
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Figure 6.4: General multi-dimensional transfer functions, using multiple primary
data values. A is a numerical weather simulation using temperature, humidity, and
pressure. B is a color cryosection dataset using red, green, and blue visible light. C
is a MRI scan using proton density, T1, and T2 pulse sequences.

Figure 6.5: An arbitrary transfer function showing how red, green, blue, and alpha
vary as a function of data value f(x,y,z) .

generated transfer functions with genetic algorithms driven either by
user selection of thumbnail renderings, or some objective image fitness
function. The purpose of this interface is to suggest an appropriate
transfer function to the user based on how well the user feels the rendered
images capture the important features.

The Design Gallery [29] creates an intuitive interface to the entire
space of all possible transfer functions based on automated analysis and
layout of rendered images. This approach parameterizes the space of all
possible transfer functions. The space is stochastically sampled and a
volume rendering is created. The images are then grouped based on sim-
ilarity. While this can be a time consuming process, it is fully automated.
Figure 6.6 shows an example of this user interface.

A more data-centric approach is the Contour Spectrum [2], which
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Figure 6.6: The Design Gallery transfer function interface.

visually summarizes the space of isosurfaces in terms of data metrics like
surface area and mean gradient magnitude. This guides the choice of iso-
value for isosurfacing, and also provides information useful for transfer
function generation. Another recent paper [1] presents a novel transfer
function interface in which small thumbnail renderings are arranged ac-
cording to their relationship with the spaces of data values, color, and
opacity. This kind of editor can be seen in Figure 6.2.

One of the most simple and effective features that a transfer function
interface can include is a histogram. A histogram shows a user the be-
havior of data values in the transfer function domain. In time, a user can
learn to read the histogram and quickly identify features. Figure 6.8(b)
shows a 2D joint histogram of the Chapel Hill CT dataset. The arches
identify material boundaries and the dark blobs located at the bottom
identify the materials themselves.

Volume probing is another way to help the user identify features.
This approach gives the user a mechanism for pointing at a feature in the
spatial domain. The values at this point are then presented graphically
in the transfer function interface, indicating to the user the ranges of
data values which identify the feature. This approach can be tied to a
mechanism that automatically sets the transfer function based on the
data values at the being feature pointed at. This technique is called
dual-domain interaction [24]. The action of this process can be seen in
Figure 6.9.
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Figure 6.7: A thumbnail transfer function interface.

Often it is helpful to identify discrete regions in the transfer func-
tion domain that correspond to individual features. Figure 6.10 shows
an integrated 2D transfer function interface. This type of interface con-
structs a transfer function using direct manipulation widgets. Classi-
fied regions are modified by manipulating control points. These control
points change high level parameters such as position, width, and optical
properties. The widgets define a specific type of classification function
such as a Gaussian ellipsoid, inverted triangle, or linear ramp. This
approach is advantageous because it allows the user to focus more on
feature identification and less on the shape of the classification function.
We have also found it useful to allow the user the ability to paint directly
into the transfer function domain.

6.3 Summary

In all, our experience has shown that the best transfer functions are
specified using an iterative process. When a volume is first encountered,
it is important to get an immediate sense of the structures contained in
the data. In many cases, a default transfer function can achieve this.
By assigning higher opacity to higher gradient magnitudes and varying
color based on data value, as seen in Figure 6.11, most of the important
features of the datasets are visualized. The process of volume probing
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A B C

(a) A 1D histogram. The black re-
gion represents the number of data
value occurrences on a linear scale,
the grey is on a log scale. The col-
ored regions (A,B,C) identify basic
materials.

A B C
D E

F
f '

Data Value

(b) A log-scale 2D joint histogram.
The lower image shows the location
of materials (A,B,C), and material
boundaries (D,E,F).

B

C

E

D

F

(c) A volume rendering showing all of
the materials and boundaries identified
above, except air (A), using a 2D trans-
fer function.

Figure 6.8: Material and boundary identification of the Chapel Hill CT Head with
data value alone(a) and data value and gradient magnitude (f ’)(b). The basic mate-
rials captured by CT, air (A), soft tissue (B), and bone (C) can be identified using a
1D transfer function as seen in (a). 1D transfer functions, however, cannot capture
the complex combinations of material boundaries; air and soft tissue boundary (D),
soft tissue and bone boundary (E), and air and bone boundary (F) as seen in (b)
and (c).
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Figure 6.9: Probing and dual-domain interaction.

Figure 6.10: Classification widgets

allows the user to identify the location of data values in the transfer
function domain that correspond to specific features. Dual-domain in-
teraction allows the user to set the transfer function by simply pointing
at a feature. By having simple control points on discrete classification
widgets the user can manipulate the transfer function directly to expose
a feature in the best way possible. By iterating through this process of
exploration, specification, and refinement, a user can efficiently specify
a transfer function that produces a high quality visualization.
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Figure 6.11: The “default” transfer function.



Implementation

The evaluation of the transfer function is computationally expensive and
time consuming, and when implemented on the CPU the rate of display
is limited. Moving the transfer function evaluation onto graphics hard-
ware allows volume rendering to occur at interactive rates. Evaluating a
transfer function using graphics hardware effectively amounts to an ar-
bitrary function evaluation of data value via a table lookup. This can be
accomplished in two ways, using a user defined lookup table and using
dependent texture reads.

The first method uses the glColorTable() to store a user de-
fined 1D lookup table, which encodes the transfer function. When
GL COLOR TABLE is enabled, this function replaces an 8 bit texel
with the RGBA components at that 8 bit value’s position in the lookup
table. Some high end graphics cards permit lookups based on 12 bit tex-
els. On some commodity graphics cards, such as the NVIDIA GeForce,
the color table is an extension known as paletted texture. On these
platforms, the use of the color table requires that the data texture have
an internal format of GL COLOR INDEX* EXT, where * is the
number of bits of precision that the data texture will have (1,2,4,or 8).
Other platforms may require that the data texture’s internal format be
GL INTENSITY8.

The second method uses dependent texture reads. A dependent
texture read is the process by which the color components from one tex-
ture are converted to texture coordinates and used to read from a second
texture. In volume rendering, the first texture is the data texture and
the second is the transfer function. The GL extensions and function
calls that enable this feature vary depending on the hardware, but their
functionality is equivalent. On older GeForce3 and GeForce4, this func-
tionality is part of the Texture Shader extensions. On the ATI Radeon
8500, dependent texture reads are part of the Fragment Shader exten-
sion. Fortunately, modern hardware platforms, GeforceFX and Radeon
9700 and later, provide a much more intuitive and simple mechanism to
perform dependent texture reads via the ARB Fragment Program
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extension. While dependent texture reads can be slower than using a
color table, they are much more flexible. Dependent texture reads can
be used to evaluate multi-dimensional transfer functions, or they can be
used for pre-integrated transfer function evaluations. Since the transfer
function can be stored as a regular texture, dependent texture reads also
permit transfer functions that define more than four optical properties,
achieved by using multiple transfer function textures. When dealing with
transfer function domains with greater than two dimensions, it is simplest
to decompose the transfer function domain into a separable product of
multiple 1D or 2D transfer functions, or designing the transfer function
as a procedural function based on simple mathematical primitives [25].



User Interface Tips

Figure 6.5 shows an example of an arbitrary transfer function. While
this figure shows RGBα varying as piece-wise linear ramps, the transfer
function can also be created using more continuous segments. The goal
in specifying a transfer function is to isolate the ranges of data values, in
the transfer function domain, that correspond to features, in the spatial
domain. Figure 8.1 shows an example transfer function that isolates the
bone in the Visible Male’s skull. On the left, we see the transfer function.
The alpha ramp is responsible for making the bone visible, whereas the
color is constant for all of the bone. The problem with this type of
visualization is that the shape and structure is not readily visible, as
seen on the right side of Figure 8.1.One solution to this problem involves
a simple modification of the transfer function, called Faux shading. By
forcing the color to ramp to black proportionally to the alpha ramping
to zero, we can effectively create silhouette edges in the resulting volume
rendering, as seen in Figure 8.2. On the left, we see the modified transfer
function. In the center, we see the resulting volume rendered image.
Notice how much more clear the features are in this image. This approach

Figure 8.1: An example transfer function for the bone of the Visible Male (left),
and the resulting rendering (right).
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works because the darker colors are only applied at low opacities. This
means that they will only accumulate enough to be visible when a viewing
ray grazes a classified feature, as seen on the right side of Figure 8.2.
While this approach may not produce images as compelling as surface
shaded or shadowed renderings as seen in Figure 8.3, it is advantageous
because it doesn’t require any extra computation in the rendering phase.

Figure 8.2: Faux shading. Modify the transfer function to create silhouette edges.

Figure 8.3: Surface shading.
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Basic Local Illumination

Local illumination models allow the approximation of the light intensity
reflected from a point on the surface of an object. This intensity is eval-
uated as a function of the (local) orientation of the surface with respect
to the position of a point light source and some material properties. In
comparison to global illumination models indirect light, shadows and
caustics are not taken into account. Local illumination models are sim-
ple, easy to evaluate and do not require the computational complexity
of global illumination. The most popular local illumination model is the
Phong model [33, 4], which computes the lighting as a linear combination
of three different terms, an ambient, a diffuse and a specular term,

IPhong = Iambient + Idiffuse + Ispecular.

Ambient illumination is modeled by a constant term,

Iambient = ka = const.

Without the ambient term parts of the geometry that are not directly lit
would be completely black. In the real world such indirect illumination
effects are caused by light intensity which is reflected from other surfaces.

Diffuse reflection refers to light which is reflected with equal in-
tensity in all directions (Lambertian reflection). The brightness of a dull,
matte surface is independent of the viewing direction and depends only
on the angle of incidence ϕ between the direction ~l of the light source
and the surface normal ~n. The diffuse illumination term is written as

Idiffuse = Ip kd cos ϕ = Ip kd (~l • ~n).

Ip is the intensity emitted from the light source. The surface property kd

is a constant between 0 and 1 specifying the amount of diffuse reflection
as a material specific constant.
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Specular reflection is exhibited by every shiny surface and causes so-
called highlights. The specular lighting term incorporates the vector ~v
that runs from the object to the viewer’s eye into the lighting compu-
tation. Light is reflected in the direction of reflection ~r which is the
direction of light ~l mirrored about the surface normal ~n. For efficiency
the reflection vector ~r can be replaced by the halfway vector ~h,

Ispecular = Ip ks cosn α = Ip ks (~h • ~n)n.

The material property ks determines the amount of specular reflection.
The exponent n is called the shininess of the surface and is used to
control the size of the highlights.

Basic Gradient Estimation

The Phong illumination models uses the normal vector to describe the
local shape of an object and is primarily used for lighting of polygonal
surfaces. To include the Phong illumination model into direct volume
rendering, the local shape of the volumetric data set must be described
by an appropriate type of vector.

For scalar fields, the gradient vector is an appropriate substitute for
the surface normal as it represents the normal vector of the isosurface for
each point. The gradient vector is the first order derivative of a scalar
field f(x, y, z), defined as

∇f = (fx, fy, fz) = (
δ

δx
f,

δ

δy
f,

δ

δz
f), (9.1)

using the partial derivatives of f in x-, y- and z-direction, respectively.
The scalar magnitude of the gradient measures the local variation of
intensity quantitatively. It is computed as the absolute value of the
vector,

||∇f || =
√

fx
2 + fy

2 + fz
2. (9.2)

For illumination purposes only the direction of the gradient vector is of
interest.

There are several approaches to estimate the directional derivatives
for discrete voxel data. One common technique based on the first terms
from a Taylor expansion is the central differences method. According to
this, the directional derivative in x-direction is calculated as
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fx(x, y, z) = f(x + 1, y, z) − f(x− 1, y, z) with x, y, z ∈ IN. (9.3)

Derivatives in the other directions are computed analogously. Cen-
tral differences are usually the method of choice for gradient pre-
computation. There also exist some gradient-less shading techniques
which do not require the explicit knowledge of the gradient vectors. Such
techniques usually approximate the dot product with the light direction
by a forward difference in direction of the light source.

A B C

D E F

Figure 9.1: CT data of a human hand without illumination (A), with dif-
fuse illumination (B) and with specular illumination (C). Non-polygonal
isosurfaces with diffuse (D), specular (C) and diffuse and specular (E)
illumination.

Simple Per-Pixel Illumination

The integration of the Phong illumination model into a single-pass vol-
ume rendering procedure requires a mechanism that allows the compu-
tation of dot products and component-wise products in hardware. This
mechanism is provided by the pixel shaders functionality of modern con-
sumer graphics boards. For each voxel, the x-, y- and z-components
of the (normalized) gradient vector is pre-computed and stored as color
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components in an RGB texture. The dot product calculations are di-
rectly performed within the texture unit during rasterization.

A simple mechanism that supports dot product calculation is pro-
vided by the standard OpenGL extension EXT texture env dot3. This
extension to the OpenGL texture environment defines a new way to com-
bine the color and texture values during texture applications. As shown
in the code sample, the extension is activated by setting the texture en-
vironment mode to GL COMBINE EXT. The dot product computation must
be enabled by selecting GL DOT3 RGB EXT as combination mode. In the
sample code the RGBA quadruplets (GL SRC COLOR) of the primary color
and the texel color are used as arguments.

// enable the extension

glTexEnvi(GL TEXTURE ENV, GL TEXTURE ENV MODE,

GL COMBINE EXT);

// preserve the alpha value

glTexEnvi(GL TEXTURE ENV, GL COMBINE ALPHA EXT,

GL REPLACE);

// enable dot product computation

glTexEnvi(GL TEXTURE ENV, GL COMBINE RGB EXT,

GL DOT3 RGB EXT);

// first argument: light direction stored in primary

color

glTexEnvi(GL TEXTURE ENV, GL SOURCE0 RGB EXT,

GL PRIMARY COLOR EXT);

glTexEnvi(GL TEXTURE ENV, GL OPERAND0 RGB EXT,

GL SRC COLOR);

// second argument: voxel gradient stored in RGB

texture

glTexEnvi(GL TEXTURE ENV, GL SOURCE1 RGB EXT, GL TEXTURE);

glTexEnvi(GL TEXTURE ENV, GL OPERAND1 RGB EXT,

GL SRC COLOR);

This simple implementation does neither account for the specular
illumination term, nor for multiple light sources. More flexible illumi-
nation effects with multiple light sources can be achieved using newer
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OpenGL extensions or high-level shading languages.

Advanced Per-Pixel Illumination

The drawback of the simple implementation described above is its re-
striction to a single diffuse light source. Using the fragment shading
capabilities of current hardware via OpenGL extensions or high-level
shading languages, additional light sources and more sophisticated light-
ing models and effects can be incorporated into volume shading easily.
See Figure 9.1 for example images.

The following sections outline more sophisticated approaches to local
illumination in volume rendering.



Non-Polygonal Isosurfaces

Rendering a volume data set with opacity values of only 0 and 1, will
result in an isosurface or an isovolume. Without illumination, however,
the resulting image will show nothing but the silhouette of the object as
displayed in Figure 10.1 (left). It is obvious, that illumination techniques
are required to display the surface structures (middle and right).

In a pre-processing step the gradient vector is computed for each
voxel using the central differences method or any other gradient estima-
tion scheme. The three components of the normalized gradient vector
together with the original scalar value of the data set are stored as RGBA
quadruplet in a 3D-texture:

Figure 10.1: Non-polygonal isosurface without illumination (left), with diffuse illu-
mination (middle) and with specular light (right)
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The vector components must be normalized, scaled and biased to adjust
their signed range [−1, 1] to the unsigned range [0, 1] of the color com-
ponents. In our case the alpha channel contains the scalar intensity value
and the OpenGL alpha test is used to discard all fragments that do not
belong to the isosurface specified by the reference alpha value. The setup
for the OpenGL alpha test is displayed in the following code sample. In
this case, the number of slices must be increased extremely to obtain
satisfying images. Alternatively the alpha test can be set up to check
for GL GREATER or GL LESS instead of GL EQUAL, allowing a considerable
reduction of the sampling rate.

glDisable(GL BLEND); // Disable alpha blending

glEnable(GL ALPHA TEST); // Alpha test for isosurfacing

glAlphaFunc(GL EQUAL, fIsoValue);

What is still missing now is the calculation the Phong illumination
model. Current graphics hardware provides functionality for dot product
computation in the texture application step which is performed during
rasterization. Several different OpenGL extensions have been proposed
by different manufacturers, two of which will be outlined in the following.

The original implementation of non-polygonal isosurfaces was pre-
sented by Westermann and Ertl [39]. The algorithm was expanded to
volume shading my Meissner et al [31]. Efficient implementations on PC
hardware are described in [34].



Reflection Maps

If the illumination computation becomes too complex for on-the-fly com-
putation, alternative lighting techniques such as reflection mapping come
into play. The idea of reflection mapping originates from 3D computer
games and represents a method to pre-compute complex illumination
scenarios. The usefulness of this approach derives from its ability to
realize local illumination with an arbitrary number of light sources and
different illumination parameters at low computational cost. A reflection
map caches the incident illumination from all directions at a single point
in space.

The idea of reflection mapping has been first suggested by Blinn [5].
The term environment mapping was coined by Greene [16] in 1986.
Closely related to the diffuse and specular terms of the Phong illumi-
nation model, reflection mapping can be performed with diffuse maps or
reflective environment maps. The indices into a diffuse reflection map
are directly computed from the normal vector, whereas the coordinates

Figure 11.1: Example of a environment cube map.
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for an environment map are a function of both the normal vector and
the viewing direction. Reflection maps in general assume that the illu-
minated object is small with respect to the environment that contains it.

A special parameterization of the normal direction is used in order
to construct a cube map as displayed in Figure 11.1. In this case the
environment is projected onto the six sides of a surrounding cube. The
largest component of the reflection vector indicates the appropriate side
of the cube and the remaining vector components are used as coordinates
for the corresponding texture map. Cubic mapping is popular because
the required reflection maps can easily be constructed using conventional
rendering systems and photography.

Since the reflection map is generated in the world coordinate space,
accurate application of a normal map requires to account for the local
transformation represented by the current modeling matrix. For reflec-
tive maps the viewing direction must also be taken into account. See
figure 11.2 for example images of isosurface rendering with reflection
mapping.

Figure 11.2: Isosurface of the engine block with diffuse reflection map
(left) and specular environment map (right).



Course Notes T7

Real-Time Volume Graphics

Global Volume Illumination

Klaus Engel
Siemens Corporate Research, Princeton, USA

Markus Hadwiger
VRVis Research Center, Vienna, Austria

Joe M. Kniss
SCI Institute, University of Utah, USA

Christof Rezk Salama
University of Siegen, Germany



Introduction

In the chapter on transfer functions we discussed various techniques for
classifying patterns, specifically ranges of data value, that identify key
features of interest in volumetric data. These techniques are most ap-
plicable to visualization tasks, where the data is acquired via scanning
devices or numerical simulation. This chapter focuses on the application
of optical properties, based on the classification, to generate meaningful
images. In general, the discussion in this chapter applies to nearly all
volume graphics application, whether they be visualization or general
entertainment applications of volume rendering. Just as the domain of
the transfer function isn’t limited to scalar data, the range of the transfer
function isn’t limited to red, green, blue, and alpha color values.



Light Transport

The traditional volume rendering equation proposed by Levoy [28] is a
simplified approximation of a more general volumetric light transport
equation first used in computer graphics by Kajiya [21]. The render-
ing equation describes the interaction of light and matter as a series of
scattering and absorption events of small particles. Accurate, analytic,
solutions to the rendering equation however, are difficult and very time
consuming. A survey of this problem in the context of volume rendering
can be found in [30]. The optical properties required to describe the
interaction of light with a material are spectral, i.e. each wavelength
of light may interact with the material differently. The most commonly
used optical properties are absorption, scattering, and phase function.
Other important optical properties are index of refraction and emission.
Volume rendering models that take into account scattering effects are
complicated by the fact that each element in the volume can potentially
contribute light to each other element. This is similar to other global
illumination problems in computer graphics. For this reason, the tradi-
tional volume rendering equation ignores scattering effects and focuses
on emission and absorption only. In this section, our discussion of opti-
cal properties and volume rendering equations will begin with simplified
approximations and progressively add complexity. Figure 13.1 illustrates
the geometric setup common to each of the approximations.

13.1 Traditional volume rendering

The classic volume rendering model originally proposed by Levoy [28]
deals with direct lighting only with no shadowing. If we parameterize a
ray in terms of a distance from the background point x0 in direction ~ω
we have:

x(s) = x0 + s~ω (13.1)

The classic volume rendering model is then written as:
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Figure 13.1: The geometric setup for light transport equations.

L(x1, ~ω) = T (0, l)L(x0, ~ω) +

∫ l

0

T (s, l)R(x(s))fs(x(s))Llds (13.2)

where R is the surface reflectivity color, fs is the Blinn-Phong surface
shading model evaluated using the normalized gradient of the scalar data
field at x(s), and Ll is the intensity of a point light source. L(x0, ~ω) is the
background intensity and T the amount the light is attenuated between
two points in the volume:

T (s, l) = exp

(
−

∫ l

s

τ(s′)ds′
)

(13.3)

and τ(s′) is the attenuation coefficient at the sample s′. This volume
shading model assumes external illumination from a point light source
that arrives at each sample unimpeded by the intervening volume. The
only optical properties required for this model are an achromatic attenu-
ation term and the surface reflectivity color, R(x). Naturally, this model
is well-suited for rendering surface-like structures in the volume, but per-
forms poorly when attempting to render more translucent materials such
as clouds and smoke. Often, the surface lighting terms are dropped and
the surface reflectivity color, R, is replaced with the emission term, E:

L(x1, ~ω) = T (0, l)L(x0, ~ω) +

∫ l

0

T (s, l)E(x(s))ds (13.4)
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This is often referred to as the emission/absorption model. As with
the classical volume rendering model, the emission/absorption model
only requires two optical properties, α and E. In general, R, from the
classical model, and E, from the emission/absorption model, are used
interchangeably. This model also ignores inscattering. This means that
although volume elements are emitting light in all directions, we only
need to consider how this emitted light is attenuated on its path toward
the eye. This model is well suited for rendering phenomena such as flame.

13.2 The Surface Scalar

While surface shading can dramatically enhance the visual quality of
the rendering, it cannot adequately light homogeneous regions. Since
the normalized gradient of the scalar field is used as the surface nor-
mal for shading, problems can arise when shading regions where the
normal cannot be measured. The gradient nears zero in homogeneous
regions where there is little or no local change in data value, making
the normal undefined. In practice, data sets contain noise that further
complicates the use of the gradient as a normal. This problem can be
easily handled, however, by introducing a surface scalar term S(s) to
the rendering equation. The role of this term is to interpolate between
shaded and unshaded. Here we modify the R term from the traditional
rendering equation:

R′(s) = R(s) ((1− S(s)) + fs(s)S(s)) (13.5)

S(s) can be acquired in a variety of ways. If the gradient magnitude
is available at each sample, we can use it to compute S(s). This usage
implies that only regions with a high enough gradient magnitudes should
be shaded. This is reasonable since homogeneous regions should have a
very low gradient magnitude. This term loosely correlates to the index
of refraction. In practice we use:

S(s) = 1− (1− ‖∇f(s)‖)2 (13.6)

Figure 13.2 demonstrates the use of the surface scalar (S(s)). The
image on the left is a volume rendering of the visible male with the soft
tissue (a relatively homogeneous material) surface shaded, illustrating
how this region is poorly illuminated. On the right, only samples with
high gradient magnitudes are surface shaded.
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Figure 13.2: Surface shading without (left) and with (right) the surface scalar.

13.3 Shadows

Surface shading improves the visual quality of volume renderings. How-
ever, the lighting model is unrealistic because it assumes that light arrives
at a sample without interacting with the portions of the volume between
the sample and the light source. To model such interaction, volumetric
shadows can be added to the volume rendering equation:

Ieye = IB ∗ Te(0) +

∫ eye

0

Te(s) ∗R(s) ∗ fs(s) ∗ Il(s)ds (13.7)

Il(s) = Il(0) ∗ exp

(
−

∫ light

s

τ(x)dx

)
(13.8)

where Il(0) is the light intensity, and Il(s) is the light intensity at sample
s. Notice that Il(s) is similar to Te(s) except that the integral is evaluated
from the sample toward the light rather than the eye, computing the light
intensity that arrives at the sample from the light source.

A hardware model for computing shadows was first presented by
Behrens and Ratering [3]. This model computes a second volume, the
volumetric shadow map, for storing the amount of light arriving at each
sample. At each sample, values from the second volume are multiplied by
the colors from the original volume after the transfer function has been
evaluated. This approach, however, suffers from an artifact referred to as
attenuation leakage. The attenuation at a given sample point is blurred
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Figure 13.3: Modified slice axis for light transport.

when light intensity is stored at a coarse resolution and interpolated
during the observer rendering phase. The visual consequences are blurry
shadows, and surfaces that appear too dark due to the image space high
frequencies introduced by the transfer function.

A simple and efficient alternative was proposed in [24]. First, rather
than creating a volumetric shadow map, an off screen render buffer is uti-
lized to accumulate the amount of light attenuated from the light’s point
of view. Second, the slice axis is modified to be the direction halfway
between the view and light directions. This allows the same slice to be
rendered from point of view of both the eye and light. Figure 13.3(a)
demonstrates computing shadows when the view and light directions are
the same. Since the slices for both the eye and light have a one to one
correspondence, it is not necessary to pre-compute a volumetric shadow
map. The amount of light arriving at a particular slice is equal to one
minus the accumulated opacity of the slices rendered before it. Naturally
if the projection matrices for the eye and light differ, we need to main-
tain a separate buffer for the attenuation from the light’s point of view.
When the eye and light directions differ, the volume is sliced along each
direction independently. The worst case scenario is when the view and
light directions are perpendicular, as seen in Figure 13.3(b). In the case,
it would seem necessary to save a full volumetric shadow map which can
be re-sliced with the data volume from the eye’s point of view providing
shadows. This approach also suffers from attenuation leakage resulting
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Figure 13.4: Two-pass shadows. Step 1 (left) render a slice for the eye, multiplying
it by the attenuation in the light buffer. Step 2 (right) render the slice into the light
buffer to update the attenuation for the next pass.

in blurry shadows and dark surfaces.
Rather than slice along the vector defined by the view or the light

directions, we can modify the slice axis to allow the same slice to be
rendered from both points of view. When the dot product of the light
and view directions is positive, we slice along the vector halfway between
the light and view directions, as demonstrated in Figure 13.3(c). In
this case, the volume is rendered in front to back order with respect
to the observer. When the dot product is negative, we slice along the
vector halfway between the light and the inverted view directions, as in
Figure 13.3(d). In this case, the volume is rendered in back to front
order with respect to the observer. In both cases the volume is rendered
in front to back order with respect to the light. Care must be taken
to insure that the slice spacings along the view and light directions are
maintained when the light or eye positions change. If the desired slice
spacing along the view direction is dv and the angle between v and l is
θ then the slice spacing along the slice direction is

ds = cos(
θ

2
)dv. (13.9)

This is a multi-pass approach. Each slice is rendered first from the
observer’s point of view using the results of the previous pass from the
light’s point of view, which modulates the brightness of samples in the
current slice. The same slice is then rendered from the light’s point of
view to calculate the intensity of the light arriving at the next layer.

Since we must keep track of the amount of light attenuated at each
slice, we utilize an off screen render buffer, known as the pixel buffer.
This buffer is initialized to 1− light intensity. It can also be initialized
using an arbitrary image to create effects such as spotlights. The pro-
jection matrix for the light’s point of view need not be orthographic; a



78 Tutorial T7: Real-Time Volume Graphics

perspective projection matrix can be used for point light sources. How-
ever, the entire volume must fit in the light’s view frustum, so that light
is transported through the entire volume. Light is attenuated by simply
accumulating the opacity for each sample using the over operator. The
results are then copied to a texture which is multiplied with the next slice
from the eye’s point of view before it is blended into the frame buffer.
While this copy to texture operation has been highly optimized on the
current generation of graphics hardware, we have achieved a dramatic
increase in performance using a hardware extension known as render to
texture. This extension allows us to directly bind a pixel buffer as a tex-
ture, avoiding the unnecessary copy operation. The two pass process is
illustrated in Figure 13.4.

13.4 Translucency

Shadows can add a valuable depth queue as well as dramatic effects to a
volume rendered scene. Even if the technique for rendering shadows can
avoid attenuation leakage, the images can still appear too dark. This
is not an artifact, it is an accurate rendering of materials which only
absorb light and do not scatter it. Volume rendering models that account
for scattering effects are too computationally expensive for interactive
hardware based approaches. This means that approximations are needed
to capture some of the effects of scattering. One such visual consequence
of scattering in volumes is translucency. Translucency is the effect of
light propagating deep into a material even though objects occluded
by it cannot be clearly distinguished. Figure 13.5(a) shows a common
translucent object, wax. Other translucent objects are skin, smoke, and
clouds. Several simplified optical models for hardware based rendering of
clouds have been proposed [19, 8]. These models are capable of producing
realistic images of clouds, but do not easily extend to general volume
rendering applications.

The previously presented model for computing shadows can easily be
extended to achieve the effect of translucency. Two modifications are
required. First, a second alpha value (αi) is added which represents the
amount of indirect attenuation. This value should be less than or equal
to the alpha value for the direct attenuation. Second, an additional light
buffer is needed for blurring the indirect attenuation. Thetranslucent
volume rendering model then becomes:
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(a) Wax (b) Translucent
rendering

(c) Different re-
flective color

(d) Just shad-
ows

Figure 13.5: Translucent volume shading. (a) is a photograph of wax block illumi-
nated from above with a focused flashlight. (b) is a volume rendering with a white
reflective color and a desaturated orange transport color (1− indirect attenuation).
(c) has a bright blue reflective color and the same transport color as the upper right
image. (d) shows the effect of light transport that only takes into account direct
attenuation.

Ieye = I0 ∗ Te(0) +

∫ eye

0

Te(s) ∗ C(s) ∗ Il(s)ds (13.10)

Il(s) = Il(0) ∗ exp

(
−

∫ light

s

τ(x)dx

)
+

Il(0) ∗ exp

(
−

∫ light

s

τi(x)dx

)
Blur(θ) (13.11)

where τi(s) is the indirect light extinction term, C(s) is the reflective
color at the sample s, S(s) is a surface shading parameter, and Il is the
sum of the direct and indirect light contributions.

The indirect extinction term is spectral, meaning that it describes the
indirect attenuation of light for each of the R, G, and B color components.
Similar to the direct extinction, the indirect attenuation can be specified
in terms of an indirect alpha:

αi = exp(−τi(x)). (13.12)

While this is useful for computing the attenuation, it is non-intuitive for
user specification. Instead, specifying a transport color which is 1 − αi

is more intuitive since the transport color is the color the indirect light
will become as it is attenuated by the material.
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Figure 13.6: On the left is the general case of direct illumination Id and scattered
indirect illumination Ii. On the right is a translucent shading model which includes
the direct illumination Id and approximates the indirect, Ii, by blurring within the
shaded region. Theta is the angle indicated by the shaded region.

In general, light transport in participating media must take into ac-
count the incoming light from all directions, as seen in Figure 13.6(a).
However, the net effect of multiple scattering in volumes is a blurring of
light. The diffusion approximation [38, 13] models the light transport in
multiple scattering media as a random walk. This results in light being
diffused within the volume. The Blur(θ) operation in Equation 13.11
averages the incoming light within the cone with an apex angle θ in
the direction of the light (Figure 13.6(b)). The indirect lighting at a
particular sample is only dependent on a local neighborhood of samples
computed in the previous iteration and shown as the arrows between
slices in (b). This operation models light diffusion by convolving several
random sampling points with a Gaussian filter.

The process of rendering using translucency is essentially the same
as rendering shadows. In the first pass, a slice is rendered from the
point of view of the light. However, rather than simply multiplying the
sample’s color by one minus the direct attenuation, one minus the direct
and one minus the indirect attenuation is summed to compute the light
intensity at the sample. In the second pass, a slice is rendered into the
next light buffer from the light’s point of view to compute the lighting
for the next iteration. Two light buffers are maintained to accommodate
the blur operation required for the indirect attenuation, next is the
buffer being rendered to and current is the buffer bound as a texture.
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Rather than blending slices using the standard OpenGL blend operation,
the blend is explicitly computed in the fragment shading stage. The
current light buffer is sampled once in the first pass, for the observer,
and multiple times in the second pass, for the light, using the render to
texture OpenGL extension. Whereas, the next light buffer, is rendered
into only in the second pass. This relationship changes after the second
pass so that the next buffer becomes the current and vice versa. We
call this approach ping pong blending. In the fragment shading stage, the
texture coordinates for the current light buffer, in all but one texture
unit, are modified per-pixel using a random noise texture. The number
of samples used for the computation of the indirect light is limited by the
number of texture units. Randomizing the sample offsets masks some
artifacts caused by this coarse sampling. The amount of this offset is
bounded based on a user defined blur angle (θ) and the sample distance
(d):

offset ≤ d tan(
θ

2
) (13.13)

The current light buffer is then read using the new texture coordinates.
These values are weighted and summed to compute the blurred inward
flux at the sample. The transfer function is evaluated for the incoming
slice data to obtain the indirect attenuation (αi) and direct attenuation
(α) values for the current slice. The blurred inward flux is attenuated
using αi and written to the RGB components of the next light buffer.
The alpha value from the current light buffer with the unmodified tex-
ture coordinates is blended with the α value from the transfer function
to compute the direct attenuation and stored in the alpha component of
the next light buffer.

This process is enumerated below:

1. Clear color buffer.

2. Initialize pixel buffer with 1-light color (or light map).

3. Set slice direction to the halfway between light and observer view
directions.

4. For each slice:

(a) Determine the locations of slice vertices in the light buffer.

(b) Convert these light buffer vertex positions to texture coordi-
nates.



82 Tutorial T7: Real-Time Volume Graphics

(c) Bind the light buffer as a texture using these texture coordi-
nates.

(d) In the Per-fragment blend stage:

i. Evaluate the transfer function for the Reflective color and
direct attenuation.

ii. Evaluate surface shading model if desired (this replaces
the Reflective color).

iii. Evaluate the phase function, using a lookup of the dot of
the viewing and light directions.

iv. Multiply the reflective color by the 1-direct attenuation
from the light buffer.

v. Multiply the reflective*direct color by the phase function.

vi. Multiply the Reflective color by 1-(indirect) from the light
buffer.

vii. Sum the direct*reflective*phase and indirect*reflective to
get the final sample color.

viii. The alpha value is the direct attenuation from the transfer
function.

(e) Render and blend the slice into the frame buffer for the ob-
server’s point of view.

(f) Render the slice (from the light’s point of view) to the position
in the light buffer used for the observer slice.

(g) In the Per-fragment blend stage:

i. Evaluate the transfer function for the direct and indirect
attenuation.

ii. Sample the light buffer at multiple locations.

iii. Weight and sum the samples to compute the blurred in-
direct attenuation. The weight is the blur kernel.

iv. Blend the blurred indirect and un-blurred direct attenu-
ation with the values from the transfer function.

(h) Render the slice into the correct light buffer.

While this process my seem quite complicated, it is straightfor-
ward to implement. The render to texture extension is part of the
WGL ARB render texture OpenGL extensions. The key functions
are wglBindTexImageARB() which binds a P-Buffer as a texture,
and wglReleaseTexImageARB() which releases a bound P-Buffer so
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that it may be rendered to again. The texture coordinates of a slice’s
light intensities from a light buffer are the 2D positions that the slice’s
vertices project to in the light buffer scaled and biased so that they are
in the range zero to one.

Computing volumetric light transport in screen space is advantageous
because the resolution of these calculations and the resolution of the
volume rendering can match. This means that the resolution of the light
transport is decoupled from that of the data volume’s grid, permitting
procedural volumetric texturing.

13.5 Summary

Rendering and shading techniques are important for volume graphics,
but they would not be useful unless we had a way to transform inter-
polated data into optical properties. While the traditional volume ren-
dering model only takes into account a few basic optical properties, it is
important to consider additional optical properties. Even if these optical
properties imply a much more complicated rendering model than is pos-
sible with current rendering techniques, adequate approximations can be
developed which add considerably to the visual quality. We anticipate
that the development of multiple scattering volume shading models will
be an active area of research in the future.
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(a) Carp CT (b) Stanford Bunny

(c) Joseph the Convicted

Figure 13.7: Example volume renderings using an extended transfer function.
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Figure 13.8: Volume rendering pipeline. Each step in this pipeline can introduce
artifacts.

Today’s GPUs support high-quality volume rendering (see figures
??). However, a careful examination of the results of various visual-
ization packages reveals unpleasant artifacts in volumetric renderings.
Especially in the context of real-time performance, which requires certain
compromises to achieve high frame rates, errors seem to be inevitable.

To synthesize high-quality volume visualization results it is necessary
to identify possible sources of artifacts. Those artifacts are introduced in
various stages of the volume rendering pipeline. Generally speaking, the
volume rendering pipeline consists of five stages (see figure 13.8): First
of all, a sampling stage, which accesses the volume data along straight
rays through the volume. Secondly, a filtering stage, that interpolates
the voxel values. Thirdly, a classification step, which maps scalar values
from the volume to emission and absorption coefficients. The fourth
stage in this pipeline is optional and is only applied if external light
sources are taken into account for computing the shading of the volume
data. Finally, the integration of the volume data is performed. This
is achieved in graphics hardware by blending emission colors with their
associated alpha values into the frame buffer. This pipeline is repeated
until all samples along the rays through the volume have been processed.
Each of the stages of pipeline can be the source of artifacts.
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Note that sampling and filtering are actually done in the same step
in graphics hardware, i.e., during volume rendering we set sample po-
sition using texture coordinates of slice polygons or by computing tex-
ture coordinates explicitly using ray-marching in a fragment program
for ray-casting-based approaches. The hardware automatically performs
filtering as soon as the volume is accessed with a texture fetch with a
position identifies using the corresponding a texture coordinate. The
type of filtering performed by the graphics hardware is specified by set-
ting the appropriate OpenGL state. Current graphics hardware only
supports nearest neighbor and linear filtering, i.e., linear, bilinear and
trilinear filtering. However, we will treat sampling and filtering as two
steps, because they become two separate operations once we implement
our own filtering method.

The goal of this chapter is to remove or at least suppress artifacts that
occur during volume rendering while maintaining real-time performance.
For this purpose, all proposed optimizations will be performed on the
GPU in order to avoid expensive readback of data from the GPU memory.
We will review the stages of the volume rendering pipeline step-by-step,
identify possible sources of errors introduced in the corresponding stage
and explain techniques to remove or suppress those errors while ensuring
interactive frame rates.



Sampling Artifacts

The first stage in the process of volume rendering consists of sampling
the discrete voxel data. Current GPU-based techniques employ explicit
proxy geometry to trace a large number of rays in parallel through the
volume (slice-based volume rendering) or directly sample the volume
along rays (ray-casting). The distance of those sampling points influences
how accurately we represent the data. A large distance between those
sampling points, i.e., a low sampling rate, will result in severe artifacts
(see figure 14.1). This effect is often referred to as under-sampling and
the associated artifacts are often referred to as wood grain artifacts.

The critical question is: How many samples do we have to take along
rays in the volume to accurately represent the volume data? The answer
to this question lies in the so-called Nyquist-Shannon sampling theorem
of information theory.

The theorem is one of the most important rules of sampling ([32, 37]).
It states that, when converting analog signals to digital, the sampling
frequency must be greater than twice the highest frequency of the in-
put signal to be able to later reconstruct the original signal from the
sampled version perfectly. Otherwise the signal will be aliased, i.e. lower
frequencies will be incorrectly reconstructed from the discrete signal. An
analog signal can contain arbitrary high frequencies, therefore an analog
low-pass filter is often applied before sampling the signal to ensure that
the input signal does not have those high frequencies. Such a signal is
called band-limited. For an audio signal this means, that if we want to
want to sample the audio signal with 22 kHz as the highest frequency, we
must at least sample the signal with twice the sampling rates; i.e., with
more than 44 kHz. As already stated, this rule applies if we want to dis-
cretize contiguous signals. But want does this rule mean for sampling an
already discretized signal? Well, in volume rendering we assume that the
data represents samples taken from a contiguous band-limited volumet-
ric field. During sampling we might already have lost some information
due to a too low sampling rate. This is certainly something we cannot
fix during rendering. However, the highest frequency in a discrete signal
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Figure 14.1: Wood grain artifact caused by a low sampling rate.

that is assumed to be contiguous is an abrupt change in the data from
one sampling position to an adjacent one. This means, that the highest
frequency is one divided by the distance between voxels of the volume
data. Thus, in order to accurately reconstruct the original signal from
the discrete data we need to take at least two samples per voxel.

There is actually no way to get around this theorem. We have to take
two samples per voxel to avoid artifacts. However, taking a lot of samples
along rays inside the volume has a direct impact on the performance.
We achieve this high sampling rate by either increasing the number of
slice polygons or by reducing the sampling distance during ray-casting.
Taking twice the number of samples inside the volume will typically
reduce the frame rate by a factor of two. However, volumetric data often
does not consist alone of regions with high variations in the data values.
In fact, volume data can be very homogeneous in certain regions while
other regions contain a lot of detail and thus high frequencies. We can
exploit this fact by using a technique called adaptive sampling.



90 Tutorial T7: Real-Time Volume Graphics

Adaptive sampling techniques causes more samples to be taken in in-
homogeneous regions of the volume as in homogeneous regions. In order
to know if we are inside a homogeneous or inhomogeneous region of the
volume during integration along our rays through the volume, we can use
a 3D texture containing the sampling rate for each region. This texture
will be called the importance-volume and must be computed in a pre-
processing step and can have smaller spacial dimensions than our volume
data texture. For volume ray-casting on the GPU it is easy to adapt the
sampling rate to the sampling rate obtained from this texture because
sampling positions are generated in the fragment stage. Slice-based vol-
ume rendering however, is more complicated because the sampling rate
is directly set by the number of slice polygons. This means that the
sampling rate is set in the vertex stage, while the sampling rate from
our importance-volume is obtained in the fragment stage. The texture
coordinates for sampling the volume interpolated on the slice polygons
can be considered as samples for a base sampling rate. We can take
additional samples along the ray direction at those sampling positions
in a fragment program, thus sampling higher in regions where the data
set is inhomogeneous. Note that such an implementation requires dy-
namic branching in a fragment program because we have to adapt the
number of samples in the fragment program to the desired sampling rate
at this position. Such dynamic branching is available on NVIDIA Nv40
hardware. Alternatively, computational masking using early-z or stencil
culls can be employed to accelerate the rendering for regions with lower
sampling rate. The slice polygon is rendered multiple times with differ-
ent fragment programs for the different sampling rates, and rays (pixels)
are selected by masking the corresponding pixels using the stencil- or
z-buffer.

Changing the sampling rate globally or locally requires opacity cor-
rection; which can be implemented globally by changing the alpha values
in the transfer function, or locally by adapting the alpha values before
blending in a fragment program. The corrected opacity is function of
the stored opacity αstored and the sample spacing ratio
∆x/∆x0: αcorrected = 1− [1− αstored]

∆x/∆x0

We can successfully remove artifacts in volume rendering (see figure
14.2) using adaptive sampling and sampling the volume at the Nyquist
frequency. However, this comes at the cost of high sampling rates that
can significantly reduce performance. Even worse, in most volumetric
renderings a non-linear transfer function is applied in the classification
stage. This can introduce high-frequencies into the sampled data, thus
increasing the required sampling rate well beyond the Nyquist frequency
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Figure 14.2: Comparison of a visualization of the inner ear with low (left) and high
(right) sampling rate.

of the volume data. We will discuss this effect in detail in chapter 16 and
provide a solution to the problems by using a technique that separates
those high frequencies from classification in a pre-processing step.



Filtering Artifacts

The next possible source for artifacts in volumetric computer graphics is
introduced during the filtering of the volume data. Basically, this phase
converts the discrete volume data back to a continuous signal. To recon-
struct the original continuous signal from the voxels, a reconstruction
filter is applied that calculates a scalar value for the continuous three-
dimensional domain (R3) by performing a convolution of the discrete
function with a filter kernel. It has been proven, that the perfect, or
ideal reconstruction kernel is provided by the sinc filter.
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Figure 15.1: Three reconstruction filters: (a) box, (b) tent and (c) sinc filters.

Unfortunatelty, the sinc filter has an unlimited extent. Therefore,
in practice simpler reconstruction filters like tent or box filters are ap-
plied (see Figure ...). Current graphics hardware supports pre-filtering
mechanisms like mip-mapping and anisotropic filtering for minification
and linear, bilinear, and tri-linear filters for magnification. The inter-
nal precision of the filtering on current graphics hardware is dependent
on the precision of the input texture; i.e., 8 bit textures will internally
only be filtered with 8 bit precision. To achieve higher quality filter-
ing results with the built-in filtering techniques of GPUs we can use a
higher-precision internal texture format when defining textures (i.e., the
LUMINANCE16 and HILO texture formats). Note that floating point
texture formats often do not support filtering.
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Figure 15.2: Comparison between trilinear filtering and cubic B-spline filtering.

However, the use of higher internal precision for filtering cannot on
its own provide satisfactory results with built-in linear reconstruction
filters (see left image in figure 15.2). Hadwiger et al.[17] have shown
that multi-textures and flexible rasterization hardware can be used to
evaluate arbitrary filter kernels during rendering.

The filtering of a signal can be described as the convolution of the
signal function s with a filter kernel function h:

g(t) = (s ∗ h)(t) =

∫ ∞

−∞
s(t− t′) · h(t′)dt′ (15.1)

The discretized form is:

gt =
+I∑

i=−I

st−ihi (15.2)

where the half width of the filter kernel is denoted by I. The impli-
cation is, that we have to collect the contribution of neighboring input
samples multiplied by the corresponding filter values to get a new fil-
tered output sample. Instead of this gathering approach, Hadwiger et
al. advocate a distributing approach for a hardware-accelerated imple-
mentation. That is, the contribution of an input sample is distributed to
its neighboring samples, instead of the other way. The order was cho-
sen, since this allows to collect the contribution of a single relative input
sample for all output samples simultaneously. The term relative input
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sample denotes the relative offset of an input sample to the position of
an output sample. The final result is obtained by adding the result of
multiple rendering passes, whereby the number of input samples that
contribute to an output sample determine the number of passes.

input samples

resampling points

input samples

resampling points

Figure 15.3: Distributing the contributions of all “left-hand” (a), and all “right-
hand” (b) neighbors, when using a tent filter.

Figure 15.3 demonstrates this in the example of a one-dimensional
tent filter. As one left-handed and one right-handed neighbor input sam-
ple contribute to each output sample, a two-pass approach is necessary.
In the first pass, the input samples are shifted right half a voxel distance
by means of texture coordinates. The input samples are stored in a
texture-map that uses nearest-neighbor interpolation and is bound to the
first texture stage of the multi-texture unit (see Figure 15.4). Nearest-
neighbor interpolation is needed to access the original input samples over
the complete half extent of the filter kernel. The filter kernel is divided
into two tiles. One filter tile is stored in a second texture map, mirrored
and repeated via the GL REPEAT texture environment. This texture is
bound to the second stage of the multi-texture unit. During rasteriza-
tion the values fetched by the first multi-texture unit are multiplied with
the result of the second multi-texture unit. The result is added into the
frame buffer. In the second pass, the input samples are shifted left half
a voxel distance by means of texture coordinates. The same unmirrored
filter tile is reused for a symmetric filter . The result is again added to
the frame buffer to obtain the final result.

The number of required passes can be reduced by n for hardware
architectures supporting 2n multi-textures. That is, two multi-texture
units calculate the result of a single pass. The method outlined above
does not consider area-averaging filters, since it is assumed that magni-
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Figure 15.4: Tent filter (width two) used for reconstruction of a one-dimensional
function in two passes. Imagine the values of the output samples added together
from top to bottom.

fication is desired instead of minification. For minification, pre-filtering
approaches like mip-mapping are advantageous. Figure 15.2 demon-
strates the benefit of bi-cubic filtering using a B-spline filter kernel over
a standard bi-linear interpolation.

High quality filters implemented in fragment programs can consider-
ably improve image quality. However, it must be noted, that performing
higher quality filtering in fragment programs on current graphics hard-
ware is expensive. I.e., frame rates drop considerably. We recommend
higher quality filters only for final image quality renderings. During in-
teraction with volume data or during animations it is probably better
to use build-in reconstruction filters, as artifacts will not be too appar-
ent in motion. To prevent unnecessary calculations in transparent or
occluded regions of the volume, the optimizations techniques presented
in chapter ?? should be applied.



Classification Artifacts

Classification is the next crucial phase in the volume rendering pipeline
and yet another possible source of artifacts. Classification employs trans-
fer functions for color densities c̃(s) and extinction densities τ(s), which
map scalar values s = s(x) to colors and extinction coefficients. The
order of classification and filtering strongly influences the resulting im-
ages, as demonstrated in Figure 16.1. The image shows the results of
pre- and post-classification for a 163 voxel hydrogen orbital volume and
a high frequency transfer function for the green color channel.

classification-schemes

voxels

post-classification

filtering

filtering

pre-classification

classification

transfer-functions

classification

Figure 16.1: Comparison of pre-classification and post-classification. Al-
ternate orders of classification and filtering lead to completely differ-
ent results. For clarification a random transfer function is used for the
green color channel. Piecewise linear transfer functions are employed for
the other color channels. Note, in contrast to pre-classification, post-
classification reproduces the high frequencies contained within in the
transfer function.

It can be observed that pre-classification, i.e. classification before
filtering, does not reproduce high-frequencies in the transfer function.
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In contrast to this, post-classification, i.e. classification after filtering,
reproduces high frequencies in the transfer function. However, high fre-
quencies (e.g., iso-surface spikes) may not be reproduced in between two
adjacent sampling points along a ray through the volume. To capture
those details, oversampling (i.e., additional slice polygons or sampling
points) must be added which directly decreases performance. Further-
more, very high frequencies in the transfer function require very high
sampling rates to captured those details. It should be noted, that a high
frequency transfer function does not necessarily mean a random trans-
fer function. We only used random transfer functions to demonstrate
the differences between the classification methods. A high frequency in
the transfer function is easily introduced by using a simple step transfer
function with steep slope. Such transfer function are very common in
many application domains.

In order to overcome the limitations discussed above, the approxi-
mation of the volume rendering integral has to be improved. In fact,
many improvements have been proposed, e.g., higher-order integration
schemes, adaptive sampling, etc. However, these methods do not explic-
itly address the problem of high Nyquist frequencies of the color after
the classification c̃

(
s(x)

)
and an extinction coefficients after the classifi-

cation τ
(
s(x)

)
resulting from non-linear transfer functions. On the other

hand, the goal of pre-integrated classification[35] is to split the numerical
integration into two integrations: one for the continuous scalar field s(x)
and one for each of the transfer functions c̃(s) and τ(s) in order to avoid
the problematic product of Nyquist frequencies.

The first step is the sampling of the continuous scalar field s(x) along
a viewing ray. Note that the Nyquist frequency for this sampling is not
affected by the transfer functions. For the purpose of pre-integrated clas-
sification, the sampled values define a one-dimensional, piecewise linear
scalar field. The volume rendering integral for this piecewise linear scalar
field is efficiently computed by one table lookup for each linear segment.
The three arguments of the table lookup are the scalar value at the start
(front) of the segment sf := s

(
x(id)

)
, the scalar value the end (back) of

the segment sb := s
(
x((i + 1)d)

)
, and the length of the segment d. (See

Figure 16.2.) More precisely spoken, the opacity αi of the i-th segment
is approximated by

αi = 1− exp

(
−

∫ (i+1)d

i d

τ
(
s
(
x(λ)

))
dλ

)

≈ 1− exp

(
−

∫ 1

0

τ
(
(1− ω)sf + ωsb

)
d dω

)
. (16.1)
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s f = sHxHi dLL

sb = sHxHHi + 1L dLL

d

sHxHΛLL

Λi d Hi + 1L d

xHΛLxHi dL xHHi + 1L dL

Figure 16.2: Scheme for determining the color and opacity of the i-th ray segment.

Thus, αi is a function of sf , sb, and d. (Or of sf and sb, if the lengths
of the segments are equal.) The (associated) colors C̃i are approximated
correspondingly:

C̃i ≈
∫ 1

0

c̃
(
(1− ω)sf + ωsb

)

× exp
(
−

∫ ω

0

τ
(
(1− ω′)sf + ω′sb

)
d dω′

)
d dω. (16.2)

Analogous to αi, C̃i is a function of sf , sb, and d. Thus, pre-integrated
classification approximates the volume rendering integral by evaluating
the following Equation:

I ≈
n∑

i=0

C̃i

i−1∏
j=0

(1− αj)

with colors C̃i pre-computed according to Equation (16.2) and opacities
αi pre-computed according to Equation (16.1). For non-associated color
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transfer function, i.e., when substituting c̃(s) by τ(s)c(s), we will also
employ Equation (16.1) for the approximation of αi and the following
approximation of the associated color C̃τ

i :

C̃τ
i ≈

∫ 1

0

τ
(
(1− ω)sf + ωsb

)
c
(
(1− ω)sf + ωsb

)

× exp
(
−

∫ ω

0

τ
(
(1− ω′)sf + ω′sb

)
d dω′

)
d dω. (16.3)

Note that pre-integrated classification always computes associated col-
ors, whether a transfer function for associated colors c̃(s) or for non-
associated colors c(s) is employed.

In either case, pre-integrated classification allows us to sample a con-
tinuous scalar field s(x) without increasing the sampling rate for any
non-linear transfer function. Therefore, pre-integrated classification has
the potential to improve the accuracy (less undersampling) and the per-
formance (fewer samples) of a volume renderer at the same time.

One of the major disadvantages of the pre-integrated classification is
the need to integrate a large number of ray-segments for each new trans-
fer function dependent on the front and back scalar value and the ray-
segment length. Consequently, an interactive modification of the transfer
function is not possible. Therefore several modifications to the compu-
tation of the ray-segments were proposed[12], that lead to an enormous
speedup of the integration calculations. However, this requires neglecting
the attenuation within a ray segment. Yet, it is a common approximation
for post-classified volume rendering and well justified for small products
τ(s)d. The dimensionality of the lookup table can easily be reduced
by assuming constant ray segment lengths d. This assumption is cor-
rect for orthogonal projections and view-aligned proxy geometry. It is a
good approximation for perspective projections and view-aligned proxy
geometry, as long as extreme perspectives are avoided. This assumption
is correct for perspective projections and shell-based proxy geometry.
In the following hardware-accelerated implementation, two-dimensional
lookup tables for the pre-integrated ray-segments are employed, thus a
constant ray segment length is assumed.

For a hardware implementation of pre-integrated volume rendering,
texture coordinates for two adjacent sampling points along rays through
the volume must be computed. The following Cg vertex program com-
putes the second texture coordinates for sb from the texture coordinates
given for sf :

vertout main(vertexIn IN,
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s f
sb

front slice
back slice

Figure 16.3: A slab of the volume between two slices. The scalar value on the front
(back) slice for a particular viewing ray is called sf (sb).

uniform float SliceDistance,

uniform float4x4 ModelViewProj,

uniform float4x4 ModelViewI,

uniform float4x4 TexMatrix)

{

vertexOut OUT;

// transform texture coordinate for s_f

OUT.TCoords0 = mul(TexMatrix, IN.TCoords0);

// transform view pos vec and view dir to obj space

float4 vPosition = mul(ModelViewI,
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float4(0,0,0,1));

// compute view direction

float4 vDir = normalize(mul(ModelViewI, float4(0.f,0.f,-1.f,1.f)));

// compute vector from eye to vertex

float3 eyeToVert = normalize( IN.Position.xyz - vPosition.xyz);

// compute position of s_b

float4 backVert = {1,1,1,1};

backVert.xyz = IN.Position.xyz +

eyeToVert * (SliceDistance / dot(vDir.xyz,eyeToVert));

//compute texture coordinates for s_b

OUT.TCoords1 = mul(TexMatrix, backVert);

// transform vertex position into homogenous clip-space

OUT.HPosition = mul(ModelViewProj, IN.Position);

return OUT;

}

In the fragment stage, the texture coordinates for sf and sb are used
to lookup two adjacent samples along a ray. Those two samples are
then used as texture coordinates for a dependent texture lookup into a
2D texture containing the pre-integration table, as demonstrated in the
following Cg fragment shader code:

struct v2f_simple {

float3 TexCoord0 : TEXCOORD0;

float3 TexCoord1 : TEXCOORD1;

};

float4 main(v2f_simple IN, uniform sampler3D Volume,

uniform sampler2D PreIntegrationTable) : COLOR

{

fixed4 lookup;

//sample front scalar

lookup.x = tex3D(Volume, IN.TexCoord0.xyz).x;

//sample back scalar

lookup.y = tex3D(Volume, IN.TexCoord1.xyz).x;

//lookup and return pre-integrated value

return tex2D(PreIntegrationTable, lookup.yx);

}
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A comparison of the results of pre-classification, post-classification
and pre-integrated classification is shown in Figure 16.4. Obviously, pre-
integration produces the visually most pleasant results. However, this
comes at the cost of looking up an additional filtered sample from the
volume for each sampling position. This considerably reduces perfor-
mance due to the fact that memory access is always expensive. However,
using pre-integration, a substantially smaller sampling rate is required
when rendering volume with high frequency transfer functions. Another
advantage is that pre-integration can be performed as a pre-processing
step with the full precision of the CPU. This reduces artifacts introduced
during blending for a large number of integration steps (see section 18).

To overcome the problem of the additional sample that has to be
considered, we need a means of caching the sample from the previous
sampling position. The problem can be reduced by computing multi-
ple steps integration at once , i.e. if we compute five integrations at
once we need six samples from the volume instead of ten compared to
a single integration step. Current graphics hardware allows to perform
the complete integration along a ray in a single pass. In this case, pre-
integration does not introduce an significant performance loss compared
to the standard integration using post-classification.
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Figure 16.4: Comparison of the results of pre-, post- and pre-integrated classifi-
cation for a random transfer function. Pre-classification (top) does not reproduce
high frequencies of the transfer function. Post-classification reproduces the high
frequencies on the slice polygons (middle). Pre-integrated classification (bottom)
produces the best visual result due to the reconstruction of high frequencies from
the transfer function in the volume.



Shading Artifacts

It is common to interpret a volume as a self-illuminated gas that
absorbs light emitted by itself. If external light sources have to be taken
into account, a shading stage is inserted into the volume rendering
pipeline. Shading can greatly enhance depth perception and manifest
small features in the data; however, it is another common source of
artifacts (see figure 17.1, left). Shading requires a per-voxel gradient
to be computed that is determined directly from the volume data
by investigating the neighborhood of the voxel. Although the newest
generation of graphics hardware permits calculating of the gradient at
each voxel on-the-fly, in the majority of the cases the voxel gradient
is pre-computed in a pre-processing step. This is due to the limited
number of texture fetches and arithmetic instructions of older graphics
hardware in the fragment processing phase of the OpenGL graphics
pipeline and as well as of performance considerations. For scalar volume
data the gradient vector is defined by the first order derivative of the
scalar field I(x, y, z), which is defined as by the partial derivatives of I
in the x-, y- and z-direction:

~∇I = (Ix, Iy, Iz) =

(
∂

∂x
I,

∂

∂y
I,

∂

∂z
I

)
. (17.1)

The length of this vector defines the local variation of the scalar field
and is computed using the following equation:

∥∥∥~∇I
∥∥∥ =

√
Ix

2 + Iy
2 + Iz

2. (17.2)

Gradients are often computed in a pre-processing step. To access
those pre-computed gradient during rendering, gradients are usually nor-
malized, quantized to 8-bits and stored in the RGB channels of a separate
volume texture. For performance reasons, often the volume data is stored
together with the gradients in the alpha channel of that same textures,
so that a single texture lookup provides the volume data and gradients
at the same time.
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Figure 17.1: Comparison between pre-computed and quantized gradients (left) with
on-the-fly gradient computation (right).

Aside from the higher memory requirements for storing pre-computed
gradients and the pre-processing time, quantizing gradients to 8 bit pre-
cision can cause artifacts in the resulting images, especially if the original
volume data is available at a higher precision. Even worse, gradients are
interpolated in the filtering step of the volume rendering pipeline. Note,
that when interpolating two normalized gradients an unnormalized nor-
mal may be generated. Previous graphics hardware did not allow gra-
dients renormalized gradients in the fragment stage. Such unnormalized
and quantized gradients cause dark striped artifacts which are visible the
left image of figure 17.1.

One possible solution to this problem is to store the pre-computed
gradients at higher precision in a 16 bit fixed point or 32 bit floating point
3D texture and apply another normalization in the fragment processing
stage on interpolated gradients. Those high-precision texture formats are
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available on newer graphics hardware; however, the increased amount of
texture memory required to store such high-precision gradients does not
permit this solution for high-resolution volumetric data.

A significantly better solution is to compute high-precision gradi-
ents on-the-fly. For a central differences gradient we need to fetch the
six neighboring voxel values at the sampling position. For this purpose
we provide six additional texture coordinates to the fragment program,
each shifted by one voxel distance to the right, left, top, bottom, back
or front. Using this information, a central differences gradient can be
computed per fragment. The resulting gradient is normalized and used
for shading computations. The following Cg fragment program looks up
a sample along the rays, performs a classification, computes a gradient
from additional neighboring samples and finally computes the shading:

struct fragIn {

float4 Hposition : POSITION;

float3 TexCoord0 : TEXCOORD0;

float3 TexCoord1 : TEXCOORD1;

float3 TexCoord2 : TEXCOORD2;

float3 TexCoord3 : TEXCOORD3;

float3 TexCoord4 : TEXCOORD4;

float3 TexCoord5 : TEXCOORD5;

float3 TexCoord6 : TEXCOORD6;

float3 TexCoord7 : TEXCOORD7;

float3 VDir : COLOR0;

};

float4 main(fragIn IN, uniform sampler3D Volume,

uniform sampler2D TransferFunction,

uniform half3 lightdir,

uniform half3 halfway,

uniform fixed ambientParam,

uniform fixed diffuseParam,

uniform fixed shininessParam,

uniform fixed specularParam) : COLOR

{

fixed4 center;

// fetch scalar value at center

center.ar = (fixed)tex3D(Volume, IN.TexCoord0.xyz).x;

// classification

fixed4 classification = (fixed4)tex2D(TransferFunction, center.ar);
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// samples for forward differences

half3 normal;

half3 sample1;

sample1.x = (half)tex3D(Volume, IN.TexCoord2).x;

sample1.y = (half)tex3D(Volume, IN.TexCoord4).x;

sample1.z = (half)tex3D(Volume, IN.TexCoord6).x;

// additional samples for central differences

half3 sample2;

sample2.x = (half)tex3D(Volume, IN.TexCoord3).x;

sample2.y = (half)tex3D(Volume, IN.TexCoord5).x;

sample2.z = (half)tex3D(Volume, IN.TexCoord7).x;

// compute central differences gradient

normal = normalize(sample2.xyz sample1.xyz);

// compute diffuse lighting component

fixed diffuse = abs(dot(lightdir, normal.xyz));

// compute specular lighting component

fixed specular = pow(dot(halfway, normal.xyz),

shininessParam);

// compute output color

OUT.rgb =

ambientParam * classification.rgb

+ diffuseParam * diffuse * classification.rgb

+ specularParam * specular;

// use alpha from classification as output alpha

OUT.a = classification.a;

return OUT;

}

The resulting quality of on-the-fly gradient computation computation
is shown in the image on the right of figure 17.1. The enhanced better
quality compared to pre-computed gradients is due to the fact that we
used filtered scalar values to compute the gradients compared to filtered
gradients. This provide much nicer and smoother surface shading, which
even allows reflective surfaces to look smooth (see figure 17.2). Besides
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this advantage, no additional memory is wasted to store pre-computed
gradients. This is especially important for high-resolution volume data
that already consumes a huge amount of texture memory or must be
bricked to be rendered (see chapter 17.2). This approach allows even
higher quality gradients at the cost of additional texture fetches, e.g.
sobel gradients.

However, the improved quality comes at the cost of additional mem-
ory reads which considerably decrease performance due to memory la-
tency. It is important that those expensive gradient computations are
only performed when necessary. Several techniques, like space-leaping,
early-ray termination and deferred shading (which are discussed in chap-
ter ??) will allow real-time performance, even when computing gradients
on-the-fly.
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Figure 17.2: Reflective environment mapping computed with on-the-fly gradient
computation. Note the smoothness of the surface.



Blending Artifacts

The final step of the rendering pipeline involves combining color values
generated by previous stages of the pipeline with colors written into the
frame buffer during integration. As discussed in previous chapters, this is
achieved by blending RGB colors with their alpha values into the frame
buffer. A large number of samples along the rays through the volume
are blended into the frame buffer. Usually, color values in this stage are
quantized to 8-bit precision. Therefore, quantization errors are accumu-
lated very quickly when blending a large number of quantized colors into
the frame buffer, especially when low alpha values are used. This is due
to the fact, that the relative error for small 8 bit fixed point quantiza-
tion is much greater than for large numbers. Figure 18.1 demonstrates
blending artifacts for a radial distance volume renderer with low alpha
values. In contrast to fixed point formats, floating point number allow
higher precision for small numbers than for large numbers.

Floating point precision was introduced recently into the pixel
pipeline of graphics hardware. The first generation of graphics hard-
ware with floating-point support throughout the pipeline does not sup-
port blending with floating point precision. Therefore, blending must

Figure 18.1: Comparison between 8-bit (left), 16-bit (middle) and 32-bit blending
(right).
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be implemented in a fragment shader. As the on-screen frame buffer
still only supports 8-bit precision, off-screen pbuffers are required for
high-precision blending. The fragment shader has to read the current
contents of the floating-point pbuffer, blend the incoming color with the
frame buffer and write the result back into the pbuffer. To bind a pbuffer
as an input image to a fragment program, the pbuffer is defined as a so-
called rendertexture; i.e., a texture that can be rendered to. To read the
current contents of the pbuffer at the rasterization position, the window
position (WPOS) that is available in fragment programs can directly be
used as a texture coordinate for a rectangle texture fetch. Figure 18.2 il-
lustrates the approach while the following Cg source code demonstrates
the approach with a simple post-classification fragment program with
over-operator compositing:

struct v2f_simple {

float3 TexCoord0 : TEXCOORD0;

float2 Position : WPOS;

};

float4 main(v2f_simple IN,

uniform sampler3D Volume,

uniform sampler1D TransferFunction,

uniform samplerRECT RenderTex,

) : COLOR

{

// get volume sample

half4 sample = x4tex3D(Volume, IN.TexCoord0);

// perform classification to get source color

float4 src = tex1D(TransferFunction, sample.r);

// get destination color

float4 dest = texRECT(RenderTex, IN.Position);

// blend

return (src.rgba * src.aaaa) +

(float4(1.0, 1.0, 1.0, 1.0)-src.aaaa) * dest.rgba;

}

It should be noted, that the specification of the render texture ex-
tension explicitly states that the result is undefined when rendering to a
texture and reading from the texture at the same time. However, cur-
rent graphics hardware allows this operation and produces correct results
when reading from the same position that the new color value is written
to.
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Figure 18.2: Programmable blending with a pbuffer as input texture and render
target at the same time.
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If you feel uncomfortable with this solution, you can use ping-pong
blending as an alternative (see figure 18.3). Ping-pong blending alter-
nates the rendering target to prevent read-write race conditions. To avoid
context switching overhead when changing rendering targets a double-
buffered pbuffer can be employed, whose back and front buffer then are
used for ping-pong blending.

As demonstrated in the middle image of figure 18.1 even 16-bit float-
ing point precision might not be sufficient to accurately integrate colors
with low-alpha values into the frame buffer. However, as memory access
does not come for free, performance decreases as a function of precision.
Therefore, it is necessary to find a good balance between quality and per-
formance. For most applications and transfer functions 16-bit floating
point blending should produce acceptable results.
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Figure 18.3: Programmable blending with a pbuffer as input texture and render
target at the same time.



Summary

Artifacts are introduced in various stages of the volume rendering
process. However, the high precision texture formats and computations
in combination with the advanced programmability of today’s GPUs
allow artifacrs to be suppressed or even allow to remove them almost
completely. All of the techniques presented to prevent artifacts can be
implemented quite efficiently using programmable graphics hardware to
achieve real-time performance. However, those optimization do not come
for free - to maximize performance trade-offs between quality and per-
formance often have to be made.

The human visual system is mess sensitive to artifacts in moving
pictures that static images. This phenomena is evident by comparing a
still image with non-static images from a TV screen. Therefore, for some
applications it is acceptable to trade off quality for performance while
the volumetric object is moving, and use higher quality when the object
becomes stationary.
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tion specification by using volumepro technology. Technical Report
TR-186-2-00-07, Vienna University of Technology, March 2000.

[2] Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R. Schikore. The
Contour Spectrum. In Proceedings IEEE Visualization 1997, pages
167–173, 1997.

[3] Uwe Behrens and Ralf Ratering. Adding Shadows to a Texture-
Based Volume Renderer. In 1998 Volume Visualization Symposium,
pages 39–46, 1998.

[4] J. Blinn. Models of Light Reflection for Computer Synthesized Pic-
tures . Computer Graphics, 11(2):192–198, 1977.

[5] J. Blinn and M. Newell. Texture and Reflection in Computer Gen-
erated Images. Communcations of the ACM, 19(10):362–367, 1976.

[6] J. F. Blinn. Jim blinn’s corner: Image compositing–theory. IEEE
Computer Graphics and Applications, 14(5), 1994.

[7] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering
and tomographic reconstruction using texture mapping hardware.
In Proc. of IEEE Symposium on Volume Visualization, pages 91–
98, 1994.

[8] Yoshinori Dobashi, Kazufumi Kanede, Hideo Yamashita, Tsuyoshi
Okita, and Tomoyuki Hishita. A Simple, Efficient Method for Re-
alistic Animation of Clouds. In Siggraph 2000, pages 19–28, 2000.

[9] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering.
In Proc. of SIGGRAPH ’88, pages 65–74, 1988.



118 Tutorial T7: Real-Time Volume Graphics

[10] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern
Classification (Second Edition). Wiley-Interscience, 2001.

[11] D. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley.
Texturing and Modeling: A Procedural Approach. Academic Press,
July 1998.

[12] K. Engel, M. Kraus, and T. Ertl. High-Quality Pre-Integrated Vol-
ume Rendering Using Hardware-Accelerated Pixel Shading. In Proc.
Graphics Hardware, 2001.

[13] T. J. Farrell, M. S. Patterson, and B. C. Wilson. A diffusion the-
ory model of spatially resolved, steady-state diffuse reflectance for
the non-invasive determination of tissue optical properties in vivo.
Medical Physics, 19:879–888, 1992.

[14] R. Fernando and M. Kilgard. The Cg Tutorial - The Definitive
Guide to Programmable Real-Time Graphics. Addison Wesley, 2003.

[15] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics,
Principle And Practice. Addison-Weseley, 1993.

[16] N. Greene. Environment Mapping and Other Applications of World
Projection. IEEE Computer Graphics and Applications, 6(11):21–
29, 1986.

[17] M. Hadwiger, T. Theußl, H. Hauser, and E. Gröller. Hardware-
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Figure 1: We render high-quality implicit surfaces on regular grids, e.g., distance fields or medical CT scans, in real-time
without pre-computing additional per-voxel information. Gradients with C1 continuity, second-order derivatives, and surface
curvature are computed exactly for each output pixel using tri-cubic filtering. Applications include surface interrogation and
visualizing levelset computations by color mapping curvature measures (center), and ridge and valley lines (left and right).

Abstract

This paper presents a real-time rendering pipeline for implicit surfaces defined by a regular volumetric grid
of samples. We use a ray-casting approach on current graphics hardware to perform a direct rendering of the
isosurface. A two-level hierarchical representation of the regular grid is employed to allow object-order and
image-order empty space skipping and circumvent memory limitations of graphics hardware. Adaptive sampling
and iterative refinement lead to high-quality ray/surface intersections. All shading operations are deferred to
image space, making their computational effort independent of the size of the input data. A continuous third-order
reconstruction filter allows on-the-fly evaluation of smooth normals and extrinsic curvatures at any point on the
surface without interpolating data computed at grid points. With these local shape descriptors, it is possible to
perform advanced shading using high-quality lighting and non-photorealistic effects in real-time.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism Color, shading, shadowing, and texture

1. Introduction

Rendering isosurfaces represented implicitly by a volume of
function samples is an important task in visualization, for ex-
ample in medical applications, where volume data are natu-
rally acquired directly, e.g., through CT or MRI scans, as
well as a wide spectrum of other graphics disciplines includ-
ing modeling and animation [MBWB02], and levelset simu-
lation [LKHW03]. More general, implicit models are often
specified and modified on volumetric grids such as regularly
sampled distance fields, e.g., in levelset methods. Implicit
representations naturally represent shapes of complex and

changing topology. However, a major limitation of implicits
is that the isosurface has to be extracted from the underlying
volumetric representation for display. High-quality render-
ing at interactive speeds is a major bottleneck, particularly
when the isosurface changes over time. When an implicit is
represented by a discrete set of samples, rendering involves
reconstruction of the data and the reconstruction filter is of
crucial importance for image quality, especially for gradient
reconstruction [MMK ∗98].

We present a real-time rendering pipeline for isosurfaces
of dense volumetric grids of function samples that achieves

c© The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.
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both high rendering quality and performance on current con-
sumer graphics hardware (GPUs). Our algorithms are gen-
erally independent of specific hardware but we assume sup-
port for volumetric textures, render-to-texture and looping in
fragment programs (e.g., ShaderModel 3.0). We address sev-
eral shortcomings in existing GPU isosurface rendering ap-
proaches, particularly the lack and inefficiency of advanced
shading, and texture memory usage. Modern GPUs are able
to perform standard ray-casting of small regularly sam-
pled data sets [KW03]. However, advanced shading, e.g.,
curvature-based transfer functions [HKG00, KWTM03], is
still the domain of off-line rendering. The amount of texture
memory limits data sizes significantly. This problem is ag-
gravated by the demand of high-quality rendering for voxel
data of 16-bit precision or more and lossless compression.

As a central part of our rendering pipeline, we support
tri-cubic filtering throughout. Cubic filters allow for precise
evaluations of differential properties of the isosurface, such
as the normal and curvature, which both play a vital role
in visualization, modeling, and simulation. These shape de-
scriptors can be used for various advanced shading effects
such as accessibility shading [Mil94], visualizing implicit
surface curvature [KWTM03], and flow along curvature di-
rections [vW03]. See Figure1 for examples. In contrast to
direct volume rendering, for isosurfaces only one sample po-
sition contributes to the color of a single pixel. Therefore,

Figure 2: Michelangelo’s David extracted and shaded with
tri-cubic filtering as isosurface of a 576x352x1536 16-bit
distance field at 10 fps. The distance field is subdivided into
two levels: a fine level for empty space skipping during ray-
casting (blue) and a coarse level for texture caching (green).

our method employs a ray-casting pass only for determin-
ing ray/surface intersections, and defers the computation of
surface shape descriptors and shading to image space, where
they are evaluated once per visible surface sample only. On-
demand caching techniques are employed to dynamically
download bricks of data only when they contain parts of the
isosurface. Because only a small fraction of the grid sam-
ples contributes to the definition of an isosurface, this leads
to significant reduction of texture memory usage without the
need for lossy compression. See Figure2 for an example.
In summary, the combination of real-time performance and
high quality yields a general-purpose rendering front-end for
many powerful applications of implicit surfaces. The major
contribution is a system that integrates the following:

• Tri-cubic filtering and high-quality shading with non-
photorealistic effects using on-the-fly computation of
smooth second-order geometric surface properties.

• Object space culling and empty space skipping without
any per-sample cost during ray-casting.

• Precise ray/surface intersections without global oversam-
pling, by combining adaptive resampling and iterative re-
finement of intersections with image order complexity.

• A very simple 3D brick cache alleviates GPU memory
limitations significantly.

• Principal surface curvatures are computed in a simpler
way than in previous approaches [KWTM03].

Previous Work

Our work is related to a large amount of previous research
on volume rendering and rendering isosurfaces of volumet-
ric data such as CT or MRI scans, as well as the area of
implicit surfaces in general, especially when an implicit is
represented by a grid of function samples, e.g., in levelset
methods [MBWB02]. Although isosurfaces are often con-
verted to triangle meshes for rendering [LC87], this pro-
duces very complex models and interactive changes of the
isovalue or the volume itself are difficult to deal with. The
two major approaches for rendering isosurfaces directly are
ray-casting [Bar86,Lev88], and sampling ray-surface inter-
sections on graphics hardware via slicing [WE98]. Although
implicits are well-suited for finding guaranteed ray-surface
intersections [KB89], precise computations and high-quality
reconstruction are expensive. Hence interactive rates with
high-quality or analytic ray-surface intersections and gradi-
ents have only been achieved by implementations using mul-
tiple CPUs [PSL∗98,PPL∗99] or clusters [DPH∗03]. Differ-
ent trade-offs have been presented [NMHW02, MKW∗04].
The parallel architecture of GPUs has also been used ex-
tensively for interactive volume rendering, usually via slic-
ing [WE98, EKE01]. In addition to hybrid CPU/GPU ray-
casting [WS01], ray-casting on GPUs has been shown for
small data sets [KW03, Gre04]. Adaptive sampling rates
can be achieved by using pre-computed importance vol-
umes [RGW∗03]. Aliasing artifacts due to undersampling
during slicing can be reduced by pre-integration [EKE01],
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which also yields sharp isosurface boundaries, but assumes
piecewise linear data variation along all viewing rays in-
stead of tri-linear or higher-order reconstruction. All other
previous interactive approaches for rendering isosurfaces
of volume data are restricted to tri-linear data interpola-
tion, and usually interpolate gradients pre-computed at grid
points. If the volume data have not been scanned directly,
signed distance fields are a natural choice as input for our
rendering pipeline [WSE99]. Levelset methods change the
distance fields dynamically and have many powerful ap-
plications such as surface editing and processing opera-
tors [MBWB02], and surface deformations [TO99]. Implic-
its are also well-suited for CSG modeling. In addition to re-
constructing an isosurface, we are computing implicit sur-
face curvature [KWTM03]. The space of principal curvature
magnitudes is intuitive for shape depiction [HKG00], and
can be used for non-photorealistic volume rendering [RE01]
such as ridge and valley lines [IFP95]. Curvature directions
can be visualized effectively by advecting dense noise tex-
tures [vW03], which we do entirely in image space [LJH03]
on a per-pixel basis. The texture memory limitation for
large volumes has been tackled by various means of lossy
compression [GWGS02, SW03], which are not well suited
for high-quality rendering. Texture packing has been used
for static lossless compression [KE02], improved render-
ing performance [LMK03], and sparse levelset computa-
tions [LKHW03]. Octrees have also been used [LHJ99,
WWH∗00]. Our texture caching approach combines adap-
tive texture look-ups during rendering [KE02] with dynami-
cally updated packed data [LKHW03].

2. Pipeline Overview

This section gives a high-level overview of our rendering
pipeline, which is illustrated in Figure3. The basic input is a
regularly sampled scalar volume. The first stage (top row of
Figure3) performs ray-casting through the volume in order
to obtain a floating point image of ray/isosurface intersection
positions in volume coordinates, which drives the following
stages in image space (lower two rows of Figure3). The ray-
casting stage (Section3) is the only part of the pipeline that
has object space complexity. All other computations (such as
computing derivatives; Section4.1) and shading operations
(such as color-coding curvature; Section4.2) are deferred to
image space and thus have image space complexity [ST90].

The volume is subdivided into two regular grid levels: a
fine level to facilitate empty space skipping (Section3.1),
and a coarse level to circumvent memory limitations of
graphics hardware (Section3.4). We call the elements of
the fine subdivision levelblocks, and those of the coarse
level bricks. For each block we track min-max values of a
set of voxels. Rays are started on block bounding faces and
cast into the volume using adaptive sampling (Section3.2).
The last operation of the ray-casting stage iteratively refines
isosurface hit-points (Section3.3). This is done with a con-
stant number of steps of image space complexity and is thus

Figure 3: Overview of our rendering pipeline. The top row
operates with object space complexity until the refinement of
ray/isosurface intersection positions. The middle row stages
compute differential surface properties with image space
complexity, and the bottom row stages perform deferred
shading in image space.

the transition from object to image space. The result of hit-
point refinement is an image of high-quality ray/isosurface
intersection positions. If the whole volume does not fit into
graphics memory, rays are cast through a dynamic cache tex-
ture storing active bricks (Section3.4). The cache is updated
on-the-fly according to the current isovalue. An additional
low-resolution texture references the positions of bricks of
the volume in the cache.

The image space pipeline stages generate a series of im-
ages of differential isosurface properties, which are then
used in a final shading pass to generate an output image us-
ing a variety of shading styles. Surface properties are com-
puted at the exact positions of ray/isosurface intersections
specified by the intersection image. Computing the first and
second partial derivatives of the scalar volume yields float-
ing point images for the components of the gradient and the
Hessian matrix (Section4.1). These derivatives are then used
to compute curvature measures, which are likewise written
into floating point images. The output image is generated in
a final image space shading pass with a variety of effects that
build on the shape descriptors computed before. The gradi-
ent image can be used for all shading models that require a
surface normal, such as standard Blinn-Phong or tone shad-
ing. Curvature measures can be mapped to colors via 1D or
2D transfer functions, which is well-suited for shape depic-
tion. For example drawing ridge and valley lines without
generating actual line primitives. Pixels that correspond to
ridge or valley areas are identified on a per-pixel basis via
a curvature transfer function. Curvature directions are also
effective shape cues, and we illustrate the curvature field on
the isosurface with image space flow advection.
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3. Ray-Casting

The basic idea of GPU-based ray-casting is to store the en-
tire volume in a single 3D texture, and drive a fragment
program that casts rays into the volume. Each pixel corre-
sponds to a single rayp(t,x,y) = c+ t d(x,y) in volume
coordinates. Here, the normalized direction vectord(x,y)
can be computed from the camera positionc and the screen
space coordinates(x,y) of the pixel. The range of depths
[tstart(x,y), texit(x,y)] which has to be searched for an iso-
surface intersection is computed per frame during initializa-
tion. In the simplest case,tstart is obtained by rasterizing the
front faces of the volume bounding box with the correspond-
ing distance to the camera. Rendering the back faces of the
bounding box yields the depthstexit of each ray exiting the
volume.

In contrast to earlier approaches, we are using a single
rendering pass and looping in the fragment shader for casting
through the volume in front-to-back order instead of mul-
tiple passes [KW03], and employ object-order in addition
to image-order empty space skipping. Most importantly, we
overcome the following limitations:

• Empty space skipping overhead is reduced by using a two-
level approach. Most empty space is skipped with no cost
using modified ray segments[tstart(x,y), texit(x,y)]. Only
for a small number of samples empty space has to be
skipped on a sample-by-sample basis, which is acceler-
ated via an adaptive sampling strategy.

• The quality of ray/isosurface intersection positions is re-
fined by an iterative bisection procedure, which yields
quality identical to much higher constant sampling
rates [KW03] except at silhouette edges. A simple adap-
tive approach improves the quality of silhouette edges,
without significant book-keeping overhead [RGW∗03].

• The entire volume is not required to fit in GPU memory.
Instead of casting through the original volume, we sample
a brick cache texture storing only bricks intersected by the
isosurface. Fast culling and LRU cache brick replacement
allow changing the isovalue in real-time.

3.1. Empty Space Skipping

In order to facilitate object-order empty space skipping with-
out per-sample overhead, we maintain min-max values of
a regular subdivision of the volume into small blocks, e.g.,
with 43 or 83 voxels per block. These blocks do not actu-
ally re-arrange the volume. For each block, a min-max value
is simply stored in an additional structure for culling. If the
whole volume does not fit in GPU memory, however, a sec-
ond level of coarser bricks is maintained, which is described
in Section3.4. Whenever the isovalue changes, blocks are
culled against it using their min-max information and a range
query [CSS98], which determines their active status. See
Figure 4. The view-independent geometry of active block
bounding faces that are adjacent to inactive blocks is kept in
GPU memory for fast rendering.

Figure 4: Ray-casting with object-order empty space skip-
ping. The bounding geometry (black) between active and in-
active blocks that determines start and exit depths for the in-
tersection search along rays (white) encloses the isosurface
(yellow). Colored bricks of 2x2 blocks reference bricks in the
cache texture (Figure6). White bricks are not in the cache.
Actual ray termination points are shown in yellow and red,
respectively.

In order to obtain ray start depthststart(x,y), the front
faces of the block bounding geometry are rendered with their
corresponding distance to the camera. The front-most points
of ray intersections are retained by enabling a corresponding
depth test (e.g.,GL_LESS). For obtaining ray exit depths
texit(x,y) we rasterize the back faces with an inverted depth
test that keeps only the farthest points (e.g.,GL_GREATER).
Figure4 shows that this approach does not exclude inactive
blocks from the search range if they are enclosed by active
blocks with respect to the current viewing direction. The cor-
responding samples are skipped on a per-sample basis early
in the ray-casting loop. However, most rays hit the isosurface
soon after being started and are terminated quickly (yellow
points in Figure4, left). Only a small number of rays on the
outer side of the isosurface silhouette are traced for a larger
distance until they hit the exit position of the block bound-
ing geometry (red points in Figure4, left). The right side of
Figure4 illustrates the worst case scenario, where rays are
started close to the view point, miss the corresponding part
of the isosurface, and sample inactive blocks with image-
order empty space skipping until they enter another part of
the isosurface bounding geometry and are terminated or exit
without any intersection. In order to minimize the perfor-
mance impact when the distance from ray start to exit or ter-
mination is large, we use an adaptive strategy for adjusting
the distance between successive samples along a ray.

3.2. Adaptive Sampling

In order to find the position of intersection for each ray, the
scalar function is reconstructed at discrete sampling posi-
tions pi(x,y) = c + tid(x,y) for increasing values ofti in
[tstart, texit]. The intersection is detected when the first sam-
ple lies behind the isosurface, e.g., when the sample value is
smaller than the isovalue. Note that in general the exact inter-
section occurs somewhere between two successive samples.
Due to this discrete sampling, it is possible that an intersec-
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tion is missed entirely when the segment between two suc-
cessive samples crosses the isosurface twice. This is mainly
a problem for rays near the silhouette. Guaranteed intersec-
tions even for thin sheets are possible if the gradient length
is bounded by some valueL [KB89]. Note that for distance
fields,L is equal to 1. For some sample valuef , it is known
that the intersection at isovalueρ cannot occur for any point
closer thanh= | f −ρ|/L. Yet,hcan become arbitrarily small
near the isosurface, which would lead to an infinite number
of samples for guaranteed intersections.

We use adaptive sampling to improve intersection detec-
tion. The actual intersection position of an intersection that
has been detected is then further refined using the approach
described in Section3.3. We have found that completely
adaptive sampling rates are not well suited for implemen-
tations on graphics hardware. These architectures use mul-
tiple pipelines where small tiles of neighboring pixels are
scan-converted in parallel using the same texture cache. With
completely adaptive sampling rate, the sampling positions of
neighboring pixels diverge during parallel execution, leading
to under-utilization of the cache. Therefore, we use only two
different discrete sampling rates. Thebase sampling rate r0
is specified directly by the user where 1.0 corresponds to a
single voxel. It is the main tradeoff between speed and min-
imal sheet thickness with guaranteed intersections. In order
to improve the quality of silhouettes (see Figure5), we use
a secondmaximum sampling rate r1 as a constant multiple
of r0: r1 = nr0. We are currently usingn = 8 in our sys-
tem. However, we are not detecting silhouettes explicitly at
this stage, because it would be too costly. Instead, we au-
tomatically increase the sampling rate fromr0 to r1 when
the current sample’s value is closer to the isovalueρ by a
small thresholdδ. In our current implementation,δ is set by
the user as a quality parameter, which is especially easy for
distance fields where the gradient magnitude is 1.0 every-
where. In this case, a constantδ can be used for all data sets,
whereas for CT scans it has to be set according to the data.

3.3. Intersection Refinement

Once a ray segment containing an intersection has been de-
tected, the next stage determines an accurate intersection po-
sition using an iterative bisection procedure. In one itera-
tion, we first compute an approximate intersection position
assuming a linear field within the segment. Given the sam-
ple valuesf at positionsx for the near and far ends of the
segment, the new sample position is

xnew= (x f ar−xnear)
ρ− fnear

f f ar− fnear
+xnear (1)

Then the valuefnew is fetched at this point and compared to
the isovalueρ. Depending on the result, we update the ray
segment with either the front or the back sub-segment. If the
new point lies in front of the isosurface (e.g.fnew> ρ), we
setxnear to xnew, otherwise we setx f ar to xnew and repeat.
We have found empirically that a fixed number of four itera-
tion steps is enough for high-quality intersection positions.

Figure 5: The left image illustrates a small detail of the
asian dragon model with a sampling rate of 0.5. On the right,
adaptive sampling increases the sampling rate to 4.0 close to
the isosurface. Note that except at the silhouettes there is no
visible difference due to iterative refinement of intersections.

3.4. Brick Caching

For any possible isovalue, many of the blocks described in
Section3.1do not contain any part of the isosurface. In addi-
tion to improving rendering performance by skipping empty
blocks, this fact can also be used for reducing the effective
memory footprint of relevant parts of the volume signifi-
cantly. Whenever the isovalue changes, the corresponding
range query also determines the active status of bricks of
coarser resolution, e.g., 323 voxels. The colored squares in
Figure 4 depict these bricks with a size of 2x2 blocks per
brick for illustration purposes. In contrast to blocks, bricks
re-arrange the volume and include neighbor samples to allow
filtering without complicated look-ups at the boundaries, i.e.,
a brick of resolutionn3 is stored with size(n+1)3 [KE02].
This overhead is inversely proportional to the brick size,
which is the reason for using two levels of subdivision. Small
blocks fit the isosurface tightly for empty space skipping and
larger bricks avoid excessive storage overhead for memory
management.

In order to decouple the volume size from restrictions
imposed by GPUs on volume resolution (e.g., 5123 on
NVIDIA GeForce 6) and available video memory (e.g.,
256MB), we can perform ray-casting directly on a re-

Figure 6: A low-resolution brick reference texture (left)
stores references from volume coordinates to texture cache
bricks (right). The reference texture is sampled in the frag-
ment shader to transform volume coordinates into brick
cache texture coordinates. White bricks denotenull refer-
ences for bricks that are not resident in the cache.
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arranged brick structure. Similar to the idea of adaptive tex-
ture maps [KE02], we maintain an additional low-resolution
floating point reference texture (e.g., 163 for a 5123 volume
with 323 bricks) storing texture coordinate offsets of bricks
in a single brick cache texture that is always resident in GPU
memory (e.g., a 512x512x256 texture). However, both the
reference and the brick cache texture are maintained dynam-
ically and not generated in a pre-process [KE02]. Figure6
illustrates the use of the reference and brick cache textures.
Note that since no gradient reconstruction or shading is per-
formed during ray-casting, no complicated neighbor look-
ups are required at this stage. When the isovalue changes,
bricks that potentially contain a part of the isosurface are
downloaded into the brick cache texture. Inactive bricks are
removed with a simple LRU (least recently used) strategy
when their storage space is required for active bricks. Bricks
that are currently not resident in the cache texture are spe-
cially marked at the corresponding position in the reference
texture (shown as white squares in Figure6). During ray-
casting, samples in such bricks are simply skipped.

4. Deferred Shading

While the last section showed how to compute accurate
ray/surface intersections for each pixel, this section de-
scribes how to turn the position image into a high quality
rendering using deferred shading. All algorithms described
here have image space complexity, meaning that they are
independent of the size of the grid data. Each pass of the
deferred shading stage writes a different property of the in-
tersection position to an off-screen pixel buffer [ST90]. The
result of one pass can serve as input for successive passes by
mapping the pixel buffer as a texture. The final shading pass
uses the property images to render the shaded isosurface to
the viewport.

Figure 7: Color mapping of maximum principal curvature
magnitude using a 1D color look-up table (dragon data set
with 512x512x256 samples).

operation #passes inputs outputs
Ray-Casting 3 [3] volume pos
Gradient 3 [6] pos,volume g
Hessian 6 [12] pos,volume H
Curvature 1 [13] g,H κ1,2, e1,2
Shading 1 [14] pos,g, κ1,2, e1,2 image

Table 1: Number of image space rendering passes and re-
quired input images for differential properties and deferred
shading. Pass counts in brackets denote total number of
passes after the intersection position computation.

4.1. Differential Surface Properties

The appendix describes briefly how we quickly evaluate
cubic reconstruction filters and their partial derivatives.
See [SH05] for more details. This section shows that these
basic capabilities can be exploited to calculate differential
properties of isosurfaces from the scalar volume. In our im-
plementation on a NVIDIA GeForce 6800, each property
is calculated in one to six rendering passes, where each of
these passes renders only a single screen-aligned quad in
order to invoke the fragment shader for every output pixel.
An overview of the number and types of rendering passes is
given in Table1.

Partial derivatives. The first differential property of the
scalar volume that we need to reconstruct is its gradient
g = ∇ f , which we use as implicit surface normal and for
curvature computations. The surface normal is the normal-
ized gradient of the volume, or its negative, depending on the
notion of being inside/outside the object:n = ±g/|g|. We
computeg in three rendering passes, each of which evalu-
ates a tri-cubic B-spline convolution sum in order to compute
one of the three first-order partial derivatives via eight tex-
ture fetches from the 3D volume texture, plus three fetches
from 1D filter weight textures [SH05]. The calculated gradi-
ent is stored in a single RGB floating point image, see Fig-
ure 3(derivatives). The HessianH = ∇g, comprised of all
second partial derivatives of the volume, is calculated analo-
gously. Due to symmetry, only six unique components need
to be calculated, which is done in six rendering passes using
either eleven or fourteen texture fetches each. The six calcu-
lated coefficients ofH are stored in two RGB floating point
images.

Extrinsic curvature. The first and second principal cur-
vature magnitudes (κ1, κ2) of the isosurface can be estimated
directly from the gradientg and the HessianH [KWTM03],
whereby tri-cubic filtering in general yields high-quality re-
sults. We do this in a single rendering pass, which uses the
three partial derivative RGB floating point images generated
by previous pipeline stages as input textures. The princi-
pal curvature magnitudes amount to two eigenvalues of the
shape operatorS, defined as the tangent space projection of
the normalized Hessian:

S= PT H
|g|P, P = I − ggT

|g|2
(2)
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Figure 8: Curvature Mapping of a643 synthetic data set.
Mean curvature(κ1 + κ2)/2 (left), and Gaussian curvature
κ1κ2 (right). Our renderer is capable to reproduce images
from [KWTM03] at interactive rates. Data set and color
mapping function are courtesy of Gordon Kindlmann.

whereI denotes the identity matrix. The eigenvalue corre-
sponding to the eigenvectorg vanishes, and the other two
eigenvalues are the principal curvature magnitudes. Because
one eigenvector is known, it is possible to solve for the re-
maining two eigenvectors in the two-dimensional tangent
space without ever computingS explicitly. This results in
reduced amount of operations and improved accuracy com-
pared to the approach given in [KWTM03]. The transforma-
tion of the shape operatorS to some orthogonal basis(u,v)
of the tangent space is given by

A =
(

a11 a12
a21 a22

)
= (u,v)T H

|g| (u,v) (3)

Eigenvalues ofA can now be computed using the direct
formulas for 2x2 matrices. The two eigenvectors of the shape
operatorS corresponding to the principal curvature direc-
tions are computed by transforming the eigenvectors ofA
back to three-dimensional object space.

κ1,2 =
1
2

(
trace(A)±

√
trace(A)2−4det(A)

)
(4)

ei = κiu+(κi +a22−a11)v (5)

This amounts to a moderate number of vector and matrix
multiplications, solving a quadratic polynomial, and three
texture instructions. The curvature magnitudes and direc-
tions are rendered to two floating point targets.

4.2. Shading Effects

After the computation of differential surface properties, the
resulting floating point images can be used for deferred shad-
ing in image space. Hence, all shading is decoupled from the
volume and only calculated for actually visible pixels. This
section outlines some of the example shading modes that we
have implemented. This is only a small selection of possible
rendering modes that can be used in our pipeline.

Shading from gradient image. The simplest shading
equations depend on the normal vector of the isosurface. We
have implemented standard Blinn-Phong shading and tone
shading.

Figure 9: Asian dragon data set (512x256x256). Left: tone
shading. Right: tone shading blended with accessibility
shading, allowing better depiction of local surface details.

Curvature color mapping. The extrinsic curvature can
be visualized on the isosurface by mapping curvature mea-
sures to colors via lookup textures. First and second principal
curvatures, mean curvature(κ1+κ2)/2 and Gaussian curva-
ture κ1κ2 can be visualized using a 1D lookup texture (see
Figures7 and8) and give a good understanding of the lo-
cal shape of the isosurface. Using a two-dimensional lookup
texture for the(κ1,κ2) domain allows to highlight different
structures on the surface. Figure9 shows approximated ac-
cessibility shading [Mil94]. In this case, we have used a sim-
ple 1D curvature transfer function to darken areas with large
negative maximum curvature. A 2D curvature function could
also be employed for this purpose, giving finer control over
the appearance.

Curvature-aligned flow advection. Direct mappings of
principal curvature direction vectors to RGB colors are hard
to interpret, see Figure3(curvature directions). Instead of
showing curvature directions directly, we visualize them
with an approach based on image-based flow visualiza-

Figure 10: Dense flow advected in the direction of maximum
principal curvature (head of the David data set with5123

samples).
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tion [vW03]. In particular, we are advecting flow on the
surface entirely in image space [LJH03] by computing ad-
vection on a per-pixel basis according to the underlying
vector field of principal curvature directions. Image-based
flow advection methods can be used on surfaces without
parametrization by projecting a 3D flow field to the 2D im-
age plane and advecting entirely in the image [vW03]. We do
this by simply projecting each 3D curvature direction vec-
tor stored in the corresponding floating point image to the
image plane immediately before performing advection for a
given pixel. Image-based flow advection easily attains real-
time rates, which complements the capability of our pipeline
to generate the underlying, potentially unsteady, flow field
in real-time. See Figure10 for an example. A problem with
advecting flow along curvature directions is that their ori-
entation is not uniquely defined and thus seams in the flow
cannot be entirely avoided [vW03]. Although these seams
are visible when looking closely, we have found them to be
not very disturbing in practice. Even though the flow field
we are computing from curvature directions contains clearly
visible patches (Figure3: curvature directions), the resulting
flow has much higher quality (Figure10).

Non-photorealistic effects.Curvature information can be
used for a variety of non-photorealistic rendering modes.
We have implemented silhouette outlining taking curvature
into account in order to control thickness, and depicting
ridge and valley lines specified via colors in the(κ1,κ2) do-
main [KWTM03]. See Figures11and8. In our pipeline, ren-
dering modes such as these are simple operations that can be
carried out in a single final shading pass, usually in combina-
tion with other parts of a larger shading equation, e.g., tone
shading or solid texturing. We find the combination of cur-
vature magnitude color maps and curvature-directed flow es-
pecially powerful for visualizing surface shape, e.g., as guid-
ance during modeling.

5. Results

Volume rendering.Since the input to our rendering pipeline
is an arbitrary scalar volume, it is naturally applicable to the
rendering of isosurfaces such as the CT scan shown in Fig-
ure11. We have integrated our renderer into an existing vol-
ume rendering framework as high-quality isosurface render-
ing front-end. In particular, real-time curvature estimation
can be used to guide volume exploration, e.g., visualizing
isosurface uncertainty, as has been proposed previously for
off-line volume rendering [KWTM03].

Rendering from distance fields.For surface editing us-
ing a levelset approach, an initial implicit representation of
the surface is usually generated by computing the signed
distance to a triangle mesh. We used a variation of radially
weighted linear fields [Nie04] to compute high resolution
distance fields from triangle meshes, see Figures7 and 9 for
examples. Our rendering pipeline could easily be extended
to include on the fly evaluation of CSG operations between
multiple distance fields using min/max operations.

5.1. Rendering Performance

Table 2 gives performance numbers of our rendering
pipeline corresponding to the figures shown in this paper.
Except for very small volumes, the overall performance is
dominated by the initial volume sampling step that computes
approximate intersection positions. This fact is illustrated in
Table3. Although differential surface properties are expen-
sive to compute in general, the fact that all of these computa-
tions have image space complexity combined with fast filter-
ing decrease their impact on overall frame rate significantly.
Even more important, the time spent in these computations
is constant with respect to sampling rate and volume resolu-
tion. The same is true for intersection optimization via bisec-
tion. Table4 illustrates the performance impact of different
sampling rates. With respect to adaptive sampling, we com-
pare constant sampling rates with the same rates for the max-
imum sampling rater1 that is used close to the isosurface
(Section3.2). We observe that although the overhead intro-
duced by bricking is significant, it can be reduced via adap-
tive sampling so that overall performance is about 80-85% of
rendering without bricking and without adaptive sampling.

data set grid size figure fps
asian dragon 512x256x256 1 20.3
asian dragon 512x256x256 9 24.0
david head 512x512x512 1 15.3
david head 512x512x512 10 14.9
david 576x352x1536 2 10.3
cube 64x64x64 8 29.6
dragon 512x512x256 7 11.7

Table 2: Performance of the renderings shown in the figures.
Frame rates are given in frames per second for a 512x512
viewport. Four bisection steps have always been used, since
they do not influence overall performance significantly.

bounding differential
geometry ray-cast properties shading

1.7% 66.1% 31.0% 1.1%

Table 3: Relative performance of the different stages of the
pipeline for asian dragon rendering of Figure1. Rendering
performance is dominated by the surface intersection time.

adaptive brick sampling rate (adaptive:r1)
sampling size 0.25 0.5 1 2 4 8

no none 33.2 29.0 22.7 16.9 12.4
no 32 23.8 19.5 16.1 11.7 7.2

r1 = 8r0 none 34.6 27.4 20.3 15.2
r1 = 8r0 32 19.2 13.8 10.2 6.9

Table 4: Rendering performance in frames per second cor-
responding to different sampling rates for asian dragon ren-
dering of Figure1. Brick caching introduces an additional
texture indirection per sample (Section3.4). Adaptive sam-
pling (Section3.2; n = 8) with bricking reduces this over-
head compared to constant sampling.
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5.2. Discussion and Limitations

This section discusses some limitations of our system. A
problem that can be seen in Figure11, is that even when
cubic filters are used, the curvature computed on actual
scanned data contains visible noise. However, the quality of
cubic filters is almost indistinguishable from filters up to or-
der seven [KWTM03]. In any case it is important to use full
32-bit floating point precision for all GPU computations.

A limitation of our bisection approach for intersection is
that in comparison to an analytic root search [DPH∗03] or
isolation of exactly one intersection [MKW∗04], our dis-
crete sampling with fixed step size does not guarantee cor-
rect detection of segments with multiple intersections. Fur-
thermore, our bisection search might not find the intersection
closest to the camera in such configurations.

A disadvantage of all deferred shading pipelines in gen-
eral is the memory consumption of the image buffers. We
are maintaining up to six window-sized images consisting of
four 32-bit floating point channels each, which consumes a
significant amount of GPU memory for high rendering res-
olutions and thus decreases the maximum volume or brick
cache size.

Another consideration is whether to use an interpolating
filter, such as tri-linear interpolation or Catmull-Rom cubic
splines, or a smoothing filter such as the cubic B-spline for
reconstruction purposes. A very good combination seems to
be using an interpolating filter for value reconstruction, and
a smoothing filter for reconstructing derivatives.

6. Conclusions

We have presented a rendering pipeline for real-time ren-
dering of isosurfaces defined implicitly by regularly sam-
pled scalar volumes. Using empty space skipping techniques
and brick caching, we are able to render volumes of large
sizes that would not fit into GPU texture memory at once
at interactive rates. In comparison to volume rendering al-
gorithms which perform color integration along the viewing
ray, our method is optimized for rendering of isosurfaces.
Because only one sample position contributes to the color of
each pixel, differential surface properties can be computed
on-the-fly in image space as part of the deferred shading
stage. Due to its general nature, our pipeline is applicable
to many practical problems involving implicit surfaces, such
as volume rendering of scientific or medical data, modeling,
morphing, and surface investigation using non-photorealistic
techniques.

We would like to thank Gordon Kindlmann, Bob Laramee, Jiří
Hladuvka, and Christof Rezk-Salama for their help and valuable
contributions. The VRVis research center is funded in part by the
Austrian Kplus project. The second author has been supported by
Schlumberger Cambridge Research. The medical data sets are cour-
tesy of Tiani MedGraph. The David model is courtesy of the Digital
Michelangelo Project.

Figure 11: Contours modulated with curvature in view
direction, and ridges and valleys on an isosurface of a
512x512x333 CT scan of a human head.
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Appendix: Fast tri-cubic interpolation
To reconstruct a texture with a cubic B-spline filter at texture coor-
dinatex, the convolution sum

f (x) = w0(x) fi−1 +w1(x) fi +w2(x) fi+1 +w3(x) fi+2 (6)

of four weighted neighboring texelsfi has to be evaluated. Note that
the weights are periodic in the sample positions of the input texture.
The number of texture fetches is reduced by employing the linear
filtering capability of GPU texture units. Instead of fetching all four
neighbors independently, we fetch two consecutive samples at the
same time using linear interpolation and perform a single weighted
sum.

f (x) = g0(x) fbxc−h0(x) +g1(x) fbxc+h1(x) (7)

The weight functionsgi and offset functionshi are pre-computed
and stored in a lookup texture.

g0(x) = w0(x)+w1(x), h0(x) = 1−
w1(x)

w0(x)+w1(x)
(8)

g1(x) = w2(x)+w3(x), h1(x) = 1+
w3(x)

w2(x)+w3(x)
(9)

The extension to three dimensional textures is straight-forward due
to separability of tensor-product B-splines, and it is possible to eval-
uate a tri-cubic filter with 64 summands using just eight tri-linear
texture fetches. In order to compute partial derivatives, the functions
gi andhi are computed using the appropriate derivatives ofwi . More
details can be found in [SH05].
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Figure 1: The three main application areas of our system. Left: Virtual colonoscopy. The semi-transparent isosurface is blended
with a direct volume ray-casting of the area behind. Center: Planning of pituitary surgery for tumor removal. Using direct
volume rendering in combination with semi-transparent isosurfaces allows for visualization of otherwise occluded objects.
Right: Virtual angioscopy of the aorta and a stent that supports it. Two different isovalues have to be used in this case.

Abstract

Virtual endoscopy has proven to be a very powerful tool in endoscopic surgery. However, most virtual endoscopy
systems are restricted to rendering isosurfaces or require segmentation in order to visualize additional objects
behind occluding tissue. This paper presents a system for real-time perspective direct volume and isosurface
rendering, which allows to simultaneously visualize both the interesting tissue and everything that is behind.
Large volume data can be viewed seamlessly from inside or outside the volume without any pre-computation or
segmentation. Our system uses a novel ray-casting pipeline for GPUs that has been optimized for the requirements
of virtual endoscopy and also allows easy incorporation of auxiliary geometry, e.g., for displaying parts of the
endoscopic device, pointers, or grid lines for orientation purposes. We present three main applications of this
system and the underlying ray-casting algorithm. Although our ray-casting approach is of general applicability,
we have specifically applied it to virtual colonoscopy, virtual angioscopy, and virtual pituitary surgery.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism Color, shading, shadowing, and texture

1. Introduction

Virtual endoscopy has become a very powerful tool for
aiding endoscopic surgery procedures, from initial surgeon
training to preoperative planning and intraoperative sup-
port [BHH∗04, Bar05]. For rendering, most systems for vir-
tual endoscopy are focusing on rendering isosurfaces, e.g., to
depict tissue walls surrounding the current position of the en-
doscope. The two main approaches for rendering isosurfaces
are to extract explicit geometry [BHH∗04,Bar05], e.g., with
a variant of the marching cubes algorithm [LC87], or to use
first-hit ray-casting in order to determine the intersection of

viewing rays with the isosurface [NMHW02,NWF∗]. While
the first category is able to achieve very high performance,
especially when graphics hardware is used for rendering the
surface geometry [HMK∗97, BS99], the fact that explicit
geometry can usually not be extracted interactively ham-
pers isovalue changes. Furthermore, high-resolution isosur-
face geometry is very memory intensive. On the other hand,
ray-casting approaches for virtual endoscopy have the flex-
ibility to change the isovalue interactively, but cannot make
use of hardware-accelerated polygon rasterization and are
usually implemented with custom CPU algorithms [NWF∗].
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Figure 2: Overview of a 512x512x478 colonoscopy data set
rendered with our system. Figure 1 (left) and Figure 3 show
inside views using the same data set and transfer function.

Though isosurface-renderings can be enhanced to include
more information about surface properties [NWF∗], a large
part of the information contained in a medical scan is still
discarded during rendering because everything in front and
especially most of the information behind the isosurface
is not rendered. A crucial example is pituitary surgery for
removing a tumor at the pituitary gland near the internal
carotid artery, which is hidden behind a bone structure that
must be punctured by the surgeon without damaging the
artery behind it [NWF∗] (see Figure 1 (center)). Most previ-
ous approaches have required segmentation in order to visu-
alize these crucial occluded structures, which is a very time-
consuming task and only allows to depict objects as isosur-
faces of smoothed binary masks [NFW∗04].

In contrast, direct volume rendering is only common for
viewing volume data from the outside, because most ap-
proaches either use orthogonal projection or incur artifacts
with perspective projection due to incorrect opacity correc-
tion [EHK∗04]. Endoscopic views, however, require per-
spective projection with large fields of view and correct com-
putation of the volume rendering integral, which necessi-
tated special hardware architectures so far to achieve inter-
activity [MB01]. GPU-based ray-casting on the other hand
can deliver this interactivity for either perspective or or-
thogonal projections [KW03], but requires far more effort
to overcome the inherent problems. Most recent approaches
build on single-pass ray-casting, where the entire volume
is traversed in a single rendering pass using data-dependent
looping in the hardware fragment shader [SSK∗05,HSS∗05,
KSS∗05]. In order to support large data sets, a bricked vol-

ume can be rendered in correct visibility order by performing
ray-casting for each brick individually [HQK05]. This, how-
ever, incurs per-brick setup overhead in contrast to single-
pass approaches.

Our system uses a novel ray-casting pipeline for GPUs
supporting Shader Model 3.0 (e.g., NVIDIA GeForce 6800
or ATI Radeon X1800) that uses perspective projection and
also allows easy incorporation of auxiliary geometry, e.g.,
for displaying parts of the endoscopic device, pointers, or
grids for orientation. We seamlessly integrate direct volume
rendering with isosurface rendering and achieve real-time
performance for both fly-through and outside views without
the need for pre-computation or segmentation, which greatly
facilitates use by physicians that are working under enor-
mous time pressure.

Although our system can essentially be used for virtual
endoscopy in general, we have specifically applied it to three
different applications: Virtual colonoscopy [HMK∗97],
virtual angioscopy [NMHW02], and virtual endonasal
transsphenoidal pituitary surgery [NWF∗]. We have inte-
grated our system into a commercial medical workstation
software, and the application to neurosurgery is already in
regular clinical use for operation planning at the department
of neurosurgery at the Medical University Vienna.

2. Applications

Virtual endoscopy has proven to be a useful tool for a num-
ber of different applications, including pre-operative plan-
ning, diagnostic purposes, teaching and practicing with en-
doscopic tools and even the emerging field of aided intra-
operative navigation. The aim of all of these systems - espe-
cially the latter one - is to aid medical doctors with a com-
puter generated view of a certain position and orientation of
the endoscope that resembles the real endoscopic view as
closely as possible while at the same time supplying addi-
tional information that would not be visible otherwise. This
additional information may include waypoints that prevent
deviation from the optimal path, tissue right behind visi-
ble structures, the endoscope and attached endoscopic tools
themselves, means to measure certain structures to get a bet-
ter impression of the surrounding tissue and emphasizing
important parts like nerves or bigger blood vessels that must
not be damaged by any means.

To fulfill all these requirements, a suitable renderer has
to be able to visualize many semi-transparent structures at
the same time while always keeping the focus on the main
object of interest: The surrounding walls of the blood ves-
sel, colon or other structure that the endoscope is travelling
through. What makes this task even more difficult is the fact
that we are facing three different types of objects here that
all have to be visualized accordingly: Isosurfaces like the
walls have to be extracted and lit in a way that gives a good
overview about surface properties and makes small deforma-
tions easily detectable. Regions of interest like tissue behind
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Figure 3: Changing the isosurface opacity allows to focus more on the foreground rendered with isosurfacing (e.g., the colon)
or the background rendered with direct volume rendering. Correctly integrating polygonal geometry such as the grid shown
here facilitates spatial orientation. Isosurface opacity also influences rendering performance, as illustrated in Tables 1 and 2.

walls, important nerves or organs should be visualized us-
ing direct volume rendering, giving the user the possibility
to distinguish different parts of tissue by assigning a suitable
transfer function. Finally, endoscopic tools, grids and point-
ers, which will aid the surgeon in orientation and estimation
of magnitude, are made up of lines and polygons and should
be visualized using the normal OpenGL pipeline.

Bringing these visualization techniques together while
still preserving interactive framerates was the primary goal
of our system, and in the following we will present three
fields of application where this leads to significant improve-
ments over previous systems in both expressiveness and ap-
plicability.

2.1. Virtual Colonoscopy

A regular colonoscopy enables doctors to examine the last
portion of the gastrointestinal tract and look for problem ar-
eas such as inflamed tissue, abnormal growths and ulcers.
The main purpose is to detect early signs of cancer in the
colon and rectum and further analyze or remove them, if pos-
sible. Virtual colonoscopy can greatly speed up this process
by enabling doctors to check for any kind of abnormality be-
forehand, and only perform a real colonoscopy when polyps
have to be removed or samples have to be taken.

Unfortunately, most virtual colonoscopy systems suffer
from the limited expressiveness of the common isosurface
extraction, which makes it very difficult to identify all ab-
normalities and may even lead to false diagnoses because
important features where simply overlooked. With doctors
hesitating to adopt a technology that has not really proven re-
liability yet, not many of these systems have found their way
into clinical practice. Another shortcoming is that the visu-
alization often lacks resemblance to the real images, making
it very difficult for doctors to estimate tissue properties and
recognize certain parts later on.

The solution we propose is to combine isosurface extrac-
tion for visualization of the colon with a DVR of the regions

of interest behind the intestinal wall, thus gaining additional
information about the respective tissue. This not only leads
to a much more expressive image, but also provides impor-
tant clues about the position and orientation within the colon,
because the whole gastrointestinal tract can be seen at any
time. In the case of an intra-operative system, this makes it
extremely simple to quickly find areas of interest again, thus
greatly speeding up the surgery.

For diagnostic purposes, an automatic path can be cal-
culated which provides a convenient and quick fly-through
from the beginning of the colon to the rectum, giving an
overview over the large intestine in a matter of minutes.

2.2. Virtual Angioscopy

Virtual angioscopy (virtual endoscopy inside blood vessels)
is primarily used for detecting stenoses and calcifications
in blood vessels. With many blood vessels being too nar-
row for a normal endoscope, virtual angioscopy is in many
cases the only alternative to the tedious process of examining
2D-slices of a CT scan. Besides the small size of the struc-
tures, the specific nature of an angiography requires a slight
modification of the rendering pipeline: Because some kind
of contrast medium is injected to identify important ves-
sels more easily, density values inside the vessels are higher
than those outside. On the other hand, calcifications inside
the vessel have an even higher density value, which means
that we face two different isosurfaces: One at a certain mini-
mum threshold (i.e., the outer walls) and one at a maximum
threshold above that of the contrast medium, which in most
cases are calcifications but can also be structures such as
stents [BDV∗97]. An example that has been generated with
our system is illustrated in Figure 1 (right). In this case, the
first isosurface corresponds to the stent, and the second iso-
surface corresponds to the aortic wall. Everything outside
one of the isosurfaces (i.e. below the minimum or above
the maximum threshold) will be rendered with DVR again,
which supplies additional information about the tissue den-
sity thus aiding doctors in detecting calcifications and again
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facilitates estimating the absolute position and orientation
through the visualization of certain body landmarks.

A further interesting application is the implantation of
stents, which are small tubular prostheses that are inserted
into an artery via an endovascular procedure and are mainly
used to enlarge a stenosis (i.e. a local narrowing of the arte-
rial lumen). Like calcifications, stents have a density thresh-
old well above that of the contrast medium, which requires
the rendering of two different isosurfaces again. When im-
planting a stent, the position in respect to other landmarks of
the body (e.g. heart, lung or bones) is especially important,
which is achieved through a whole DVR behind the semi-
transparent isosurfaces again.

2.3. Endonasal Transsphenoidal Pituitary Surgery

Endonasal transsphenoidal pituitary surgery is a minimally
invasive endoscopic procedure, mainly applied to remove
various kinds of pituitary tumors. Virtual endoscopy can aid
medical doctors by simulating this challenging surgery be-
forehand and planning the approach and ideal target posi-
tion of the endoscopic intervention. Especially in the case
of an intra-operative environment, the system should pro-
vide visual feedback about important nerves, blood vessels
and other significant landmarks that should not be damaged,
thus assisting the doctor in finding the optimal path.

In order to do this, those important landmarks have to
be identified and should be visualized throughout the whole
process. To avoid the necessity of pre-segmenting every sin-
gle one of those objects, the whole head should be rendered
with a semi-transparent DVR. If a suitable transfer function
is selected, this not only warns the doctor whenever an im-
portant object is nearby that requires special attention, but
also avoids deviation of the optimal path by always visualiz-
ing the main object of interest (e.g. the tumor).

Visualizing the endoscopic tools is another important as-
pect: Especially when planning the optimal path and ideal
target position, the size and proportions of these tools with

Figure 4: In endonasal pituitary surgery the endoscope en-
ters through the nose and is advanced to the sphenoid sinus
and the pituitary gland behind it (see Figure 1 (center)).

respect to the surrounding tissue is crucial. Because a vol-
umetric approach would raise some serious issues (rotating
the tools, limited resolution etc.) and probably not resemble
the real appearance closely enough, a polygonal representa-
tion of the tools should be merged with the volumetric scene.
Of course, intersections have to be calculated and displayed
correctly, otherwise the perceived information about avail-
able space and proportions may be misleading.

Furthermore, when encountering objects of interest like
small passages or even the tumor itself, there should be a
way to measure this object or at least get a first estimation
of its size. Other auxiliary graphical elements like grids and
pointers can assist the user here, again necessitating a ren-
dering pipeline that can deal with both polygonal and volu-
metric objects.

3. Hybrid Ray-Casting for Virtual Endoscopy

Choosing the right volume rendering mode for a particular
application is crucial for extracting the useful and important
information that the user wants to see. In the case of virtual
endoscopy, using only isosurface rendering discards a lot of
information behind the surface that can provide additional
insight into the properties of the underlying tissue, as well
as crucial information about occluded structures. In order to
alleviate this problem, our system combines isosurface and
direct volume ray-casting in a single rendering. We render
a shaded semi-transparent isosurface in front, and perform
unshaded direct volume rendering behind it. This rendering
mode achieves our goals and also avoids visual confusion
of isosurface shading and volume shading. The focus is still
on the isosurface, but important background information is
available at any time. Shading the isosurface is important for
shape perception. Direct volume rendering then provides ad-
ditional information, such as the tissue structure close to the
isosurface, as well as depicting background objects farther
behind. This leads to very expressive images and allows for
considerable flexibility. The basic algorithm is very simple
and leverages standard polygon rasterization for ray setup,
and a very short fragment shader loop for actual ray-casting.
In addition to the volume, intersecting polygonal geometry
is integrated seamlessly.

3.1. Algorithm Overview

The ray-casting pipeline of our system combines object-
order and image-order stages in order to find a balance be-
tween the two and leverage the parallel processing of modern
GPUs. For culling of irrelevant subvolumes, a regular grid
of min-max values for bricks of size 83 is stored along with
the volume. Ray-casting itself is performed in a single ren-
dering pass in order to avoid the setup overhead of casting
each brick separately [HQK05]. The first step of the algo-
rithm culls bricks on the CPU and generates two separate bit
arrays that determine whether a brick is active or inactive.
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The first bit array contains the state of bricks with respect to
the isosurface. A brick is active when it intersects the isosur-
face. The second bit array contains the state of bricks with
respect to the transfer function. A brick is active when it is
not completely transparent.

In the object-order stage on the GPU, these two bit ar-
rays are used to rasterize brick boundary faces in several
rendering passes. The result of these rendering passes are
two images that drive the subsequent ray-casting stage. The
first image, the ray start position image, contains the volume
coordinate positions where ray-casting should start for each
pixel. Coordinates are stored in the RGB components, and
the alpha component is one when a ray should be started,
and zero when no ray should be started. The second image,
the ray length image contains the direction vectors for ray-
casting in the RGB components and the length of each ray
in the alpha component. Note that the direction vectors could
easily be computed in the fragment shader from the camera
position and the ray start positions as well. However, the ray
length must be rendered into an image that is separate from
the ray start positions due to read-write dependencies, which
can then also be used for storing the direction vectors that are
needed for ray length computation anyway.

The main steps of our ray-casting approach for each pixel
are:

1. Compute the initial ray start position on the near clipping
plane of the current viewport. When the start position is in
an inactive brick with respect to the isosurface, calculate
the nearest intersection point with the boundary faces of
active isosurface bricks, in order to skip empty space. The
result is stored in the ray start position image.

2. Compute the ray length until the last intersection point
with boundary faces of bricks that are active either due to
the isosurface or the transfer function or both. The result
is stored in the ray length image.

3. Optionally render opaque polygonal geometry and over-
write the ray length image where the distance between
the ray start position and the geometry position is less
than the stored ray length.

4. Cast from the start position stored in the ray start position
image along the direction vector until the accumulated
opacity reaches a specified threshold (early ray termina-
tion) or the ray length given by the ray length image is
exceeded. The result of ray-casting is stored in a separate
compositing buffer.

5. Blend the ray-casting compositing buffer on top of the
polygonal geometry.

The two main acceleration schemes exploited here are empty
space skipping and early ray termination. For the former,
view-independent culling of bricks and rasterization of their
boundary faces are employed (Section 3.2), whereas the lat-
ter is handled during ray-casting (Section 3.3).

3.2. Culling and Brick Boundary Rasterization

Because we are using hybrid isosurface and direct volume
rendering, culling has to determine two different sets of ac-
tive/inactive states for all bricks, which are stored in separate
bit arrays. Each brick is either inactive, active with respect
to the isosurface, active with respect to the transfer func-
tion, or active with respect to both. In order to determine
ray start positions and ray lengths, we employ rasterization
of the boundary faces between active and inactive bricks,
which is illustrated in Figure 5. To handle brick culling ef-
ficiently, the minimum and maximum voxel values of each
brick are stored along with the volume, which are compared
at run-time with the isovalue and the transfer function, re-
spectively. A brick can be safely discarded when the opacity
is always zero between those two values, which can be deter-
mined very quickly using summed area tables [GBKG04].

Rasterizing the boundary faces between active and inac-
tive bricks results in object-order empty space skipping. It
prunes the rays used in the ray-casting pass and implicitly
excludes most inactive bricks. Note, however, that our ap-
proach does not exclude all empty space from ray-casting,
which can be seen for ray r3 in Figure 5 (left). This is a
trade-off that enables ray-casting without any per-brick setup
overhead and works extremely well in practice, which is also
illustrated by the performance figures in Section 4. The bor-
der between active and inactive bricks defines a surface that
can be rendered as standard OpenGL geometry with the cor-
responding position in volume coordinates encoded in the
RGB colors. Corresponding to the two bit arrays of active
bricks that results from culling, two sets of boundary faces
must be considered. All vertices of brick bounding geometry
are constantly kept in video memory. Only two additional in-
dex arrays referencing the vertices of active boundary faces
have to be updated every time the isovalue or the transfer
function changes. As long as the near clipping plane does not
intersect the bounding geometry, rays can always be started
at the brick boundary front faces. However, if such an in-

Figure 5: Determining ray start positions and ray lengths
using rasterization of brick boundary faces. Left: The basic
case described in Section 3.2.1. Right: Extended cases for
endoscopy rendering, which are described in Section 3.2.2.
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tersection occurs, it will produce holes in the front-facing
geometry, which results in some rays not being started at all,
and others started at incorrect positions. Figure 6 illustrates
this problem. In an endoscopic view, we constantly face this
situation, so rays typically need to be started at the near clip-
ping plane, which is shown in Figure 5 in the case of points
n2-n4. To avoid casting through empty space, rays should
not be started at the near clipping plane if the starting posi-
tion is in an inactive brick but at the next intersection with
active boundary faces, such as rays r0 and r1 in Figure 5.
These rays are started at f0 and f1, instead of being starting
at n0 and n1. We achieve this by drawing the near clipping
plane first and the front faces afterwards, which ensures that
whenever there are no front faces to start from, the position
of the near clipping plane will be taken. However, since the
non-convex bounding geometry often leads to multiple front
faces for a single pixel, the next front face is used when the
first front face is clipped, which results in incorrect ray start
positions. The solution is to detect when a ray intersects a
back face before the first front face that is not clipped.

3.2.1. The Basic Case

When only one bit array of active bricks is used, e.g., di-
rect volume rendering is used without isosurfacing, the basic
steps to obtain the ray start position image are as follows:

1. Disable depth buffering. Rasterize the entire near clip-
ping plane into the color buffer. Set the alpha channel to
zero everywhere.

2. Enable depth buffering. Disable writing to the RGB com-
ponents of the color buffer. Rasterize the nearest back
faces of all active bricks into the depth buffer, e.g., by
using a depth test of GL_LESS. Set the alpha channel to
one where fragments are generated.

3. Enable writing to the RGB components of the color
buffer. Rasterize the nearest front faces of all ac-
tive bricks, e.g., by once again using a depth test of
GL_LESS. Set the alpha channel to one where fragments
are generated.

This ensures that all possible combinations shown in Fig-
ure 5 (left) are handled correctly. Rasterizing the nearest
front faces makes sure that all near plane positions in in-
active bricks will be overwritten by start positions on active

Figure 6: Holes resulting from near clipping plane intersec-
tion (left) must be filled with valid starting positions (right).

bricks that are farther away (rays r0 and r1). Rasterizing the
nearest back faces before the front faces ensures that near
plane positions inside active blocks will not be overwritten
by front faces that are farther away (rays r2 and r3). Brick
geometry that is nearer than the near clipping plane is auto-
matically clipped by the graphics subsystem. After that, the
ray length image can be computed, which first of all means
finding the last intersection points of rays with the bounding
geometry. The basic steps are:

1. Rasterize the farthest back faces, e.g., by using a depth
test of GL_GREATER.

2. During this rasterization, sample the ray start position im-
age and subtract it from the back positions obtained via
rasterization of the back faces. This yields the ray vectors
and the ray lengths from start to end position.

3. Multiply all ray lengths with the alpha channel of the ray
start position image (which is either 1 or 0).

These steps can all be performed in the same fragment
shader. Drawing the back faces of the bounding geometry
results in the last intersection points of rays and active brick
geometry, which are denoted as li in Figure 5. Subtract-
ing end positions from start positions yields the ray vec-
tors, which can then be normalized and stored in the RGB
components of the ray length image together with the ray
lengths in the alpha channel. Note that the alpha channel of
the ray length image has consistently be set to zero where
a ray should not be started at all, which is exploited in the
ray-casting pass (Section 3.3).

3.2.2. Combining Isosurfacing and DVR

The basic case described in the previous section must be
extended when isosurface and direct volume rendering are
combined:

1. Rasterization passes for the ray start position image must
use the bit array containing the state of bricks with respect
to the isosurface. The transfer function is disregarded.

2. Rasterization for generation of the ray length image must
treat all bricks as active that are active with respect to ei-
ther the isosurface or the transfer function or with respect
to both.

Figure 5 (right) illustrates all possible cases. Ray r0 is never
cast because it never intersects isosurface bricks. Both ray r1
and ray r2 start at isosurface bricks and terminate at transfer
function bricks that are inactive with respect to the isosur-
face. Ray r3 starts at an isosurface brick but terminates at a
transfer function brick that is also active with respect to the
isosurface. Ray r4 starts and ends at isosurface bricks that
are inactive with respect to the transfer function.

3.3. Ray-Casting

Our system employs a ray-casting fragment shader that per-
forms the entire casting step for both the isosurface and
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the DVR part behind it in a single rendering pass. There-
fore, the GPU is required to support data-dependent loop-
ing and branching in the fragment shader, e.g., an NVIDIA
GeForce 6 or an ATI Radeon X1800. The shader is essen-
tially comprised of two successive ray-casting loops, which
perform first-hit ray-casting followed by DVR ray-casting.
The first loop in the fragment shader starts at the position
given by the ray start position image and traverses the ray
until it finds an intersection with the isosurface. After an in-
tersection has been detected, the actual intersection position
is refined using iterative bisection with a fixed number of
four iterations [HSS∗05]. Then, the gradient at the intersec-
tion position is computed using central differences and the
isosurface is shaded using the standard Blinn-Phong model.
The shaded result is weighted according to the opacity of
the isosurface, which can be set arbitrarily via a fragment
shader parameter. Figure 3 illustrates changing isosurface
opacity. After the isosurfacing part of the shader, DVR ray-
casting continues with the initial alpha set to the opacity of
the isosurface and performs sampling and compositing un-
til a specified alpha threshold is exceeded. Checking against
this threshold results in early ray termination. That is, the
DVR ray-casting loop is terminated as soon as all subse-
quent samples cannot contribute to the final pixel color any-
more. Note that early ray termination naturally depends sig-
nificantly on the constant opacity of the isosurface. Tables 1
and 2 clearly show that the frame rate increases considerably
with increasing isosurface opacity. In order to avoid visual
interference with the shaded isosurface that is in front, no
further shading is performed in the DVR compositing loop.
Naturally, this also increases performance accordingly. Note
that the ray-casting shader only performs ray-casting for pix-
els with a ray length greater than zero, which also excludes
rays from processing that do not intersect active bricks at all
as described in Section 3.2.1.

3.4. Geometry Intersection

Many applications for virtual endoscopy require both volu-
metric and polygonal data to be present in the same scene.

Figure 7: When rays intersect opaque polygonal geometry,
they are terminated immediately. This is achieved by modi-
fying the ray length image accordingly.

Naturally, intersections of the volume and geometry have to
achieve a correct visibility order, and in many cases look-
ing at the intersections of the geometry and the isosurface is
the reason for rendering geometry in the first place. A very
powerful use of combining geometry with volume render-
ing is to display grid lines for orientation purposes, which
is illustrated in Figure 3. We use a planar grid consisting of
lines, which is a very simple but powerful means for assess-
ing spatial location. This grid plane can be translated in the
orthogonal direction and can also be rotated arbitrarily. Also,
parts that do not contribute to the final image because they
are occluded by geometry should not perform ray-casting at
all. An easy way to achieve this is to terminate rays once
they hit a polygonal object by modifying the ray length im-
age accordingly. This is illustrated in Figure 7. Of course,
ray lengths should only be modified if a polygonal object
is closer to the view point than the initial ray length. This
problem can again be solved by using the depth test and ex-
tending the algorithm described in Section 3.2.1, leading to
the complete algorithm outlined in Section 3.1.

After rendering the back faces of active/inactive brick
boundaries with their respective depth values (and depth test
set to GL_GREATER), the intersecting geometry is rendered
to the same buffer, with the corresponding volume coordi-
nates encoded in the color channel. With the depth test re-
versed to GL_LESS, only those parts will be drawn that are
closer to the view point than the initial ray lengths. This ap-
proach modifies ray-casting such that it results in an image
that looks as if it was intersected with an invisible object.
Blending this image on top of the actual geometry in the last
pass of the algorithm results in a rendering with correct in-
tersections and visibility order.

4. Rendering Performance

Tables 1 and 2 give rendering performance results of our sys-
tem. Setting the transfer function to a simple alpha ramp il-
lustrates the effectiveness of early ray termination (Table 1).
Setting the isosurface to full opacity will result in immedi-
ate ray termination when the isosurface is hit, which yields
performance figures similar to rendering isosurfaces only.
The less opacity the isosurface adds to the image, the longer
the ray has to travel to accumulate full opacity in the direct
volume rendering stage. Choosing a more complex transfer

alpha isosurface opacity
ramp TF 100% 80% 50% 0%
Minimum 40.3 fps 32.4 fps 29.5 fps 28.3 fps
Maximum 64.7 fps 54.8 fps 48.6 fps 44.4 fps
Average 58.2 fps 46.3 fps 41.2 fps 37.5 fps

Table 1: Performance comparison of different isosurface
opacities for the colonoscopy dataset with a simple ramp
as transfer function. Measured for a 512x512 viewport on a
GeForce 7800.
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complex isosurface opacity
TF 100% 80% 50% 0%
Minimum 40.3 fps 11.1 fps 10.0 fps 9.4 fps
Maximum 64.7 fps 18.6 fps 16.7 fps 15.9 fps
Average 58.2 fps 16.8 fps 14.6 fps 13.2 fps

Table 2: Performance comparison of different isosurface
opacities for the colonoscopy dataset with a complex trans-
fer function that prevents early ray termination most of the
time. Measured for a 512x512 viewport on a GeForce 7800.

function with low alpha values results in performance reduc-
tion because in this case early ray termination is ineffective
for many rays (Table 2).

5. Conclusions

We have described an effective system for virtual endoscopy
that uses GPU-based ray-casting in order to achieve real-
time performance. The combination of isosurface and direct
volume ray-casting has proven to be very useful during en-
doscopic planning in order to inspect structures that would
otherwise be hidden behind the isosurface.

Using the computational power of today’s GPUs in a
hardware-based approach as described here, simultaneous
isosurface and direct volume ray-casting is feasible at in-
teractive frame rates, which has traditionally been substi-
tuted by pure isosurfacing or requiring segmentation. Merg-
ing this capability with a flexible rendering pipeline that can
handle both volumetric and polygonal data, we have pre-
sented a system that is capable of meeting the visualization
demands of medical doctors in diagnostic as well as intra-
operative environments. The effectiveness and applicability
of this virtual endoscopy system has been shown in three dif-
ferent fields of endoscopic procedures: virtual colonoscopy,
virtual angioscopy and pituitary surgery. For neurosurgery,
our system is already in clinical use, and we will investigate
the clinical applicability of the other applications we have
presented in the future.
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