
EUROGRAPHICS 2003 STAR – State of The Art Report

Distributed and Collaborative Visualization

K.W. Brodlie†, D.A. Duce‡, J.R. Gallop§, J.P.R.B. Walton¶and J.D. Wood†

†School of Computing, University of Leeds, Leeds LS2 9JT, UK
‡Department of Computing, Oxford Brookes University, Oxford OX33 1HX, UK

§BITD, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, UK
¶The Numerical Algorithms Group Ltd, Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, UK

Abstract

Visualization is widely used in science, medicine and engineering. It can convey insight into phenomena that are
well-understood, or display new data in order to uncover novel patterns of meaning. Visualization is a power-
ful tool in presentations (lectures, seminars, papers etc) and in discussions between colleagues. As such, it is an
essentially collaborative activity. In this area, there is also a growth in the use of video conferencing to facili-
tate meetings between participants in geographically separate locations. This includes both specialized facilities
(video conference rooms including Access Grid) and desktop video conferencing using the Internet and multicast
communications.
Distributed visualization addresses a number of resource allocation problems, including the location of processing
close to data for the minimisation of data traffic. The advent of the Grid Computing paradigm and the link to Web
Services provides fresh challenges and opportunities for distributed visualization - including the close coupling of
simulations and visualizations in a steering environment.
Distributed collaborative visualization aims to enhance the video conferencing environment (usually on the desk-
top) with access to visualization facilities. At the most basic level, pre-generated visualizations may be shared
through a shared whiteboard tool. Richer approaches enable users to share control of the visualization method
and its parameters. In one approach, a single visualization application is shared amongst a group of users; in
another approach, the visualization dataflow paradigm is extended in order to allow sharing of visualization data
between collaborators. Component middleware provides a framework for describing and assembling distributed
collaborative visualization applications.
The AccessGrid allows group-group collaboration, rather than just person-person, and generally offers a rich
environment for collaboration - we look at ways of integrating current visualization systems into this new type of
environment.
XML has made a significant impact in many areas of computing, from e-business to mathematics. It is being
increasingly used as the middle tier of client-server interfaces where its power and flexibility makes it ideal for
middleware (for example, SOAP and related Web Services developments in W3C). Current developments in Grid
middleware are based on an enhancement to Web Services (the Open Grid Services Architecture - OGSA).
This STAR reviews the state of the art in these areas, draws out common threads in these diverse approaches and
looks at strengths, weaknesses and opportunities for further development in this field.

1. Motivation

Rogowitz92 has written “Visualization is the process of map-
ping numerical values into perceptual dimensions”. The use
of visual imagery to convey scientific insight and truth is
not a new phenomenon. Descartes (quoted by Collins26)
wrote “imagination or visualization, and in particular the

use of diagrams, has a crucial role to play in scientific in-
vestigation”. More recently interest in visualization was fo-
cused by the NSF Panel Report on Visualization in Scientific
Computing75. Their definition of visualization is interesting:

“Visualization is a method of computing. It trans-
forms the symbolic into the geometric, enabling

c© The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org


K.W. Brodlie et al. / Distributed and Collaborative Visualization

researchers toobservetheir simulations and com-
putations. Visualization offers a method for see-
ing the unseen. It enriches the process of scientific
discovery and fosters profound and unexpected in-
sights. ... Richard Hamming observed many years
ago that ‘the purpose of [scientific] computing is
insight, not numbers’. ... The goal of visualization
is to leverage existing scientific methods by pro-
viding new scientific insight through visual meth-
ods.”

The report highlights the need for scientists to learn to vi-
sually communicate with one another. “Much of modern sci-
ence cannot be expressed in print. DNA sequences, molec-
ular models, medical imaging scans, brain maps, simulated
flight through a terrain, simulations of fluid flow, and so on,
all need to be communicated visually.” Visualization is a
medium of communication.

Much of modern science and engineering involves more
than one person. Much (one is tempted to say the over-
whelming majority) of design, research and development is
not the work of one individual in isolation. It is the work of
small groups of people, to large teams of people, each with
their characteristic skills and expertise, making their contri-
bution to the overall endeavour.

During the 1980s computer networking became
widespread in many organisations, and led to the new
discipline of Computer Supported Cooperative Working
(CSCW) which gathers together researchers interested
in how people work together, and how computers and
related technologies affect the behaviour of groups of
people. CSCW systems started to emerge. Such systems
aim to provide support for group working. CSCW systems
typically provide audio and video communication channels
between participants in a cooperative session with the
addition of groupware tools such as shared text editors,
shared whiteboard, shared drawing tools, etc.51 Given the
significance of visualization as a medium of communication
in a wide range of contexts, the question naturally arises,
how is visualization used within group working and how
can this be supported in the CSCW system?

The use of visualization in collaborative working might
involve a group of people sitting around a meeting table
discussing hardcopy output, or viewing a video. It might
involve a group of people clustered around a workstation,
with one person in the ‘driving seat’, discussing a visualiza-
tion, perhaps making suggestions as to how the visualization
could be changed in order to draw out other features in the
data, for example by changing a colour map or using a dif-
ferent technique to present the data. Participants might take
it in turns to ‘drive’ the visualization system, each working
with their own particular data sets. It might involve exchang-
ing visualizations by email, followed by email discussion,
or dissemination to a wider community through the World

Wide Web. It might also involve the cooperative use of a vi-
sualization system as a tool within a CSCW session.

The AccessGrid2 is providing a rich environment for large
scale distributed meetings. remote lectures and collabora-
tive working across an increasing range of institutions. Ac-
cessGrid facilities include large format projection displays,
high quality video and audio channels, and the possibility
for group interaction with applications. A commercial ver-
sion of the AcessGrid called the inSORS Grid has recently
appeared on the market from inSORS Integrated Communi-
cations62.

Is visualization any different to other media that may be
used in cooperative working? In some senses the answer to
this question is no. There are many issues that visualization
has in common with other media, for example, text. Control
of a visualization system raises similar issues to shared con-
trol of a text editor. Who has control? How do participants
know who has control? How is control passed between par-
ticipants? There are some senses in which visualization is
different to other media. Visualizations are typically gener-
ated by a pipeline or network of processing steps. This raises
the possibility of sharing data between participants at dif-
ferent points in the processing, which may lead to a useful
tradeoff between data volume and local processing capabil-
ity.

Bergeron11 in his introduction to a panel session at Visu-
alization ’93 argued that the goals of visualization can be di-
vided into three categoriesdescriptive visualization, analyt-
ical visualizationandexploratory visualization. Descriptive
visualization is used when the phenomenon represented in
the data is known, but the user needs to present a clear visual
verification of this phenomenon (usually to others). Analyt-
ical visualization (directed search) is the process we follow
when we know what we are looking for in the data; visu-
alization helps to determine whether it is there. Exploratory
visualization (undirected search) is necessary when we do
not know what we are looking for; visualization may help us
to understand the nature of the data by demonstrating pat-
terns in that data.

Comparison between data from different sources is often a
fundamental ingredient of collaboration. In the geosciences,
for example, it is now realized that much insight is to be
gained by sharing data, comparing different kinds of data
gathered from different instruments, for example sea height
measurements, surface temperature, ocean depth, whereas in
the past researchers would concentrate on data from a sin-
gle instrument which they would almost jealously guard. A
researcher’s scientific capital was in both the data and the
methods used to analyse it. Nowadays the trend is towards
sharing and comparison. There seems to be relatively little
attention paid to the use of visualization to enable compar-
ison, see for example Pagendarm and Post82 and more re-
cently Zhou, Chen and Webster142, but this is nevertheless a

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

topic to which attention needs to be paid in systems aiming
to support cooperative working.

In the late 1980s, Modular Visualization Environments
(MVEs) started to appear, the earliest examples being apE
and the first version of AVS. MVEs provide a set of build-
ing blocks which perform functions such as reading data,
generation of visualizations such as contouring and render-
ing. MVEs typically provide a visual editor with which to
construct applications, by linking together a set of build-
ing blocks, and it is perhaps the power of this visualiza-
tion programming metaphor that has made MVEs so pop-
ular today. The modular building blocks may be (but are
not necessarily) implemented as separate processes. When
this is done, this provides a natural way in which such sys-
tems may become distributed systems. Examples of systems
of this kind include AVS72, Khoros141, IBM Data Explorer1

(now OpenDX80), and IRIS Explorer44, 131.

In the early 1990s, the advent of the World Wide Web led
to another approach to visualization applications, a client-
server approach in which the visualization required is de-
fined through the client, computed, and returned to the client
for presentation. The concept of applets provides a mech-
anism by which part of the visualization computation may
be down-loaded to the client and executed client-side. Such
approaches are termedweb-based visualization.

As well as involving more than one person, much of mod-
ern science also involves more than one machine. Grid com-
puting is currently attracting much attention and funding.
The essence of Grid computing is "the large scale integration
of computer systems (via high speed networks) to provide
on-demand access to data-crunching capabilities and func-
tions not available to an individual or group of machines42".
Shalf and Bethel98 write "the promise of Grid computing,
paricularly Grid-enabled visualization, is a transparent, in-
terconnected fabric to link data sources, computing (visu-
alization) resources, and users into widely distributed vir-
tual organizations". The challenges they identify are famil-
iar: how to support distributed heterogeneous components
(as they point out, visualization system users want to use the
best tool for the job, regardless of source), dynamic parti-
tioning of visualization components between resources, and
algorithms that maintain interactive performance in the pres-
ence of latency. The Grid infrastructure is evolving to a
service-based architecture in which functional capabilities of
services are represented by interfaces which can be discov-
ered along with semantic descriptions. Approaches based on
the Grid architecture are termedGrid-based visualization.

The aim ofdistributed collaborative visualizationis to
harness the processing power of many humans and many
machines.

It is useful to distinguish at this stage between three terms.

1. Distributed visualization. This involves collaboration at
the system level. It is interesting that the current batch of

MVEs have all been designed with this aim: it is possi-
ble to place modules on different computers. Of course
this is most useful when it is a computationally intense
visualization task, when some modules may usefully be
located on a supercomputer, others locally on a worksta-
tion. One can also see simple web-based visualization in
this class. Although several computers may be involved
in the computation, such a distributed visualization sys-
tem is still a single-user system. Working in a distributed
environment does not by itself imply working in coop-
eration with other users. It is useful to distinguishpar-
allel anddistributedvisualization. Parallel visualization
involves the use of parallel processing resources to exe-
cute a visualization algorithm. The term parallel process-
ing is normally used to describe the situation in which
more than one processor among a group of processors is
active at any one instant in executing the algorithm. The
boundary between distributed and parallel processing can
be fuzzy, but we view the difference in terms of the granu-
larity of the task being performed and the inherent notion
that more than one processor is necesarily active at any
one time in parallel execution.

2. Collaborative visualization. Visualization is often a co-
operative activity; several people may work together to
interpret a visualization. This is collaboration at the hu-
man level. It is interesting that the current MVEs did
not have this as a design requirement, and until recently
were all single-user systems. Similarly web-based visu-
alization systems have been single-user. Cooperation is
achieved by humans clustering around a single work-
station, around a Responsive Workbench device or in a
CAVE, for discussion, or through some means outside the
visualization system (for example, sending visualization
output to a collaborator for comment).

3. Distributed collaborative visualization. This brings the
two concepts together, allowing collaboration at both the
system and human level. We shall be able in this STAR
to give examples to show that both MVEs and web-based
visualization can be extended to this class. A distributed
collaborative visualization toolset should allow its users,
geographically distributed, not only to run remote re-
sources, but to share images, and possibly also to interact
and cooperate, across a network, in the intermediate steps
which lead to the creation of the final output.

Section2 of this paper presents a structure for the field
of distributed and collaborative visualization and introduces
a 3-layer model. This model is explored further in Section
3. Section4 describes a framework in which systems can be
compared and contrasted. Section5 considers data sources
and presentation environments, then section6 discusses a
range of visualization systems and frameworks for collab-
oration. Section7 describes some current research projects
and directions and Section8 draws some conclusions.

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

same

different

same different
place

time

Figure 1: Applegate’s place-time matrix.

2. A Structure for the Field

2.1. People view - types of CSCW

CSCW involves both people and machines. In the CSCW lit-
erature, Applegate’s place-time matrix is a widely cited clas-
sification scheme for cooperative working7. This scheme,
shown in Figure1, focuses on the people involved in CSCW
and the way in which the types of involvement may be clas-
sified.

Two dimensions are used: time and place. Members of a
CSCW group may be located at the same place or a different
place, and be present in a CSCW session at the same time or
at different times. There is thus the notion that a session may
extend in time, and not all participants need be present at the
same time.

The same time, same place box corresponds to all mem-
bers of the group being present in the same place at the same
time. Examples of systems to support such forms of working
include conference rooms equipped with individual work-
stations to support decision making processes. In visualiza-
tion a group of users clustered around a single workstation,
around a Responsive Workbench or in a CAVE, would fall
into this box.

Collaboration that involves exchange of letters, faxes,
emails, between members of a group, falls into the differ-
ent time, different place box. There is a notion of a group
session, the group working on a common problem over an
extended period of time. There is a shared history of working
contained in the trace of letters, faxes, emails, etc. exchanged
between group members. The World Wide Web typically
falls into this box, though developments such as coopera-
tive web browsing63, 71, 87, 96 are extending the web to other
forms of working.

Video conferencing falls into the different place, same
time box. Members of the group are co-present in time, but
at different physical locations. Video conferencing may in-
volve a specially equipped video conferencing suite, with
multiple cameras etc. at one extreme, or may be based on a
suitably equipped workstation per participant. The latter ap-
proach can be characterised as collaboration as an extension

of the normal working environment. This notion is taken
further in the work of Fuch’s group at UNC Chapel Hill45.
which is investigating the use of cameras and sophisticated
display technology to assign a region of each office to col-
laboration, so that one’s collaborators are brought into the
office in an even more direct way than through workstation-
based video conferencing. However, collaborative working
is not just video conferencing. There is a need to share in-
formation other than through audio and video channels, and
a need to share applications used in the creation, analysis
and presentation of information. “Groupware” falls into this
category. Much work in distributed cooperative visualization
aims to support this type of collaboration.

In any one collaboration, it is likely that several differ-
ent types of collaboration will be used, for example, formal
face-to-face meetings, coupled with different time - differ-
ent place styles of working between meetings, coupled with
informal same time, different place sessions. This raises is-
sues about seamless transitions between different types of
working, and the organization of group memory so that it
is equally accessible from different types of meeting. Xerox
PARC, for example, have worked extensively in this area14.

2.2. Model

In this section we present a layered model of distributed
and collaborative visualization that encompasses the major
approaches found in current practice. “Ordinary”, i.e. non-
collaborative, non-distributed visualization is a special case
of distributed and collaborative visualization.

The model is described in terms of three layers:

• theconceptual layerwhich describes the visualization to
be performed, independently of the visualization software
with which it is to be realized.

• the logical layer in which the visualization is expressed
as a particular configuration of software entities, but inde-
pendently of the physical resources with which the con-
figuration will be realized.

• the physical layerin which software entities are associ-
ated with physical resources.

The conceptual layer abstracts away the details of visualiza-
tion software and physical resources. It captures the intent of
the designers of the visualization. A description in the con-
ceptual layer will capture the nature of the data sources, the
visualization itself and the control and viewing environment.
Typical data sources would be data repositories or simulation
enabled for computational steering. A visualization might be
to display an isosurface of a particular field in a data set from
one source and an isosurface of a field from a second source,
overlaid with coastline outlines. The control and viewing en-
vironment might be a remote teaching environment in which
the lecturer alone can control the data sources and visual-
ization parameters and students can view the results without
control of the view. The conceptual layer thus captures the

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

visualization designindependent of a realization. The pro-
cess by which a conceptual visualization design is created,
might itself involve collaboration.

The logical layer introduces the software entities in which
the conceptual description is to be realized. It is convenient
to see this in two parts, thelogical visualization designand
thecore software. In the traditional library context, the log-
ical visualization design is the user program and the core
software is the library of subprograms. In a Modular Visual-
ization Environment (MVE) context the logical visualization
design is a description of the composition of modules into a
network and the core software is the set of modules provided
by the MVE. The logical layer thus involves a binding of
the conceptual visualization design to a particular software
architecture. Examples of bindings to particular software ar-
chitectures are described later in this paper (see Section3.2).

The relationship between the conceptual layer and the log-
ical layer also involves refinement of the human user inter-
face and a binding of these in the chosen software architec-
ture and core software.

The logical layer also includes constraints on the re-
sources required by the logical visualization design. A com-
putation might, for example, require a processor with par-
ticular characteristics. Constraints on the resources required
to realise the chosen human user interface may also be in-
cluded.

The physical layer is a binding of the logical visualization
design and core software to particular physical resources.
For example, a visualization realised using a parallel vi-
sualization library might be bound to a particular parallel
processing machine; a visualization realized using an MVE
might include modules bound to processing resources re-
mote from the main controlloing executive. Interface devices
are also included in the binding, for example, a particular
graphical workbench or devices linked to an AccessGrid.
The binding also includes binding of links between entities
to particular communication patterns, for example, shared
memory, web service and Grid FTP.

This model thus treats the realization of a visualization
as a refinement process in which the abstract conceptual de-
sign is refined into a logical design using particular choices
of core software and then into a physical design in which
physical resources are associated with the core software and
other software entities.

Figure2 illustrates the twin concepts of logical and phys-
ical environments for a common conceptual scenario. The
logical layer has been reduced to a description in which
there are two visualization sessions in progress, each associ-
ated with an individual researcher. The sessions are shown as
dataflow networks, but the concept is wider than the MVE-
type systems—as explained earlier, the sessions might be
user programs making library calls, or RMI calls; or they
might be command-driven packages. Collaboration is shown

Figure 2: Example of the logical and physical layers in the
model.

in the logical description as a shared area into which data
may be placed by one session, and retrieved by another.
This again is meant as a general concept: it covers the in-
terlinked network approach of COVISA/MANICORAL; the
shared object approach of CSpray; and the shared parameter
approach of COVISE. Indeed it covers both synchronous and
asynchronous collaboration—in the synchronous collabora-
tion we would see the shared area as transient, and in the
asynchronous case, as persistent.

The physical layer describes the real-world realisation of
the logical layer. Here we see that the two logical sessions
have been constructed by researchers, through an interface.
(These are the people on the left of the figure.) Indeed this
is a continual process which exists throughout a session,
whereby controls are operated, commands are given and
views are displayed. A researcher can place material in the
shared area, for the other to retrieve.

An alternative, rather simple, form of collaboration is
also shown in the figure. This is the desktop sharing con-
cept, sometimes known as Remote Frame Buffer (RFB),
whereby the interface of one researcher is distributed to an-
other researcher (see Section6.2). If permission is given, the
other researcher can input command and control operations
through the RFB. This person is shown top right in the fig-
ure.

The figure also shows the binding of the logical descrip-
tion to physical resources—as well as the binding of the in-
terface, we have a binding of the data to a file descriptor

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

(either local or remote); a binding of software components
to a file descriptor (again local or remote); and a finally a
binding of the execution of the components to a machine de-
scriptor. (At present we do not distinguish the display of the
visualization from the interface; this would be possible.)

This concept allows us to describe within a single frame-
work many different approaches to visualization, and we ex-
pand on these in the next section.

3. Exploring the 3-Layer Model

The 3-layer model introduced in Section2.2 distinguishes
between the overall description or intent of the visualization
application (conceptual layer), the software entities (logi-
cal layer) and allocation of physical resources (physical re-
sources). In this section, we examine all the layers in more
detail.

3.1. Conceptual layer

To describe the possibilities in this layer, we begin by out-
lining a possible collaboration, increasing the sophistication
as it develops. We then go on to define a set of possibilities.

3.1.1. A possible collaboration

A user begins by using a visualization package to analyse
some data on their desktop system. For our purpose here, we
do not need to say which visualization algorithm or which
package.

The user then decides to make use of a large dataset held
in a remote managed archive. The archive hosts a simple vi-
sualization package which is accessed via a web page, so the
user visualizes the data remotely, receiving images back to
the web browser. This helps decide which subset of the data
is of most interest.

The user now needs a visual comparison between the lo-
cal data and the remote archive, so downloads a data subset
and plots both it and the local data on the same picture. More
data is needed from the remote archive, so a new download
each time is cumbersome to use. It so happens that the visu-
alization package has a file import mechanism, which allows
the user to specify a web URL and the subset to be extracted.
Reliance can be placed on the local web client to cache the
remote data for repeated use.

The visual comparisons show up some discrepancies and
help is needed from a colleague on another continent, who
has the necessary further skills. So we have userU1 who uses
visualization packageV1 to analyse local dataD1 and remote
dataDR. The resulting image is sent to the new colleague
U2. To try and understand the problem further,U2 examines
the data with a visualization packageV2 with which they are
more familiar.U1 makesD1 available via the web and tells
U2 how to access it andDR.

They then agree that userU2 starts using packageV1. This
is sufficiently flexible thatU1 is able to provide a partially
computed result fromV1 and supplies it toU2, who sets up
V1 to read, compute and display it. Ideally, sinceU2 is not so
familiar with V1, U1 assists by passing across the necessary
scripts to implement that part of the visualization design.U2
manipulates a control parameter (for instance, an isosurface
threshold) and has an idea about what the original discrep-
ancy might be due to.U1 agrees to take the opportunity of
controlling the threshold parameter fromU2 and manipulates
it too. U2 offers access to further dataD2. They then agree
that they should share the insight they have gained and ar-
range to callU3 andU4. They plan to show these other col-
leagues how they reach their conclusion by showing what
they did step by step.

Naturally U1 andU2 also use tools to handle audio and
video information between themselves and later on withU3
andU4 also.

This sequence of events is not the only one that could have
been chosen. What is notable is that the two participants had
a number of choices available to them and their use of collab-
orative software was able to take different forms, depending
on what was required at any given time. In describing it, we
made assumptions about what an actual visualization pack-
age is capable of doing.

3.1.2. Conceptual view of service

Visualization may be viewed as a service, a relationship or
contract between a service provider and service user. Based
on a scheme of Brodlie17, we consider the different play-
ers involved in a service view; they take different roles and
may be individuals or organisations. The original scheme
was for web-based, single user visualization, but we extend
the scope of the idea here.

3.1.2.1. The user This player—the user—may be a spe-
cialist scientist or engineer or may be a member of the pub-
lic. The range of skill and experience can be quite varied,
but in all cases we can assume that they are familiar with
at least a web browser. In certain cases, such as the experi-
enced researcher, they may also be familiar with an existing
visualization core system and be prepared to tailor its use for
themselves or others.

The computing power available to the user is diverse.
Desk top PCs are nowadays powerful enough to run a web
browser with an VRML or X3D plugin and a Java inter-
preter. In most cases the desktop system is also capable of
running most visualization packages and higher performing
versions are used to process larger amounts of data or exe-
cute more complex algorithms. A user out of the office or
laboratory may be using a PDA on which the software and
display is extremely limited. However such devices can use
web browsers, in some cases Java run time systems too, and
their portability is sufficiently attractive to promote their use.

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

The method and speed of connecting the user’s local sys-
tem or device may also vary. The user may be in an institu-
tion that is well connected or one that is permanently con-
nected, but on a lesser bandwidth, or the user may rely at
times on a modem or a wireless connection.

Collaborative visualization implies two or more users. If
no more than two, they have the opportunity to share infor-
mation with each other in some detail. With a large number
of users, they are likely to take up a limited set of distinct
roles, such as lecturer and audience or peer to peer. Large
participation is also liable to cause bottlenecks and methods
of scaling up have to be considered.

Participants may be clustered at particular institutions and
the growth of this requirement has led to the establishing and
use of the Access Grid, which is discussed in Sections1 and
5.2.

Collaborating participants may also bring a variety of
skills and resources. One may be responsible for hosting an
application whereas others may make use of a web browser
to link to the application. Where participation is on a more
equal basis, anyone may run an application and offer results
to others.

3.1.2.2. The visualization service provider and designer
This player is responsible for the visualization service. It

may be accessed via conventional Internet client/server tech-
niques or via Java RMI or via a web page or, increasingly
likely, via Web or Grid services. Three distinct levels of ser-
vice can be described.

Full servicein which the visualization result is entirely cre-
ated by the service provider and is returned to the user
as an image or a picture description (2D) or a 3D scene.
Some dataset holders provide basic visualization services
so that users can browse visually before deciding what
to download. In a collaboration, this is a centralized ap-
proach.

Software deliveryin which the software to create the visual-
ization result is downloaded to the user to be executed by
the local processor. This method, which could be achieved
by a Java applet, allows the users to work locally without
having the responsibility of installing the software.

Local operationin which the visualization software is as-
sumed to be already resident with the user and no service
is required from an external provider. In a collaboration,
this would imply each participant running largely inde-
pendently, but exchanging results when useful.

3.1.2.3. The data provider This player supplies the data.
Here too three distinct possibilities can be described.

Specialist data agency. Many organisations are responsible
for dataset management which includes collecting, pub-
lishing, portal provision, metadata management and long
term curation. This includes NASA and Unidata in the

USA, the ESA and the EU in Europe and—at a national
level—the Atomic Energy Authority (UKAEA) and Nat-
ural Environmental Research Council (NERC) in the UK.
Data extraction is likely to need to be more sophisticated
in the long term, for instance: "return me the data for the
24 hour periods in which the temperature was above t de-
grees C for more than 4 hours at any place in region R".
The dataset may be sufficiently large that the only practi-
cal location for performing the extraction is (in network-
ing terms) close to the data. Having reduced the data, the
subsequent visualization processes could be the responsi-
bility of the user.

The user. The user and data provider may be the same per-
son. This would typically be the case in the traditional
use of visualization by a scientist, analysing their own
data. In a collaboration, one of the users may be the data
provider—or indeed several of the users may be providing
data.

The Visualization Service Provider. Here the roles of
data and visualization service are combined—for instance
when a data provider sees visualization as an essential
means of interpreting the data.

We also need to consider the origin of the data (the data
source).

Archive. The data may be managed in a long term archive.
Collaborating participants may all be interested in the
same data archive and exchange information about sub-
sets of common interest.

Computation. The data may be produced by a computation.
This may still be running when a user is analysing the data
and this offers the possibility of computational steering. It
is potentially useful for a collaborating team to be able to
access the same computation while it is still executing.

Experiment. The data may originate from observations,
taken from remote experimental apparatus. In some cases,
it is possible for the user to supply control information,
which is usually required in advance for efficient use of
the apparatus.

3.2. Logical layer

In this layer, we introduce some common software architec-
tures for distributed and collaborative visualization. We first
consider a service-oriented architectural view and then look
at more general architectures used by Modular Visualization
Environments (MVEs).

3.2.1. Service model for distributed and collaborative
visualization

3.2.1.1. Motivation The World Wide Web grew from its
initial focus to have a much wider impact as a distributed
computing environment. One of the trends in current web
development is the Web Services Architecture and its exten-
sion to Grid computing, the Open Grid Services Architecture

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

(OGSA). A Web Service is roughly a software component
that can bedescribedusing a service description language,
publishedto a registry of services,discoveredthrough stan-
dard mechanisms,invokedthrough a declared API usually
over a network, andcomposedwith other services. A service
can also be thought of as a contract between a provider (a
server) and a user (a client).

The earliest applications of web technology in visualiza-
tion were not service based, but were simply for descriptive
visualization (in Bergeron’s categorisation11) where a pre-
pared visualization of scientific data was placed as an image,
or perhaps a VRML model (and in the future will be a X3D
model) within a web page. It is still often used in this way of
course, providing a very useful means of publishing results.
Most visualization systems now allow VRML as an output
option—see Walton132 for example.

However it was realised that it is also possible to carry
out analytical or exploratory visualization, where the inves-
tigative process itself is carried out on the Web environment.
Use of web technology allows distributed visualization for
a single user, but it also provides a means of asynchronous
collaborative working, where the participants use the sys-
tem in turn. Furthermore with no additional software other
than web tools, participants can simultaneously access a web
page containing original data or partial results.

In a distributed collaborative visualization session (same
time, different place), we need to identify which components
are shared.

Shared. In a collaborative application, some components
exist just once and perform their tasks on behalf of all
participants. The resulting data is distributed to all partic-
ipants.

Individual. Other components are under the control of each
participant which allows individuals to inspect results in
the way most suited to their experience and environment.

In the client/server model, the shared components can be
associated with the server and there are multiple clients,
in principle one for each participant. In practice the shared
components are initiated by one of the participants.

Current research is concerned with identifying appropri-
ate Web Services or OGSA-based Services and components
for distributed and collaborative visualization.

A visualization service provider is faced with a range of
possible ways in which to provide a service. For example,
the service might be provided by software running on a
server belonging to the service provider, delivering results
to clients. An alternative is to provide an application to the
client that the client then runs. In general this might be a dis-
tributed application where some of the resources used might
belong to the service provider.

A key issue is the location of the visualization processing
which, at this point, we need to define more closely:

• It is convenient to see visualization software in two parts:
the visualization design and the core software. In a tradi-
tional procedure library context, the visualization design
is the user program, the core software the procedure li-
brary. In the context of an MVE, the visualization design
is the visual program connecting modules into a pipeline,
the core software is the set of modules provided with or
added to the MVE. The design and core software together
form a visualization executable.

• The visualization executable is conventionally described
as the chain—Filter, Map and Render—preceded by a
Data Source.

Another key issue is the location of the data that are to be
visualized. Provision of data can be viewed as a service.

We can distinguish a number of general cases which we
explore in the next sections.

3.2.1.2. Client-based visualization We distinguish client-
based from server-based systems by determining where the
visualization executable is located. Here we consider the
case where the visualization is executed on the client.

Visualization design and core software both present
on the client In this first approach, the distribution involves
only the data, which is located remotely at a URL. The vi-
sualization software is held locally, and executes locally—
and so this is a client-based approach. Typically the data is
fetched from the URL as a particular MIME-type, causing
the appropriate browser plug-in or helper application—in
other words the visualization application—to be launched.
A sensible application of this approach would be where data
is held centrally, say data collected by a government agency,
and can then be examined by any interested party who has
the appropriate client software. Equally this mode supports
a form of collaboration where a researcher places data at a
URL for download and visual analysis by others.

It is also possible to launch the local visualization soft-
ware directly, as the file import mechanism in many pack-
ages allows access to a URL.

This client/service provider split is illustrated in Figure3.

Since large remote files are inconvenient to handle, es-
pecially if only a small amount of data is required, a fur-
ther development, DODS, allows a subset of the remote
dataset to be extracted. DODS, Distributed Oceanographic
Data System97, consists of a data server, which can provide a
front end for several data formats, and a client library which
can be relinked with any application that already supports
the netCDF library. A DODS-enabled application is capable
of selecting a subset of the variables in the archive and a se-
lected set of values of any base variable. The DODS server
can also return CSV (Comma Separated Values) which the
DODS data archive to be read by an Excel client.

We can extend this model to handle collaboration as
shown in Figure4.

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

Service Provider Client

Data

Design

Core

Figure 3: Client-based: Design and Core on client.

Shared
(Service)

Individual
(clients)

Data

Design & Core A

Design & Core B

Figure 4: Client-based collaboration: design and core on
the clients.

This diagram shows that the data is retrieved by two par-
ticipants. Each can use their familiar, individually chosen vi-
sualization core software: for example, one using IRIS Ex-
plorer, another using Matlab. Although the variety of images
that may result from using different visualization systems
could lead to problems of interpretation, this variety could
be fruitful so long as the participants are able to share their
results.

In this case, none of the software needs tailoring for col-
laborative use, but the approach does rely on all the chosen
systems being able to read directly from a Web URL, which
is now quite common.

Visualization design downloaded from server: core
software present on client As mentioned above, we can
distinguish between the visualization design and the core
software. For an MVE, the design is in the form of a
pipework of modules which can be held remotely and the
core software is the library of modules themselves and the
basic MVE infrastructure. Thus one can see the MVE as an
empty workspace into which a visualization program can be
transferred and run. Thus a set of example or demonstration
pipelines could be held on a server and has significant po-
tential for education and training as studied by Yeo140.

Note that the data could be local or remote (via a URL)

Service Provider Client

Data

Design

Core

Figure 5: Client-based: core software present on the client.

Service Provider Client

Data

Design

Core

Figure 6: Client-based: visualization design and core soft-
ware downloaded to the the client.

thus enabling both data and design to be delivered as shown
in Figure5.

Visualization design and core software both down-
loaded to the client In this approach, the distribution in-
volves both the design and the core software, which is lo-
cated remotely at a URL. This is fetched to the local machine
where it is executed to create the visualization. Typically the
software is fetched as a Java applet, to run within the frame-
work of a Java Virtual Machine.

This case is shown in Figure6.

3.2.1.3. Server-based visualization Here we consider ar-
chitectures where the visualization execution takes place on
a server.

Image Display on client One extreme is that as much
as possible takes place on the server. This is suitable if a
remote data archive allows plots to be specified, for instance
the Space Physics and Aeronomy Research Collaboratory100

at the University of Michigan, USA.

If we apply this to a collaborative situation, the applica-
tion is centralised and each participant receives the results
in terms of images or movie files. This is probably the most
commonly used approach in distributed collaborative visu-
alization. Any visualization system can be used and generic
tools can be used to disseminate the results.

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

Server Client

Data

Design

Core

Render

Image

Figure 7: Server-based: image display on the client.

Server Client

Data

Design

Core

Scene

Figure 8: Server-based: rendering on the client.

For institutions which are in a position to host such a fa-
cility, the Access Grid (see Sections1 and5.2) offers an in-
frastructure to disseminate images and movie files.

If the application is centralised, it is nonetheless possible
to provide any participant with some control, but—again—it
relies on generic tools.

This is illustrated in Figure7.

Model rendering on the client In this approach, the dis-
tribution involves carrying out part of the visualization task
remotely, and transfering an intermediate representation to
the local machine for eventual display (see Figure8). Web
standards provide us with a range of formats that can be used
for the intermediate representation, depending on the nature
of the data, for example:

• 3D Geometry: X3D (previously VRML)
• 2D Geometry: SVG
• 2D Images: PNG and JPEG
• 2D Movies: MPEG

3.2.1.4. Generalized MVE architectures An MVE offers
intermediate possibilities for sharing control and distributing
output and these arise because modules may be introduced
which provide support for collaborative working. Thus it be-
comes possible to pass data and control information between
instances of the visualization systems run by different users
in the collaborative session.

In this way it is also possible to see collaborative visual-
ization as an extension of ordinary single-user visualization.
Collaborators may be introduced into a visualization session
seamlessly. Collaboration becomes an extension to, not a re-
placement of the normal working environment.

Wood, Wright and Brodlie139 have described reference
models for this type of collaborative working. Their model
is an extension of the familiar Haber and McNabb visual-
ization model. Haber and McNabb53 describe visualization
in terms of the sequential composition of three types of
processes, originally termed data enrichment, visualization
mapping and rendering, but now (using terminology due to
Upson111) referred to as Filter, Map and Render.

The extension of the model to encompass collaboration
is accomplished by introducing, potentially anywhere in the
pipeline, intermediate import and export points for data and
control information. The model in its most general form is
shown in Figure9. For simplicity, the Data Source is omitted
from the diagram.

F denotes the filter transformation; M the visualization
mapping; and R the rendering. The horizontal arrows rep-
resent the progression of raw data through the transforma-
tion pipeline, emerging as an image. Control information
can be imported from or exported to another pipeline at any
stage. This is represented by the process parameters symbol.
Similarly, data can be imported from or exported to another
pipeline at any stage. This is denoted by the vertical arrows
branching from the horizontal arrows between each process-
ing stage.

The key concepts captured by the notation are:

• The generation of a visualization design may be described
by a three-stage processing pipeline, following the Haber
and McNabb model.

• Each processing stage is controlled by a set of parameters.
• A distributed collaborative visualization system can be

modelled by a collection of pipelines, each of which rep-
resents the processing stages "owned" by a particular par-
ticipant. These pipelines may be complete (contain all
stages) or partial (contain only some stages, e.g. only the
rendering stage). The stages visible to all participants can
be indicated by a surrounding box.

• Control information may be exported from one pipeline to
others in order to synchronise parameter values between
pipeline stages.

Duceet al.33 developed a similar model—the MANICO-
RAL model. One additional feature in that is the explicit rep-

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

raw data
F

control

control

M

data

data

R
image

process parameters

Figure 9: Wood’s model for collaborative visualization.

resentation of the interaction mechanism that allows a user
to control the parameters of a module, through the introduc-
tion of an associated control module. This encapsulates and
simplifies issues related to arbitration between different in-
put sources and dynamic changes in control and arbitration.

We note in passing that these MVE models deal with con-
cepts and abstractions that might also arise when composing
visualizations from collections of components that are Web
Services or OGSA-based and that the models described here
might be applicable in that context also.

For a visualization system to be a suitable basis for the
kind of collaborative working described in these models,
there need to be well-defined points at which data can be
identified as passing between components of the system.
Plausible types of system include: AVS and AVS/Express
which have been adapted in this way in projects and the work
done in the COVISA project which has become commer-
cially available as part of the IRIS Explorer system.

The MVE approach offers a number of advantages over a
simple client/server model.

• A simple client/server model assumes that the visualiza-
tion core is all in one place.

• The simple model envisages the responsibility for the
shared components being in one place. As the partici-
pants’ expertise increases, responsibility for shared com-
ponents may be divided. Experimental Internet applica-
tions such as collaborative dance, music or theatre could
be a model here. In principle any collaborative visualiza-
tion participant can initiate some modules and offer output
or the possibility of sharing control.

• Not all participants will have the same degree of individ-
ual control.

• The simple flow of data from shared components to in-
dividually controlled ones may break down. Suppose we
start with one participant controlling some shared mod-
ules. All the other participants take the output and look
at the resulting 3D scene. Someone notices an interesting
feature and wishes to communicate it back to everyone
else.

3.3. Physical layer

The physical layer binds the logical design and core software
to particular physical resources.

We outline the kind of decisions that can be made.

• An archived data source could be the master copy real
data archive or a mirror copy available over the Grid or a
locally cached subset.

• In the logical layer, decisions were made about the place-
ment of subsets of the visualization application according
to the roles played by individual participants. Here in the
physical layer, a user’s visualization application could be
placed on a compute host according to computing and net-
working resources and may also depend on access rights.
The software could be placed: on the user’s local desktop
computer; on a specific high performance computing en-
gine, such as a cluster; or on a computer on the Grid with
the best available fit. In principle, all the visualization pro-
cessing functions could be placed elsewhere on the Grid,
with the local desktop carrying out no more than a coor-
dinating role.

• Rendering could take place on a local PC; or on a nearby
computer with a powerful graphics accelerator; or a ray-
traced movie sequence could be calculated on a render
farm.

• The input and output environment needs to be chosen and
this is discussed more fully in Section5.

• In addition to using shared application software, collabo-
rating participants need a means of communicating with
each other and need conferencing and whiteboard tools.

In Figure10, a possible collaborative logical environment
is shown and also its binding to physical resources.

4. Analysis Factors

In this section, we describe a framework within which dif-
ferent collaborative visualization systems may be compared
and contrasted. It sets out a range of factors that might distin-
guish one system from another. For potential developers of
new collaborative visualization systems, it gives a checklist

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

Figure 10: Logical and physical layer for collaboration.

against which a new design can be evaluated. The presenta-
tion here is based on the work of Wood in his PhD thesis137,
and his experiences in developing the COVISA extension
of IRIS Explorer139, but is also influenced by Duceet al.32

and the earlier work by Pang85. Some of the description is
specific to MVEs, where we talk of functionality involving
modules, but other parts apply more widely.

• Base Visualization System.

– In an ideal world, one would like to be able to col-
laborate between different visualization systems, since
different researchers in a team project may have pref-
erence for using different systems. Such a goal is very
difficult to achieve, since there is no standard function-
ality, no common architectural model, nor any stan-
dard for data exchange between systems. Thus in what
follows, we shall assume that collaboration is between
users of a specified base visualization system.

• Multiple Platforms.

– In a collaborative session, it is more natural for each
individual user to be able to use their own desktop sys-
tem. There is therefore a requirement to support col-
laborative systems across a heterogeneous set of work-
stations, rather than tie a solution to a single platform.
This goal, of interoperability between platforms (hard-
ware and operating system), is definitely achievable, in
contrast to the interoperability between visualization
systems.

• Functionality.
We can view collaboration functionality in terms of what
information can be exchanged between users in a session:

– Exchange of data. The system should be able to share
data from any point within a pipeline (rather than sim-
ply being able to share the raw data, or the end-product

of the visualization). This allows different collabora-
tors to look at the data in different ways, and allows
some data to be kept private from other users (seepri-
vacylater).

– Exchange of parameters. The system should allow
sharing of parameter input to modules; this enables,
for example, two collaborators to jointly steer the visu-
alization, by sharing control of modules in their (prob-
ably) common pipeline.

– Exchange of modules. Tthe system should allow one
user to automatically launch a module into the envi-
ronment of their collaborators. This should also allow
the automatic copying of the parameter set.

– Exchange of networks. This extends the point above
to cover a number of modules along with their inter-
connections. This would allow, for example, a more
experienced user to set up a network for a novice, or
allow a collaborator to send a fragment of a network to
other collaborators complete with parameter settings
and connections. This is potentially useful to help col-
laborators who join late catch up with the current state
of the system.

• Participation.
These aspects relate to how a user interfaces to the collab-
orative system:

– Setting up. The initial setting up of a collaborative ses-
sion should be as simple as possible, requiring the least
effort on the part of the participant. Ideally, all ele-
ments required for setting up should be put in place
by an administrator if possible.

– Joining/leaving. It may not be possible for all collabo-
rators to be available at the start of a conference, or to
remain until the end. Facilities should exist for users
to join and leave at any time.

– Automatic launch/connection. As the collaborative
system extends the modular paradigm of dataflow,
where modules can be added to the system at any time,
it is important to aid users by automating the external
connections of the shared elements.

– Floor control. Users should be able to set the type of
conference control that they require. This can be used
to offer different levels of access to a session to indi-
vidual users - for example to create a ‘See What I’m
Showing’ style of conference.

– Privacy. In addition to participating in a conference
where all elements are shared, users need to work pri-
vately while still remaining part of the conference.
This is required to support conferences that contain
parties with different skill backgrounds. For example,
consider the design of an aircraft wing: a materials
specialist may wish to look at tensile strength of a
cross section, while a flow analyst will be interested
in the air flow over that section. Both, however, need
to be aware of how a single design change will affect
their area of interest and hence need to collaborate.

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

This type of group needs the flexibility to share some
parts of the pipeline while having other, domain spe-
cific, parts under their own control.

– Global View. The ability to view the network editor of
other collaborators is useful to reassure users that they
understand what each user is doing. It also improves
the collaborative map building process since an expert
user can more easily aid a novice. However, this will
be more than a simple view of any collaborator’s en-
tire pipeline since the ability to have private work con-
texts may mean that some pipeline elements are not
shared. Note that this starts to place severe demands
on the screen real estate, and so recent developments in
large screen projection displays (such as AccessGrid,
see section1) become very useful here.

• System.
The following factors relate to the behaviour of the imple-
mented system:

– Performance. The addition of collaborative elements
to the single user system should not lower the over-
all performance of the tool. Also, shared data objects
should be routed as quickly as possible between col-
laborators. Of increasing importance in this regard is
the use of compression technologies, as the size of
datasets continues to grow.

– Reliability. Data objects passed into the collaborative
session should be guaranteed to arrive at the correct
output points intact. All participants should also be
guaranteed that the data objects they are sharing are
identical for all collaborators.

– Robustness. The system should be able to survive the
failure of any one part without the entire session col-
lapsing. For example, if one user is suddenly unavail-
able the rest should be able to continue.

– Scalability. Where the system is used for demonstra-
tion by one person to a group, there is a need for the
system to be scalable. However, in situations where all
participants are actively engaged in the visualization
process, scalability of the system beyond four or five
users is less important - since the cognitive load on the
participants will become a greater issue.

• Target User
The tools need to be applicable to a broad range of users,
with different skill levels in their use of visualization sys-
tems. In particular, we need to address two distinct classes
of user:

– Visualization Programmers. These would be consid-
ered an expert user of the base visualization sys-
tem. They would be comfortable with dynamically
constructing visualization pipelines determined by the
current direction of their investigation.

– Visualization End User. These are not expert users of
any particular visualization system, yet derive benefit
from using tailored visualization applications.

5. Visualization Input and Output

In this section we consider data sources and presentation en-
vironments. The presentation environment is in effect the
binding of the user interface to the physical layer in the ref-
erence model described in Section2.2.

5.1. Input

The source of the data to be visualized can take a variety of
forms: data stored in some kind of repository (e.g. local file-
store or data portal), data generated by a program (e.g. some
kind of simulation) and data streamed from an instrument of
some kind. The Grid is raising interesting challenges about
resource discovery and the possibilities for using semantic
markup as introduced by the Semantic Web to enable higher
level forms of resource discovery. Atkinsonet al.8 is a good
survey of the issues of data access and integration.

The issue of which data formats should visualization sys-
tems support is a complex one which is beyond the scope of
this paper. We note that there is increasing interest in the use
of XML to markup scientific data in some communities. The
paper by Brodlieet al.19 gives a review of some pertinent ac-
tivities.

Large scale scientific computations often take the form of
simulations: mathematical models that may run for very pro-
tracted periods of time tracking the evolution of some phys-
ical phenomenon. An example is black hole simulations12

carried out using the Cactus Grid-enabled problem solving
environment20. An important question for such simulations
is how to interact with the simulation whilst it is in progress,
perhaps modifying the parameters in response to observed
phenomena in the evolving simulation. The research ques-
tions here are how to provide a computational steering inter-
face to a simulation, such that the user can view the state of
the simulation through visualization and change the parame-
ter settings, without disrupting the simulation and to do this
in a Grid environment. Projects such as RealityGrid88 and
gViz52 are addressing these issues.

5.2. Presentation environments

Nowadays there are many alternatives to the pervasive desk-
top CRT. Mayer73 divides the experience of viewing visual
media into four categories: the "postage stamp" experience
in which the field of view is constrained by technology and
bandwidth, the ubiquitous "television experience", the "the-
atre experience" which provides richer emotional involve-
ment and the "immersive experience" where as Mayer puts
it "mere eye scan motion is not enough and the viewer begins
to engage head scan motion ... the viewer can leave the cen-
tre of focus and turn both their head and attention to discover
and study details of the screen and contextual environment".

Modern PDA devices equipped with colour display and
wireless network capability (such as the Compaq iPaq range)

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

fall into the "postage stamp" category. These devices are be-
ing used in DCV applications, see for example the work of
Stegmaieret al.104 and there appears to be growing inter-
est in the use of this kind of device in portable wireless
video conferencing, including AccessGrid conferencing108.
Mayer’s paper hints that the postage stamp experience can
be enhanced to the level of the higher categories by careful
design of the presentation. To realise this in a cooperative
working setting where some participants are in the postage
stamp category whilst others enjoy a theatre setting is a chal-
lenging research topic. The minimal graphics ideas of Her-
man and Duke may well find application here55.

Large format displays may be considered to be in the
theatre category. A recent collection of papers edited by
Funkhouser and Li46 covered this area. Topics included mul-
tiprojector display systems, research challenges in system
architecture, remote visualization by distribution of com-
pressed high-resolution images and case studies in using
large format displays.

The "Office of the Future" project at the University of
North Carolina at Chapel Hill134 takes the view that the of-
fice will one day have ceiling mounted digital projectors and
cameras that work together to support high-resolution pro-
jected imagery, human-computer interaction and dynamic
image-based modelling. A related project at UNC, the "of-
fice of real soon now" (see Bishop and Welch13) describes
experiments with large screen projection as the only com-
puter display, using readily available equipment. The authors
write enthusiastically of the experience and note the impact
it has on local collaboration where a group of collaborators
can share the viewing experience. Uselton112 has reported
experience with use of this kind of technology at Lawrence
Livermore National Laboratory.

The AccessGrid fits into the theatre experience category
also. Brodlieet al.18 reported on experimental use of the CO-
VISA collaborative visualization system within an Access-
Grid context to a UK e-Science meeting in September 2002.
This technology featured in an impressive demonstration of
collaborative visualization in the AccessGrid, involving 14
UK AccessGrid sites, led by Lakshmi Sastry at Rutherford
Appleton Laboratory, in May 2003.

For many visualization problems VR is a promising tech-
nology. Gallop47 provides an introduction to the application
of VR in this field. The CAVE29, is extensively used for sci-
entific visualization. The need to cooperate at a distance is
no less when VR is involved.

VRML on the Web provides a way to cooperate using 3D
visualization with the participants at different places, and
working at different times. This approach has the advan-
tage of relying on a formal (ISO/IEC) and accepted stan-
dard. Some examples of the use of VRML are discussed in
Section7.1.

Several projects have experimented with cooperative VR.

This allows people at different locations to set up represen-
tations of themselves (avatars), explore the same world to-
gether and communicate with each other about what they ob-
serve. For example DIVE21, 22, 31, 77 allows several networked
participants to interact in a virtual world over the Internet.
This kind of technology can be applied to visualization re-
sults if the geometric output can be input to the cooperative
VR system. The multiple users in the virtual world would to-
gether explore the abstract scene created by the visualization
system.

However this is a passive way of approaching visualiza-
tion. Experience shows that users want shared control over
the process not just shared exploration of the output. The
experience of the VIVRE project124 also shows that users
studying large problems with VR expect to use the vir-
tual environment to exercise control over the visualization
process15. It is therefore a natural step to allow dynamic co-
operative control of the visualization process from the vir-
tual environment. However this is not common as yet. The
University of Stuttgart are extending COVISE (discussed in
Section6.1.4) by adding VR capability to the system27, 28.
The user works in a CAVE and some of the user controls in
COVISE are available in the virtual environment. The user
can access further controls outside the CAVE.

Augmented reality techniques also find application in col-
laborative visualization. The Studierstube project105 allows
multiple users in a “study room” to cooperate studying 3-
dimensional scientific visualization. Each participant wears
an individually head-tracked see-through head mounted dis-
play and thus has their own personal view. It is plain that
each person’s view is individually rendered thus increasing
the computational load. New visualization calculations can
be triggered from any participant’s virtual environment. Sub-
sequent work in this project has included the use of aug-
mented reality in mobile collaborative working.

There is a growing interest in expanding the scope of im-
mersive technology to include aural and haptic senses in ad-
dition to the visual sense. The Visual Haptic Workbench is
an example of this trend16.

6. Systems and Frameworks

In this section, we describe some standalone visualization
systems and packages (see Section6.1), concentrating on
their distributed or collaborative functionality. We then dis-
cuss a few enabling technologies for distributed and collab-
orative visualization (see Section6.2) which could be used
alongside existing systems (even those which do not have
these features built-in).

6.1. Visualization systems

For each of the systems below, we first describe some aspects
of their architecture and features, before commenting on

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

their use in a distributed or collaborative environment, illus-
trated with examples where possible. Our selection (which
is not intended to be exhaustive) is a mixture of commercial
and public-domain systems; information on their availability
can be obtained from the references (usually web-based) in
this subsection.

6.1.1. Amira

Amira5 is an object-oriented visualization system, based on
Open Inventor135. Unlike many of the other visualization
systems discussed here (see Sections6.1.9, 6.1.2, 6.1.10),
it is not based on a dataflow model. Instead, data objects are
persistent in memory and accessed by Amira modules us-
ing the C++ interfaces of the data classes. Because data are
passed between modules as C++ objects (as in a normal C++
program), there is no overhead for module communication.
Users can extend Amira (adding new modules, data classes,
editors and I/O methods) by deriving from an existing C++
class. Amira users create applications via a visual program-
ming interface by connecting Amira modules together.

Using Amira to display the results of a simulation could
be done4 by standard methods such as connecting to the sim-
ulation via file transfer, or by embedding the simulation into
an Amira module, or by writing a new module which com-
municates with the simulation via sockets or shared memory.
We have been unable to find any references to distributed or
collaborative visualization using Amira.

6.1.2. AVS5 and AVS/Express

AVS/Express10 provides an application development envi-
ronment for visualization using a visual network editor. Al-
though in many respects an MVE, it is based on an object-
oriented model which is accessible via the visual editor (and
a script language V) that allows successively deeper levels of
the module structure to be accessed. An application can be
built making use of the higher-level modules resulting in an
obvious AVS/Express look-and-feel or alternatively can be
built using the many lower-level facilities—including a GUI
toolkit—resulting in a more highly tailored interface. It is
possible to create packaged run-time applications which has
helped the product to gain acceptance in commercial mar-
kets, as well as the science, research and educational market.

Although the idea of a visually specified network of mod-
ules was already known, Express’s predecessor, AVS59, is
believed to be the first commercial system to apply the con-
cept to computer-assisted visualization, having been in ac-
tive use since around 1989111. The name AVS (without qual-
ification) was originally associated with this product but has
gradually come to be associated with the newer product,
AVS/Express. The digit 5 refers to the version that original
AVS had reached when AVS/Express was introduced. AVS5
is still updated with minor releases and platform updates,
while AVS/Express continues to be under active develop-
ment.

Part of the AVS/Express application can be executed on
another host machine, by means of the Remote Module Sup-
port facility, which is controlled from a V file. AVS5 also
supports the use of remote modules.

The MANICORAL project32 used AVS/Express as the
basis of an experimental distributed collaborative system.
The Collaborative AVS project66 used AVS5 to build a dis-
tributed collaborative system (called cAVS), which is still
available for use23. The project was originally based at the
San Diego Supercomputing Center before moving to the
University of Texas.

6.1.3. Cactus

Cactus20 consists of a central core component, called the
flesh, and a set of modules calledthorns. The thorns im-
plement a range of computational codes which can run on
distributed computing resources while being connected to,
and orchestrated by, the flesh. The flesh controls when thorns
will execute and how data is routed between them. Cactus
comes with a set of thorns such as mesh generators etc. and
also provides a low level API to allow users to integrate their
own code as thorns. The systems appears to be controlled
by scripts that determine the choice and execution order of
thorns, rather than the graphical interfaces of other systems
such as SCIRun (see Section6.1.12).

Cactus builds on the Globus Toolkit49 to provide secure
access to remote resources, together with secure commu-
nications and job scheduling on remote resources. It also
uses a number of other standard libraries and toolkits such
as PETSc for scientific computation and HDF5 for data out-
put.

Visualization is provided via standard products such as
OpenDX (see Section6.1.10), Amira (see Section6.1.1) and
IRIS Explorer (see Section6.1.9). These systems effectively
operate as thorns connected to the Cactus system via special
modules written for each system which are able to read the
data formats exported by Cactus (for example, HDF5) us-
ing the Cactus API. No specific mention is made of its use
for collaborative visualization, though since the documenta-
tion says it links to IRIS Explorer, which offers collaborative
tools (see Section6.1.9), then collaboration could in princi-
ple be achieved in this fashion.

6.1.4. COVISE

COVISE136 falls into the modular visualization environment
category and was originally developed by Wierseet al. It
allows a user to run modules both locally and remotely, em-
ploying a data manager process on each host to manage the
flow of data beween modules. Like other distributed MVEs,
such as IRIS Explorer (see Section6.1.9), modules con-
nected together on the same host communicate data through
shared memory, while modules connected beween hosts pass
data via the local data managers. The user interface is con-
nected to the modules through a controller process.

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

Collaborative working was originally achieved by repli-
cating the user interface on the desktop of each collabora-
tor and connecting it to the single controller process started
by the first user. Control is managed on a master/slave basis
where the master can drive the system and the slaves get to
see the results. As changes are made and the output updated,
the new 3D scene is passed from the controller process to
each user interface for local rendering.

More recently, a company named Vircinity115 is market-
ing several new versions of COVISE, one of which offers
collaboration. This operates differently from the original in
that now the whole system is replicated at each site and the
user interfaces are synchronised together. This can yield bet-
ter performance since only small user interface changes need
be shared across the network rather than potentially large 3D
scene descriptions. Data is assumed to have been shared be-
fore the start of the session.

6.1.5. CSpray / Spray

CSpray84 is the collaborative version of the Spray83 visual-
ization system developed at UCSC. It takes a novel approach
to the visualization process by using a spray can metaphor
and smart particles (orsparts). The user takes a spray can
and manipulates it in 3D to aim into the data space. Pressing
the top of the can sprays the sparts into the volume where
they interact with the data generating abstract visualization
objects (AVOs). AVOs can take the form of lines, spheres,
polygons and can implement visualizations such as coloured
"dust" particles, streamlines and contours.

The collaborative extension works through individual
users being able to create spray cans which they can use to
generate AVOs. These cans may be private and used only
by their creator, or public and used by all. The AVOs cre-
ated may be shared by all collaborators or kept private to
allow a user to independently of other collaborators. View-
points may be shared, and the current position of collabora-
tors within the scene may be viewed.

We have been unable to find much information on the cur-
rent status of CSpray, although we note that it is listed as
one of the visualization systems being used in the REINAS
project93 on the visualization of environmental data.

6.1.6. Ensight

Ensight38 is a standalone application aimed at the visual
analysis and postprocessing of engineering data. It offers
a standard set of visualization and plotting algorithms with
interfaces to several engineering solvers for CFD and FEA
problems but, being aimed at end-users rather than devel-
opers, is not extensible (no new algorithms can be added,
although users can create their own readers to import data in
custom formats).

A more advanced version of the package (called Ensight
Gold) incorporates extra features for handling large data sets

including parallel processing, multipipe rendering for output
to immersive environments and collaboration. The collabo-
ration architecture37 is a master/slave one: it allows the dis-
play from apilot user’s Ensight session to be sent to that of a
copilotuser, so that all actions of the pilot are reproduced on
the copilot’s machine. At any point in the collaboration, the
copilot can take over control by requesting to be the pilot; if
this request is successful, the users swap roles. Collaboration
is currently limited to two participants.

6.1.7. FAST / FASTexpeditions

FASTexpeditions41 is the collaborative extension to the Flow
Analysis Software Toolkit (FAST40) developed at NASA
Ames. FAST is a toolkit of programs that run simulata-
neously allowing the user to visualize the result of numeri-
cal simulations. It is designed primarily to visualize unstruc-
tured data from CFD type applications. The FAST system
allows the generation of an audit trail of interactions that can
be saved so as to allow a session to be replayed. This audit
trail is used in both the web component and the collaborative
component of FASTexpeditions.

In the web environment the audit trail is used as the trig-
ger to start FAST as a helper application to the web browser.
Once the audit trail file is downloaded and read into the lo-
caly executing copy of FAST it takes control of the system,
guiding the user through the visualization process. In the col-
laborative setting, multiple distributed copies of FAST are
running (one per user) and the audit trail file is streamed
in real time from one user’s copy (thepilot, in FASTexpe-
dition’s terminology) to the rest (thepassengers). Thus the
pilot is able to control all of the visualization systems and
guide the passengers through the visualization process. The
pilot is distinguished from the other users by a token; pass-
ing this to one of the passengers causes them to become the
pilot.

6.1.8. IDL and PV-Wave

IDL 61 and PV-Wave89 are array-oriented languages for the
creation of visualization and analysis applications. We dis-
cuss them together because they share a common heritage
in design and architecture (PV-Wave was an offshoot of
the original IDL development tree), and still have much
in common, even at the level of specific commands. Users
of these systems can enter commands from the keyboard,
where they are immediately executed, or combine them into
scripts which are compiled and executed. Both systems con-
tain a large number of high-level graphics, image processing
and numerical analysis functions, along with routines for the
control of an application’s interface. In the past, IDL and
PV-Wave have been viewed129 as being stronger for the dis-
play of data in one and two dimensions than in three; this
has been improved in later releases. Thus, IDL now includes
Object Graphics, which provides an object-oriented inter-
face to graphics commands which are based on OpenGL,

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

and PV-Wave now includes new functions which allow ac-
cess to some of the VTK (see Section6.1.14) algorithms.

Although IDL and PV-Wave are both proprietary lan-
guages, they incorporate interfaces to standard languages
such as C and Fortran, and also support communication with
other applications using Remote Procedure Calls. There is
also a Java-based interface to PV-Wave67 through which a
Java client can send data and graphics commands to PV-
Wave running on the server. PV-Wave then generates a
graphics file which is returned to the Java client and dis-
played. Apart from this, we have been unable to find any
references to distributed or collaborative applications using
IDL or PV-Wave.

6.1.9. IRIS Explorer

IRIS Explorer44, 131 is a modular visualization system based
on the data flow model. The system provides a large se-
lection of modules, listed in theLibrarian, which the user
launches into the workspace (Map Editor) and connects to-
gether with wires to form a dataflow pipeline, or map. The
system can be extended by users adding their own code as
modules and integrating them into IRIS Explorer using the
provided API. These modules could be anything from visu-
alization algorithms generating geometry to simulations pro-
ducing data.

This system provides a mechanism to allow modules
within a pipeline to be run on a number of remote com-
puting resources. The user opens a new Librarian on each
remote resource with the authentication being managed by
rsh. Each remote Librarian lists local modules which can
be dragged into the Map Editor and connected into the Map
in the same manner as locally running modules. Remote
modules are simply differentiated by having the name of
the host on which they are executing on their control panel.
IRIS Explorer transparently manages the data transfer be-
tween resources as the data passes along the pipeline, using
shared memory for modules connected together on the same
host and through sockets for modules connected across host
boundaries.

Collaborative working can be achieved using a set of
provided modules originally developed as part of the
COVISA139 project. These modules allow connection to a
collaborative session and provide a tool to aid sharing of the
map construction process. In addition, data and control can
be shared between the separate instances of IRIS Explorer
being run by each collaborator. The modules can be used in
the exploration phase of visualization where the map may
be changing as new modules are tried and different data is
shared, and also in pre-defined maps packed as applications
for end-users.

6.1.10. OpenDX

OpenDX80 is a modular visualization system based on the
dataflow model. It originally began as the IBM commercial

product Visualization Data Explorer, but was offered by IBM
as an Open Source project in 1999. There is an active mailing
list and improvements continue to be made to the system.

Many example applications of its use are available within
the distribution. Others may be obtained from Treinish79 and
via the project website80.

Like other MVEs (see Sections6.1.2and6.1.9), OpenDX
can access modules on multiple hosts, but we are not aware
of any work to develop a collaborative visualization system
based on it.

6.1.11. pV3

pV390 is a library for the real-time visualization of large-
scale transient (unsteady) systems. Based on an earlier sys-
tem called Visual3123 (pV3 stands forparallel Visual3), it
has been re-designed specifically for the co-processing visu-
alization of data generated in a distributed compute arena.
One of its design goals is to allow the compute solver to run
as independently as possible–thus for example, pV3 can be
configured to plug into the simulation, display the transient
data, and unplug from the calculation.

pV3 provides a centralized interface to a distributed com-
putation. The pV3 user inserts calls to the pV3 API into the
simulation code which extract visualization data from the
simulation data structures and passes it to the pV3 server.
pV3 uses PVM for passing data around the network (though
it can also use MPI). Without a pV3 server running, the
number of members of the PVM grouppV3Server is
checked at each simulation timestep. If no servers are found,
no action is taken. When a pV3 server starts, it enrols in
thepV3Server group and, when the solution is next up-
dated, the visualization session begins. At each subsequent
timestep, the appropriate visualization data is calculated,
collected together and sent to the active server(s), which dis-
play the data.

Since the number of pV3 servers is unrestricted, a collabo-
rative application could be constructed by starting up a set of
them at different locations and connecting them to the sim-
ulation. The view which each server provides to their user
is independent, but one server can pass its 3D viewpoint to
the other servers in the group so that they’re all looking at
the same part of the data. pV3 also supports a soft cursor
(for each additional server) so that one can see where an-
other user is pointing. Computational steering (which is also
supported by pV3) is controlled in these settings so that only
one user can modify the state of the simulation at any time.
The control can be handed off to another user, if desired.

6.1.12. SCIRun

SCIRun86 is an MVE developed at the SCI institute at Utah
university. It allows the user to connect a set of pre-written
routines together in a workspace to form a dataflow network.

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

These routines execute as independent threads within a sin-
gle executable, in contrast to other MVEs such as IRIS Ex-
plorer (see Section6.1.9) which run modules as individual
processes. Despite SCIRun operating as a single executable,
the opportunity still exists for users to extend it by adding
their own code. In this case, it is compiled directly into the
system itself.

Advantages of using threads are that there is marginally
less overhead during startup, when compared to forking new
processes, and all threads may access data directly without
having to be connected through shared memory. A disad-
vantage of threads is that they must exist on the same ma-
chine, and in that respect SCIRun has been targeted at shared
memory parallel systems. To extend beyond this limitation,
more recent implementations of SCIRun have employed
"Bridging"65 which essentially allows SCIRun to access fea-
tures of commonly available libraries. One level of bridging
supports socket communication to external processes.

SCIRun has been used for computational steering within
the Uintah30 which is designed to run on massively paral-
lel distributed memory architectures. At present, no collab-
orative components built directly into SCIRun have been re-
ported, but it has been used with VNC95 to provide collabo-
ration through screen sharing.

6.1.13. VisAD

VisAD57 is a Java component library for interactive and col-
laborative visualization and analysis of numerical data. It
makes use of Java’s Remote Method Invocation (RMI) tech-
nology, which allows methods of remote Java objects to be
invoked from other Java virtual machines, possibly on dif-
ferent hosts (or on different Java interpreters on the same
host).

VisAD applications can run in any of three networked
modes:standalone, serveror client. Standalone mode is the
ordinary non-networked application mode. Server mode is
almost identical to standalone mode, except that, once the
data setup is complete, the application listens for (and re-
sponds to) clients in the background. In client mode, the ap-
plication connects to the server application and has it send
the information necessary to construct copies of any (or all)
of the server’sDisplays. (Display is the top-level ob-
ject in the VisAD visualization architecture. It contains a
window into which data objects are rendered, along with
some associated controls.) Once that is done, the server and
client remain connected and forward any significant changes
to each other, so that theDisplay(s) remain synchronized.
A client’sDisplay information comes from the server. All
data for the copiedDisplay comes from the server as well,
so if the server application is terminated, the client’sDis-
play will no longer work.

The VisAD home page120 contains a number of exam-
ples of collaborative applications. For example, theMilky

Way Galaxy Designeris an interactive application which al-
lows the user to adjust model parameters in order to match a
sky map to earth observation data. In collaborative mode, all
users see the same set of parameter values, and all can ad-
just them. Documentation on how to make a VisAD applica-
tion collaborative is also available118. Another example (the
2D Shallow Fluid Model) demonstrates the use of VisAD in
computational steering. Here, users can set the initial con-
figuration of the simulation and change its parameters (both
physical and numerical) during the run.

The construction of distributed applications in VisAD is
facilitated by its event-driven design119. Typically, a VisAD
object will implement the methods of a listener interface be-
fore registering itself as a listener with another object. When-
ever something interesting changes within this second ob-
ject, it passes an event to all its listeners which, through RMI,
could be on other machines. Thus, VisAD could be used in
the development of an application which is distributed across
a number of machines in a network.

6.1.14. VTK

VTK 128, 94 is an object-oriented software system for 3D com-
puter graphics, image processing and visualization. It con-
sists of a C++ class library, together with several interpreted
interface layers including Tcl/Tk, Java and Python which can
be used to access the classes and build applications (applica-
tions can also be written in C++, of course). VTK is based
on the dataflow model; application builders use it to create a
VTK pipelinewhose elements correspond to the elementary
steps in the Haber-McNabb visualization reference model53:
a Sourcefor data, aFilter to convert the data into geometry
and aMapperto map the geometry to graphics.

VTK has been used as part of a tool for the development
of collaborative visualization applications for CAVE-type
environments127. These types of systems require the ren-
dering of the same geometry multiple times simultaneously
to different graphics pipes, which VTK does not support
(since its geometry structure cannot be traversed by multi-
ple processes simultaneously). Accordingly, the geometry,
once created in VTK, was then passed to IRIS Performer for
(multi-pipe) rendering126. Other elements of the tool127 in-
cluded an application framework to assist with the construc-
tion of tele-immersive applications.

VTK has also been used as the visualization component
of the ICENI toolkit (see Section7.2.4).

6.2. Enabling technologies for distributed collaborative
visualization

Here, we briefly discuss a few examples of enabling tech-
nologies, including remote display and rendering (see Sec-
tions6.2.1and6.2.2) and some of the more general work on
peer-to-peer technology (see Section6.2.3).

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

6.2.1. Shared desktop display

A very simple yet powerful approach to collaborative visu-
alization is to make use of a tool for remote display. Proba-
bly the two best known of these are VNC, which is multi-
platform, and Microsoft NetMeeting, which is Microsoft-
specific. These allow the desktop of one machine (the
‘server’) to be displayed on a number of clients (the ‘view-
ers’). The success of these methods stems from efficient
compression of the frame buffer so that it becomes feasi-
ble to transmit it to a number of viewers, even when there
are frequent screen changes (although too frequent changes
reduce the performance considerably).

6.2.1.1. VNC VNC stands for ‘Virtual Network Comput-
ing’ and was first developed at AT&T. It is now being de-
veloped in two strands: RealVNC91 is being evolved by the
original developers as an open source project; tightVNC109

is a derivative of VNC, offering different compression algo-
rithms. VNC has been successfully used in AccessGrid vi-
sualization experiments18, and Stegmaieret al.104 use VNC
for efficient image compression (having rendered OpenGL
remotely). A nice feature of VNC is that input control can
be passed between server and viewers.

6.2.1.2. Microsoft technologies Microsoft have included
remote display with their NetMeeting product for sev-
eral years, and more recently have included it with MSN
Messenger78 (version 4.7). The ‘passport’ service is used to
handle authentication.

6.2.2. Remote rendering

6.2.2.1. SGI Vizserver Vizserver125 is an SGI product
designed to allow remote access to the high performance
graphics offered by its hardware. Traditionaly, to benefit
from the graphics performance of machines like an SGI
Onyx with Infinite Reality graphics, users had to be able to
view a display connected directly to the machine. Vizserver
allows users to have access to that performance by running
the server component of the software on the Onyx and con-
necting to it using client software provided by SGI. Once
connected, the client software opens a local window and dis-
plays an SGI desktop from which users may run any normal
SGI application. The OpenGL output from these programs is
rendered to a buffer on the server and the pixels transferred
across the network to the client. The user is able to select
from a number of compression schemes to trade off visual
quality with framerate.

Collaboration is achieved by allowing multiple (up to 5)
clients to attach to Vizserver and each recieve the same im-
age. Clients are available for WindowsNT/2000/XP, Solaris
and Linux. Each distinct session attached to the server uses
the graphics resources of a whole graphics pipe.

Vizserver has been used by Nigel John at Manchester
University to help surgeons at Manchester Royal Infirmary

access 3D views of patient data whilst in the operating
theatre113, 64, 74. Vizserver is used to give access to the 32-
processor SGI Onyx at Manchester University from a laptop
in the operating theatre. This display is projected onto the
theatre wall so surgeons can manipulate three-dimensional
reconstructions of the patient’s organs whilst operating on
them in real life.

6.2.2.2. Chromium Chromium58, is an open source graph-
ics library24 which allows distributed network rendering for
OpenGL applications. It does this by intercepting OpenGL
API calls, and then modifying, deleting, replacing or aug-
menting them. Thus, for distributed rendering, the com-
mands are split across a collection of graphics cards. A par-
ticular feature of Chromium is that it is non-invasive—no
modification (or even recompiliation) of the application is
required.

Chromium has been used in the ICENI project (see Sec-
tion 7.2.4) for distributed rendering across the network.

6.2.3. Peer-to-peer technologies

A powerful model for distributed computing has been
developed in the JXTA Project for Peer-to-Peer (P2P)
computing68. JXTA provides a networking framework to
support P2P programming between a group of peers. Exist-
ing single-user applications written in Java can become col-
laborative, by replicating the application at each peer, and
using the concept of JXTA Pipes to share any interface con-
trols between the peers.

Commercially, JXTA has been used in the VistaBoard
charting system122, and in the context of Grid computing it
has been used in the Triana system106.

7. Current Projects and Future Work

7.1. Web-based Visualization Projects

An important class of distributed visualization applications
are based on Web technologies, and in particular on the
client-server concept. In this subsection we describe a num-
ber of projects in which different aspects of web-based visu-
alization have been explored. We follow the classification in-
troduced in Section3.1.2.2: Full servicewhere the visualiza-
tion is created remotely by the service provider - here the vi-
sualization design and core software are both supplied by the
visualization service provider, and the service provider also
executes the software for the user;Software deliverywhere
the service provider transfers over the network to the user,
the software needed to create the visualization—here the de-
sign at least is transferred, plus perhaps some core software,
but the execution is the responsibility of the user; andLocal
operationwhere the visualization software is assumed to be
already available locally, and is just triggered by download
of data over the web—here the design and core is with the
user, who also has responsibility for the execution.

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

7.1.1. Full Service

In this category, the main visualization processing is carried
out on a server and graphical data is transmitted to the client,
for viewing within the browser. There are different styles,
determined by the extent of the rendering delegated to the
client: the graphics data may be in the form of a rendered
image, requiring only image display software; or it may be
in the form of a 3D VRML (or X3D) model, requiring a
VRML browser on the client.

This approach makes modest demands on the client
side—in terms of processing power (only rendering is re-
quired); in terms of software availability (only image or 3D
graphics software needed, and commonplace in browsers
anyway, with VRML/X3D an ISO standard for 3D Internet
graphics); and in terms of training (only ability to use image
or VRML tools required). Nothing comes free of course, and
this approach requires the presence of a server with the fol-
lowing ingredients: processing power to create the visualiza-
tion as an image or 3D model; visualization software itself;
and human involvement to create suitable visualization ap-
plications. Moreover, if several clients connect at once, then
the processing requirement on the server can be quite se-
vere. In early versions of this approach, the user interaction
was through an HTML form, but in later versions a Java ap-
plet is usually used in order to provide a richer interaction
environment.

An early example of this approach is described by Wood
et al.138, based on IRIS Explorer as the visualization system.
The basic principle of the method is as follows. The user
enters details on an HTML form to specify the location of
the dataset (as a URL say), and a ‘recipe’ for the style of
visualization required. The form is processed by a CGI script
on the server, and a visualization server is executed. This
invokes IRIS Explorer, using its scripting language (Skm) to
define an appropriate pipeline. The output of the pipeline is
a VRML file, which the visualization server returns to the
browser for viewing.

A demonstrator3 was created, to view air quality informa-
tion in the UK—and this can still be accessed today. The
data is collected on an hourly basis at a number of locations
throughout the UK, and the Atomic Energy Authority (AEA)
publish the data on a Web site. The demonstrator allows a
user to select the time and location of data, and the pollutant
to be analysed. The approach can in principle be extended
to the presentation of many different types of public service
information—for example, road traffic data, weather fore-
cast details, and so on.

Wood139 also extended his system to allow a number of
collaborators to investigate data over a period of time, giv-
ing a form of asynchronous collaboration. It works as fol-
lows. A first user creates a visualization using the form front-
end to the IRIS Explorer system running on the server. If
an interesting visualization results, they may choose to store
the parameters which defined that visualization. Note that

these parameters completely define the visualization, and of
course require much less storage than saving, for example,
the VRML output.

Now consider another user in the collaborating group. On
fetching the HTML page, they can also gain access to the
data saved by the earlier user. They can use this as a starting
point for their own study of the data: they can add their own
textual comment on the visualization, or they may choose to
change some of the defining parameters, creating a new visu-
alization. If this new visualization is of interest, its defining
parameters may be saved for later use by other collaborators.
This sequence of stored definitions effectively forms a tree
of exploratory visualizations, built up over a period of time
by the collaborators.

Note that this approach can even be used by a group work-
ing in the same place, and so it could also be placed in the
same-place, different-time quadrant of the Applegate matrix.

As mentioned earlier, more recent examples of server-
side web-based visualization tend to use Java applets to pro-
vide a more flexible GUI than the forms interface used by
Wood and colleagues. In the Vis-a-Web system, Pagendarm
and Trapp110, 81 provide an applet front-end to allow users
to access the HighEnd visualization sysytem running on a
server; a novel feature is the fact that software from different
sources can be used to make asinglevisualization—VRML
files from different sources can be combined before trans-
fer to the browser. Lefer70 builds a web-based system using
the VTK toolkit of Shroederet al.94 as underlying software.
Treinish79, in a paper on visualization design for operational
weather forecasting, describes how IBM Data Explorer can
be used in a Web environment. He envisages a partitioning
of Data Explorer into a client-server system, with a Java-
based applet on the client interacting with Data Explorer on
a server. Finally, Walton130 envisaged the publication of vi-
sualizations as VRML scenes in which the visualization al-
gorithm, containing instructions for modifying the geometry,
is directly incorporated into the scene as a scripting node.

An important thread of activity was sparked by the work
of Hendinet al.54. They describe a web-based approach to
volume rendering which exploits 2D texture mapping hard-
ware. On the server, three stacks of rectangular faces are
constructed, each stack orthogonal to one of the co-ordinate
axes. These are stored as a VRML scenegraph. On the client-
side, the current viewpoint is used to select the ‘most orthog-
onal’ stack and this is rendered using texture hardware.

This work has been developed further in a series of papers
by the graphics group at Erlangen. Engel and Ertl34 improve
the clipping operation, and introduce a collaborative aspect.
The server keeps a record of participating users, and allows
the broadcast of viewpoint, clipping region or transfer func-
tion from one user to the other collaborators. In later work,
Engelet al.35 describe an approach which uses 3D texture
hardware on a remote server, transmitting the resulting im-
ages to the client for display within an applet.

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

Engel et al.36 have studied isosurface extraction as a
server-based application. The creation of the surface using
a Marching Cubes algorithm is carried out on the server,
and the resulting polygonal data structure is streamed to the
client. They study two variants: one in which VRML is used,
the other in which an OpenGL ‘immediate rendering’ ap-
proach is used. The OpenGL approach is substantially faster,
for a large number of triangles.

A Visible Human Web Service is offered by EPFL,
Switzerland56, 121. This uses a Java applet front-end to select
the slice of interest through the Visible Human (this can be at
any orientation, and at any position); the request is passed to
a server process which extracts the relevant slice and returns
to the applet for display.

7.1.2. Software Delivery

In the ‘Full service’ examples above, the use of Java applets
is essentially limited to the provision of a good user inter-
face, and the actual visualization process is handled remotely
by a server. However there is an important group of exam-
ples where the Java applet carries out the visualization itself,
as well as provide the user interface.

An early example is described by Michaels and Bailey76.
VizWiz is a Java applet which creates isosurface, cutting
plane or elevation grid visualizations, from data supplied by
the user. A difficulty with this general approach is that the
data must be held locally on the server which delivers the
applet, for security reasons. This is not ideal! It is likely that
the data will either be held locally by the user on the client,
or in the case of shared public data, at some URL (not nec-
essarily where the applet is). Michaels and Bailey solve the
problem for local data by using the Netscape file upload op-
tion, which transfers a local file to the server. A major snag
is that the data is transferred to the server and back again,
just to circumvent security restrictions!

An alternative solution has been proposed by Kee69 and
Stanton103, allowing data from any URL. The data are
fetched temporarily to the server by a Java application (dis-
tinct from the visualization applet) which executes on the
server and, being an application, is not subject to the secu-
rity restrictions of applets. However, again there is large data
transfer involved.

Another example of this approach is given by Wegenkittl
and Groeller, in their FROLIC133 system. This creates visu-
alizations of dynamical systems, using a variant of Line In-
tegral Convolution and other methods. The systems are de-
fined analytically, and so there is no problem with uploading
data.

There are two fundamental limitations to this approach:
first, the user is limited by the power of their desktop ma-
chine; second, the upload of data seems against the spirit of
Java applets. However neither of these limitations apply in
applets which are aimed at teaching or demonstration: here

the examples can be simple and need not be computationally
demanding, and the data can be provided from the server,as
part of the demonstration. Many excellent examples of visu-
alization applets for teaching can be found on the web: for
instance, Falstad39 has some applets for maths and physics
teaching; the Vestac project114 has some statistics applets.

In terms of the ‘design’ and ‘core software’ distinction
introduced in Section2.2, one can view the applet as the
design and the Java Virtual Machine as the core software.
If we follow this idea through to MVEs, we get a simi-
lar idea where the ‘design’—that is, the description of the
dataflow pipeline—is supplied by the visualization service
provider, while the ‘core software’—that is, the MVE op-
erating environment and module code—is the responsibil-
ity of the user. Thus one can see the MVE as an empty
workspace into which a visualization program, that is, a spe-
cific pipeline of modules, can be transferred across the Web.
Thus a set of ‘example’, or ‘demonstration’ pipelines can
be held on a server, and associated with a particular MIME
type; on being fetched by the browser, the pipeline can be
automatically loaded into the empty workspace as the appli-
cation is launched. This has significant potential for educa-
tion and training, and was prototyped by Yeo140 using IRIS
Explorer as the MVE. The pipeline of modules is then avail-
able for use in the normal manner by the user. An interest-
ing variation would use the distributed computing capability
of MVEs, where modules can run remotely—allowing the
visualization service provider to at least share some of the
responsibility for execution.

7.1.3. Local operation

Although we are describing this last, historically it was the
original approach. The first instance we are aware of is
the system described by Anget al.6. Their work focussed
on volume visualization, and they defined the MIME-type
‘hdf/volume’ to identify volumetric data in the NCSA Hi-
erarchical Data Format (HDF) representation. On receiving
a file of this MIME-type, they were able to invoke the inter-
client communication facilities of the Mosaic browser, to fire
up the user interface of their volume visualization system,
VIS.

Another early example of this is the Web version of Vis-
5D (now evolving as Vis-5D+117). Vis-5D data files retrieved
over the web can be set to launch the Vis-5D application on
the client. The original Vis-5D web pages116 give examples
of its use in this way, for instance to provide daily weather
forecast visualizations from data delivered by the US Na-
tional Weather Service.

This is the most limited of the three approaches and is
probably mainly of interest now for historical reasons. Most
MVEs will allow data to be read in from a URL directly, and
so this functionality becomes available in a different way.

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

7.2. Collaborative Visualization Projects

In this subsection, we discuss a few projects currently ac-
tive in the UK e-Science programme107 which are using or
developing methods of collaborative visualization.

7.2.1. climateprediction.net

The climateprediction.net25 public-resource computing
project aims to harness the spare CPU cycles of a mil-
lion individual users’ PCs to run a massive ensemble
of climate simulations using an up-to-date, full-scale,
three-dimensional atmosphere-ocean climate model. The
ensemble of runs is required in order to establish uncertainty
limits on model predictions, leading to better-informed
policy decisions regarding climate change. Participants in
the project download the model and carry out a series of
runs, each of which is characterized by a unique set of
parameter values that are obtained from a cental server.
Results are uploaded to the server at the end of each run for
later analysis.

Visualization plays an important role in this project, both
on the desktop, and in the analysis phase. Unlike some other
public-resource projects, a high degree of long-term partici-
pant interest is needed because of the resource requirements
of each run. Accordingly, desktop visualization has been
added101 to the model in order to show its real-time evolu-
tion. An important design consideration for the visualization
is the need to take the background of the participants into
account—the interface must be simple enough to be run by
inexperienced PC users with a limited scientific background,
and yet compelling enough to be readily grasped, since one
of the broader aims of the project is to raise awareness of the
issues surrounding climate change.

The desktop visualization has been implemented using
a public-domain implementation of Open Inventor135. The
analysis phase of the project, during which data from the
individual runs will be collated and compared, will provide
opportunities for the application of distributed collaborative
visualization systems (see Section6.1).

7.2.2. GAPtk

The Grid-Aware Portals toolkit (GAPtk) project48 aims to
provide scientists with a set of visualisation utilities based
on the Web and Grid services model along with appropri-
ate APIs that will enable them to exploit the power of the
Grid for their data analysis. One of the primary goals of the
project is to retain existing familiarity with domain-specific
application environments. The layered architecture of the
toolkit is designed to hide the Grid computing structure from
the portal user. It consists of a set of interfaces on the client
side, which talks to the GAPtk server using SOAP99; the
server communicates with the Grid using Globus49.

The main results from the project will be a set of software
modules and services that can be embedded within portals

for problem solving environments. The toolkit is being used
to provide visualization capabilities within the GODIVA50

project, which is investigating ocean circulation and its ef-
fect on climate change.

7.2.3. gViz - Visualization Middleware for e-Science

gViz52 is a project funded by the UK e-Science Core Pro-
gramme, and has two main targets: first, to grid-enable
two existing visualization systems, IRIS Explorer (see Sec-
tion6.1.9) and pV3 (see Section6.1.11), so that visualization
tools are available as early as possible for users of compu-
tational grids; second, to develop some longer term thinking
on distributed and collaborative visualization, where XML
languages are used to describe visualization data, and visu-
alization programs themselves.

In terms of IRIS Explorer, a demonstrator has already
been built in which the modules in a network can be dis-
tributed across a set of Grid resources, but controlled from
the desktop. This is achieved in a secure manner using
Globus middleware to replace the existing insecurersh
mechanism. The COVISA collaborative facilities (see Sec-
tion 6.1.9) are immediately available, and so we have a
framework for Grid-enabled distributed collaborative visu-
alization. An important application of this is in computa-
tional steering, where the simulation model runs on a re-
mote server, but is controlled from the desktop. Indeed, a
separate computational steering API is being developed: this
will lead to a more flexible approach where the simulation
runs externally to the visualization system, and the visual-
ization system will act as a front-end monitoring tool which
can connect to the simulation to check its progress, change
parameters, or receive results for display.

The use of an XML language to describe visualization
data promises to lead to better inter- operability of visual-
ization systems, and the more effective development of new
visualization software (which can be written to operate on
these standard datatypes). Using XML to describe visual-
ization programs—for example the way in which pipelines
are constructed in an MVE application—will pave the way
for the exchange of visualizations between users of different
systems. In fact, it could almost be seen as a realisation of
the conceptual layer discussed in Section2.2.

7.2.4. ICENI

The goal of the ICENI60 project is the provision of high-
level abstractions for scientific computing which will allow
users to construct and define their own applications through
a graphical composition tool that is integrated with dis-
tributed component repositories. The project aims to deliver
this environment across a range of platforms and devices on
the Grid using a scheduling service. ICENI is being imple-
mented in Java and JINI, but is able to interoperate with the
Open Grid Services Architecture (OGSA)43.

One of the applications of ICENI—at least, for

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

demonstration purposes—is computational steering and
visualization102. The ICENI framework is used to link to-
gether a visualizationclient and server, and to pass data
to the server from a running application. The visualization
server hands the data off to arenderer(current demos are
based on VTK (see Section6.1.14) which can then send the
graphical output back to the visualization client. This can ei-
ther be done using standard OpenGL remote rendering, or
using Chromium (see Section6.2.2.2).

Collaborative visualization can be supported either by
connecting multiple renderers to the server (for the display
of different datasets from the same application) or by con-
necting multiple clients to a renderer (for the display of the
same dataset at multiple locations).

7.2.5. RealityGrid

RealityGrid88 is a project which aims to examine how sci-
entists in the condensed matter, materials and biological sci-
ences communities can make more effective use of the dis-
tributed computing and visualization resources provided by
the Grid. Development of RealityGrid is being run along
twin tracks: a "fast track" uses currently-available Grid mid-
dleware to construct a working grid, while a "deep track" is
harnessing computer science research to creating a flexible
problem-solving environment in which to embed the Reali-
tyGrid.

ICENI (see Section7.2.4) is being used within the "deep
track" to enable collaborative visualization and computa-
tional steering within RealityGrid59.

8. Conclusion

As networks become more pervasive and collaboration be-
comes more and more important in many areas of life, it is
natural to ask what computing can contribute. In many areas
of science and engineering and increasingly in other areas
too, visualization plays a key mediating role in communica-
tions between humans.

As the area of distributed and collaborative visualization
matures, we can expect the research ideas discussed in this
report to translate into products in the market place. We have
already seen this in the area of MVEs, where the COVISA
extension of IRIS Explorer is now an integral part of the
commercial release. The usage of these systems in the field
is likely to stimulate a further round of research, as strengths
and weaknesses emerge.

We may also look forward to a future where visualization
service providers start to exploit the service-oriented archi-
tectures described in this STAR. We can expect them to har-
ness web service and Grid service technologies, in order to
deliver visualization to the desktop of the scientist, the engi-
neer, or the clinician - indeed the market must be very large.

We have attempted in this STAR to give a review of ap-
proaches to supporting the use of visualization in collabora-
tive situations, through what we have termed distributed and
collaborative visualization. We have examined approaches
based on a service-oriented model, looking at both MVEs
and web-based approaches. This is a field in which we may
expect to see continued growth over the coming years, as
Grid computing becomes more pervasive and as high qual-
ity networking becomes more available and more affordable.
Recent research in Grid-based visualization has just been
published in a special issue of IEEE Computer Graphics and
Applications98.

It is interesting to note that a distributed and collaborative
approach was used in the preparation of this STAR by the
five authors. The text was developed individually, but with
regular review meetings to discuss, critique and re-organise,
held using AccessGrid nodes at Leeds, RAL and Oxford: the
same time, different place quadrant of the Applegate matrix.
This excellent technology enabled us to meet much more
often than we would have done otherwise, yet we never met
as a group in the same location. The reader is left to judge
the efficacy of this approach from the point of view of the
end results! For the authors, this was a highly effective use
of time, though it was very helpful that the authors knew
each other well and have built up a common understanding
of at least some of the material over a period of years.

Acknowledgements

DAD and JRG gratefully acknowledge fruitful discussions
with colleagues at the University of Lancaster in the Visual
Beans project and colleagues in the gViz project. KWB and
JDW likewise thank all those who have contributed to our
understanding of the subject—notably Helen Wright (now
at the University of Hull) and many students at the Univer-
sity of Leeds. JPRBW thanks Bob Haimes for helpful dis-
cussions. We appreciate funding from EPSRC, in particular
recent funding from the e-Science Core Programme towards
the gViz project.

References

1. G. Abram and L. Treinish. An Extended Dataflow Ar-
chitecture for Data Analysis and Visualization.Com-
puter Graphics, 29(2):17–21, 1995.3

2. Access Grid website.http://
www.accessgrid.org. 2

3. Air quality data.http://
www.visualization.leeds.ac.uk/. 20

4. Amira and simulation output.http://
www.amiravis.com/usersguide30/
faq.html#A193. 15

5. Amira website. http://www.amiravis.com/.
15

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

6. C. S. Ang, D. C. Martin, and M. D. Doyle. Integrated
Control of Distributed Volume Visualization Through
the World Wide Web. In D. Bergeron and A. E. Kauf-
man, editors,Proceedings of IEEE Visualization ’94.
IEEE Computer Society Press, 1994.21

7. L. M. Applegate. Technology Support for Coopera-
tive Work: A Framework for Studying Introduction and
Assimilation in Organizations.Journal Organizational
Computing, 1:11–39, 1991.4

8. M. Atkinson, P. Kunszt, I. Narang, N. W. Pa-
ton, D. Pearson, and P. Watson. Database Ac-
cess and Integration. InThe Grid: Blueprint
for a new computing infrastructure. Morgan
Kaufmann, 2003. A preprint is available at
http://www.ogsadai.org.uk/docs/
docs.php. 13

9. AVS5 website. http://help.avs.com/AVS5/.
15

10. AVS/Express website.http://www.avs.com/
software/soft_t/avsxps.html. 15

11. D. Bergeron. Visualization Reference Models (panel
session position statement). In G. M. Nielson and
D. Bergeron, editors,Proceedings of IEEE Visualiza-
tion ’93. IEEE Computer Society Press, 1993.2, 8

12. E. W. Bethel and J. Shalf. Grid-Distributed Visualiza-
tions Using Connectionless Protocols.IEEE Computer
Graphics and Applications, 23(2):51–59, March/April
2003.13

13. G. Bishop and G. Welch. Working in the office of ’real
soon now’. IEEE Computer Graphics and Applica-
tions, 20(4):76–78, July/August 2000.14

14. S. A. Bly, S. R. Harrison, and S. Irwin. MediaSpaces:
Bringing People Together in a Video, Audio and Com-
puting Environment. Communications of the ACM,
36(1):28–47, 1993.4

15. D. R. S. Boyd, J. R. Gallop, and J. P. R. B. Walton.
Putting You In The Picture: Enhancing Visualization
With A Virtual Environment. InIEEE Visualization
’99—Late Breaking Hot Topics, 1999. Available from
http://www.nag.co.uk/doc/TechRep/PDF/
tr1_03.pdf. 14

16. J.D. Brederson, M. Ikits, C. R. Johnson, and C. D.
Hansen. The Visual Haptic Workbench. InThe Fifth
PHANToM Users Group Workshop (PUG 00), pages
46–49, 2000.14

17. K. W. Brodlie. Visualization over the World Wide Web.
In Proceedings of the 1997 Scientific Visualization Con-
ference (Dagstuhl ’97), pages 23–29. IEEE Computer
Society Press, 2000.6

18. K. W. Brodlie, J. D. Wood, D. R. S. Boyd,

L. Sastry, J. R. Gallop, C. Osland, and S. E.
Bunn. Collaborative Visualisation Using Access Grid.
http://www.comp.leeds.ac.uk/kwb/
all_hands/BOF.pdf, 2002.14, 19

19. K. W. Brodlie, J. D. Wood, D. A. Duce, J. R. Gallop,
D. Gavaghan, M. Giles, S. J. Hague, J. P. R. B. Wal-
ton, M. Rudgyard, B. Collins, J. Ibbotson, and A. Knox.
XML for Visualization. InProceedings of the EuroWeb
2002 conference. British Computer Society, Electronic
Workshops in Computing(eWiC), 2002.13

20. Cactus project website.http://
www.cactuscode.org/. 13, 15

21. C. Carlsson and O. Hagsand. DIVE–A Multi User Vir-
tual Reality System. InProceedings of VRAIS ’93.
IEEE Computer Society Press, September 1993.14

22. C. Carlsson and O. Hagsand. DIVE–A Platform for
Multi-User Virtual Environments. Computers and
Graphics, 17(6):663–669, 1993.14

23. cAVS project website.http://
www.tacc.utexas.edu/cavs/. 15

24. Chromium source.http://sourceforge.net/
projects/chromium/. 19

25. climateprediction.net website.http://
climateprediction.net/. 22

26. B. M. Collins. Data Visualisation–Has it all been seen
before? In R. A. Earnshaw and D. Watson, editors,An-
imation And Scientific Visualization: Tools & Applica-
tions, pages 3–28. Academic Press, 1993.1

27. COVISE and VR.http://www.hlrs.de/
structure/organisation/vis/
covise/features/cover/. 14

28. COVISE website.http://www.hlrs.de/
structure/organisation/vis/covise/. 14

29. C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti.
Surrond-Screen Projection-Based Virtual Reality: The
Design and Implementation of the CAVE. InCom-
puter Graphics Proceedings, Annual Conference Se-
ries, 1993, pages 135–142. ACM Press, 1993.14

30. D. de St. Germain, J. McCorquodale, S. Parker, and
C. R. Johnson. Uintah: A massively parallel problem
solving environment. InNinth IEEE International Sym-
posium on High Performance and Distributed Comput-
ing, 2000.18

31. DIVE website.http://www.sics.se/dce/
dive/online/diveinfo.html. 14

32. D. A. Duce, J. R. Gallop, I. J. Johnson, K. Robinson,
C. D. Seelig, and C. S. Cooper. Distributed Cooperative
Visualization - The MANICORAL Approach. InEuro-
graphics UK Chapter Conference 1998. University of
Leeds, 1998.12, 15

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

33. D. A. Duce, D. Giorgetti, C. S. Cooper, J. R. Gallop,
I. J. Johnson, K. Robinson, and C. D. Seelig. Refer-
ence Models for Distributed Cooperative Visualization.
Computer Graphics Forum, 17(4):219–233, 1998.10

34. K. Engel and T. Ertl. Texture-based Volume Visualiza-
tion for Multiple Users on the World Wide Web. In
M. Gervaut, D. Schmalstieg, and A. Hildebrand, edi-
tors,Virtual Environments ’99. Proceedings of the Eu-
rographics Workshop in Vienna, Austria, pages 115–
124, 1999.20

35. K. Engel, P. Hastreiter, B. Tomandi, K. Eberhardt, and
T. Ertl. Medical Volume Rendering over the WWW. In
T. Ertl, B. Hamann, and A. Varshney, editors,Proceed-
ings of IEEE Visualization 2000, pages 449–452. IEEE
Computer Society, 2000.20

36. K. Engel, R. Westermann, and T. Ertl. Isosurface Ex-
traction Techniques for Web-based Volume Visualiza-
tion. In D. Ebert, M. Gross, and B. Hamann, editors,
Proceedings of IEEE Visualization ’99, pages 139–146.
IEEE Computer Society, 1999.21

37. Ensight Gold—Collaboration.http://
www.ceintl.com/products/collab.html.
16

38. Ensight website.http://www.ceintl.com/. 16

39. Falstad website.http://www.falstad.com/
mathphysics.html. 21

40. FAST website.http://www.nas.nasa.gov/
Software/FAST/. 16

41. FASTexpeditions website.http://
www.nas.nasa.gov/Software/FAST/
FASTexpeditions/home.html. 16

42. I. Foster. The Grid: computing without bounds.Scien-
tific American, April:62 – 67, 2003.3

43. I. Foster, C. Kesselman, J. Nick, and S. Tuecke.
The Physiology of the Grid: An Open Grid Ser-
vices Architecture for Distributed Systems Integra-
tion. In Open Grid Service Infrastructure WG,
Global Grid Forum, June 22, 2002. Available at
http://www.globus.org/research/
papers/ogsa.pdf. 22

44. D. Foulser. IRIS Explorer: A Framework for Investiga-
tion. Computer Graphics, 29(2):13–16, 1995.3, 17

45. H. Fuchs. Building Telepresence Systems: Translating
Science Fiction Ideas into Reality.Computer Graphics
Forum, 16(3):C–189, 1997.4

46. T. Funkhouser and K. Li. Large-format displays.
IEEE Computer Graphics and Applications, 20(4):20–
21, July/August 2000.14

47. J. R Gallop.Virtual Reality–Its Application to Scientific

Visualization. Eurographics Tutorial Notes, EG96 TN3.
Eurographics Association, 1996. ISSN 1017-4656.14

48. GAPtk project website.http://
www.e-science.clrc.ac.uk/web/
projects/gaptk. 22

49. Globus website.http://www.globus.org/. 15,
22

50. GODIVA project website.http://
www.e-science.clrc.ac.uk/web/
projects/godiva. 22

51. S. Greenberg, S. Hayne, and R. Rada.Groupware for
Real-time Drawing: A Designer’s Guide. McGraw-
Hill, 1995. 2

52. gViz project website.http://
www.visualization.leeds.ac.uk/gViz/.
13, 22

53. R. B. Haber and D. A. McNabb. Visualization Idioms:
A Conceptual Model for Scientific Visualization Sys-
tems. In B. Shriver, G. M. Neilson, and L. J. Rosen-
blum, editors,Visualization In Scientific Computing,
pages 74–93. IEEE Computer Society Press, 1990.10,
18

54. O. Hendin, N. John, and O. Shochet. Medical Volume
Rendering Over the WWW. In J. Westwood, editor,
Proceedings of Medicine Meets Virtual Reality 1997.
IOS Press, 1997.20

55. I. Herman and D. Duke. Minimal Graphics.IEEE
Computer Graphics and Applications, 21(6):18–21,
November/December 2001.14

56. R. D. Hersch, B. Gennart, O. Figueiredo, M. Mazzar-
iol, J. Tarraga, S. Vetsch, V. Messerli, R. Welz, and
L. Bidaut. The Visible Human Slice Web Server: a First
Assessment. InProceedings of IS and T/SPIE Confer-
ence on Internet Imaging, SPIE Vol 3964, pages 253–
258, 2000.21

57. W. Hibbard, C. R. Dyer, and B. E. Paul. Display of
scientific data structures for algorithm visualization. In
A. E. Kaufman and G. M. Neilson, editors,Proceedings
of Visualization ’92, pages 139–146. IEEE Computer
Society Press, 1992.18

58. G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ah-
ern, P. Kirchner, and J. T. Klosowski. Chromium: A
Stream Processing Framework for Interactive Render-
ing on Clusters. InProceedings of SIGGRAPH 2002,
pages 693–702. ACM Press, 2002.19

59. ICENI and RealityGrid.http://
www.lesc.ic.ac.uk/projects/
reality.html. 23

60. ICENI project website.http://
www.lesc.ic.ac.uk/iceni/index.html. 22

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

61. IDL website.http://www.rsinc.com/idl/. 16

62. inSORS website.http://www.insors.com/. 2

63. S. Jacobs, M. Gebhardt, S. Kethers, and W. Rzasa.
Filling HTML forms simultaneously: CoWeb—
architecture and functionality.Computer Networks and
ISDN Systems, 28(7-11):1385–1395, 1996.4

64. N. W. John. High Performance Visualization in a Hos-
pital Operating Theatre. InTheory and Practice of
Computer Graphics (TPCG03), 2003.19

65. C.R. Johnson, S. Parker, D. Weinstein, and S. Hef-
fernan. Component-Based Problem Solving Environ-
ments for Large-Scale Scientific Computing.Journal
on Concurrency and Computation: Practice and Expe-
rience, (14):1337–1349, 2002.18

66. G. Johnson. Collaborative Visualization 101.Computer
Graphics, 32(2):8–11, 1998.15

67. JWAVE website.http://www.vni.com/
products/wpd/jwave/. 17

68. JXTA website.http://www.jxta.org. 19

69. A. Kee. Visualization over WWW using Java. Mas-
ter’s thesis, School of Computer Studies, University of
Leeds, U.K., 1996.21

70. W. Lefer. A Distributed Architecture for a Web-based
Visualization Service. InProceedings of the Euro-
graphics Workshop on Visualization in Scientific Com-
puting. Eurographics Association, 1998.20

71. T. Liao. WebCanal: a Multicast Web Application. In
Proceedings of the Sixth International World Wide Web
Conference, 1997.4

72. H. D. Lord. Improving the Application Develop-
ment Process with Modular Visualization Environ-
ments.Computer Graphics, 29(2):10–12, 1995.3

73. T. Mayer. New Options and Considerations for Creat-
ing Enhanced Viewing Experiences.Computer Graph-
ics, 31(2):32–37, 1997.13

74. R. F. McCloy and N. W. John. Remote Visualization of
Patient Data in the Operating Theatre during Helpato-
pancreatic Surgery. InCARS 2003 Computer Assisted
Radiology and Surgery, London, UK, 2003.19

75. B. H. McCormick, T. A. DeFanti, and M. D. Brown. Vi-
sualization in Scientific Computing.Computer Graph-
ics, 21(6), 1987.1

76. C. K. Michaels and M. J. Bailey. VizWiz: A java applet
for interactive 3d scientific visualization over the web.
In R. Yagel and H. Hagen, editors,Proceedings of IEEE
Visualization ’97, pages 261–268. IEEE Computer So-
ciety Press, 1997.21

77. J. Mortensen, V. Vinayagamoorthy, M. Slater, A. Steed,

B. Lok, and M. C. Whitton. Collaboration in Tele-
Immersive Environments. InEighth Eurographics
Workshop on Virtual Environments, pages 93–101, May
2002.14

78. MSN Messenger website.http://
messenger.microsoft.com. 19

79. OpenDX weather applications.http://
www.research.ibm.com/weather/vis/
w_vis.htm. 17, 20

80. OpenDX website.http://www.opendx.org/. 3,
17

81. H.-G. Pagendarm. Visualization Within Environments
Supporting Human Communication.Future Genera-
tion Computer Systems, 15:109–117, 1999.20

82. H.-G. Pagendarm and F. H. Post. Comparative
Visualization—Approaches and Examples. In M. Gö-
bel, Müller H., and B. Urban, editors,Visualization in
Scientific Computing. Springer-Verlag, Wien, 1995.2

83. A. Pang and K. Smith. Spray rendering: Visualization
using smart particles. In G. M. Nielson and D. Berg-
eron, editors,Proceedings of IEEE Visualization ’93,
pages 302–309. IEEE Computer Society press, 1993.
16

84. A. Pang, C. K. Wittenbrink, and T. Goodman. CSpray:
A Collaborative Scientific Visualization Application. In
Proceedings of Multimedia Computing and Network-
ing, 1995.16

85. A. T. Pang and C. M. Wittenbrink. Collaborative 3D
visualization with CSpray.IEEE Computer Graphics
and Applications, 17(2):32–41, 1997.12

86. S. G. Parker and C. R. Johnson. SCIRun: A scientific
programming environment for computational steering.
In H. W. Meuer, editor,Proceedings of Supercomputer
’95, New York, 1995. Springer-Verlag.17

87. P. Parnes, M. Mattsson, K. Synnes, and D. Schefstrom.
The mWeb Presentation Framework. InProceedings
of the Sixth International World Wide Web Conference,
1997.4

88. RealityGrid project website.http://
www.realitygrid.org. 13, 23

89. PV-Wave website.http://www.vni.com/
products/wave/. 16

90. pV3 website.http://raphael.mit.edu/pV3/
pV3.html. 17

91. RealVNC website.http://www.realvnc.com.
19

92. B. E. Rogowitz. The Psychology of Visualization
(panel session position statement). In G. M. Nielson

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

and D. Bergeron, editors,Proceedings of Visualization
’93. IEEE Computer Society Press, 1993.1

93. E. Saxon, Z. Wood, M. O’Neil, C. Oates, J. Story,
S. Djurcilov, and A. Pang. Integrated Visualization
of Realtime Environmental Data. InProceedings of
Spring Conference on Computer Graphics, pages 135–
143, Comenius University, Bratislava, Slovakia, 1997.
16

94. W. J. Schroeder, K. M. Martin, and W. E. Lorensen.The
Visualization Toolkit: An Object Oriented Approach to
3D Graphics. Kitware, Inc., 3rd edition, 2003.18, 20

95. SCIRun and VNC.http://web.gat.com/
pubs-ext/MISCONF02/A23983.pdf. 18

96. A. Scott and H. Wolf. Collaborative Browsing in the
World Wide Web. InProceedings of the 8th Joint Eu-
ropean Networking Conference, 1997.4

97. T. Sgouros. DODS User Guide, Version
1.11. University of Rhode Island, Graduate
School of Oceanography, 2003. Available at
http://www.unidata.ucar.edu/packages/
dods/. 8

98. J. Shalf and E. W. Bethel. The Grid and Future Visual-
ization System Architectures.IEEE Computer Graph-
ics and Applications, 23(2):6–9, March/April 2003.3,
23

99. SOAP details.http://www.w3.org/TR/SOAP/.
22

100. Space Physics and Astronony Research Collabatory
website.http://
intel.si.umich.edu/sparc/. 9

101. D. A. Stainforth, D. Frame, and J. P. R. B. Walton. Vi-
sualization For Public-Resource Climate Modeling Re-
search. InIEEE Visualization 2003, 2003. submitted.
22

102. J. Stanton, S. Newhouse, and J. Darlington. Imple-
menting a Scientific Visualisation Capability Within
a Grid Enabled Component Framework. InPro-
ceedings of 8th International Euro-Par Conference,
volume 2400 of Lecture Notes in Computer Sci-
ence, Paderborn, Germany, 2002. Available at
http://www.lesc.ic.ac.uk/iceni/pdf/
europar2002.pdf. 23

103. P. Stanton. Java Visualization Software. Final year
project, School of Computer Studies, University of
Leeds, U.K., 1997.21

104. S. Stegmaier, M. Magallon, and T. Ertl. A Generic
Solution for Hardware-Accelerated Remote Visualiza-
tion. In D. Ebert, P. Brunet, and I. Navazo, editors,Joint
EUROGRAPHICS-IEEE TCVG Symposium on Visual-
ization (2002), pages 87–94. Eurographics, 2002.14,
19

105. Studierstube website.http://
www.cg.tuwien.ac.at/research/vr/
studierstube/AVS/html/. 14

106. I. Taylor, M. Shields, and R. Philp. GridOneD: Peer
to Peer visualization using Triana: A Galaxy Formation
Test Case. InProceedings of UK e-Science All Hands
Meeting, September 2002, 2002.19

107. The UK e-Science website.http://
www.escience-grid.org.uk/index.htm. 22

108. M. Thorson, J. Leigh, G. Maajid, K. Park,
A. Nayak, P. Salva, and S. Berry. AccessGrid-
to-Go: Providing AccessGrid access on Per-
sonal Digital Assistants. InProceedings of
the Access Grid Retreat, 2002. Available at
http://www.evl.uic.edu/paper/pdf/
AG2GoFinal2002.PDF, 2002.14

109. TightVNC website.http://www.tightvnc.com.
19

110. J. Trapp and H.-G. Pagendarm. A prototype for a
WWW-based visualization service. In W. Lefer and
M. Grave, editors,Visualization in Scientific Comput-
ing ’97, pages 21–30. Springer, Wien, 1997.20

111. C. Upson, T. Faulhaber, D. Kamins, D. Schlegel,
D. Laidlaw, J. Vroom, R. Gurwitz, and A. van Dam.
The Application Visualization System: a Computa-
tional Environment for Scientific Visualization.IEEE
Computer Graphics and Applications, 9(4):30–42,
1989.10, 15

112. S. P. Uselton. Case study: The ’Office of Real Soon
Now’ for Visualization. In H. Pfister and M. Bailey,
editors,Proceedings of Visualization 2002. IEEE Com-
puter Society Press, 2002.14

113. Using Vizserver for remote medical visualization.
http://www.sgi.com/features/2002/
sep/manchester/. 19

114. Vestac project website.http://
www.kuleuven.ac.be/ucs/java/. 21

115. Vircinity company website.http://
www.vircinity.com/. 16

116. Vis-5D website.http://www.ssec.wisc.edu/
~billh/view5d.html. 21

117. Vis5d source.http://
vis5d.sourceforge.net/. 21

118. VisAD collaborations.http://
www.ssec.wisc.edu/~dglo/
visad-collab/. 18

119. VisAD events.http://www.ssec.wisc.edu/
~dglo/visad-events/. 18

c© The Eurographics Association 2003.



K.W. Brodlie et al. / Distributed and Collaborative Visualization

120. VisAD website.http://www.ssec.wisc.edu/
~billh/visad.html. 18

121. Visible Human visualization.http://
visiblehuman.epfl.ch. 21

122. VistaPortal website.http://
www.vistaportal.com. 19

123. Visual3 website.http://raphael.mit.edu/
visual3/visual3.html. 17

124.http://www.tessella.co.uk/projects/
vivre/index.htm. 14

125. Vizserver website.http://www.sgi.com/
software/vizserver/. 19

126. VTK—Multi-pipe rendering.http://
brighton.ncsa.uiuc.edu/
~prajlich/vtkActorToPF/. 18

127. VTK and CAVEs.http://www.evl.uic.edu/
cavern/cavernpapers/viz98/. 18

128. VTK website.http://public.kitware.com/
VTK/. 18

129. J. P. R. B. Walton. Get The Picture–New Directions In
Data Visualization. In R. A. Earnshaw and D. Watson,
editors,Animation And Scientific Visualization: Tools
& Applications, pages 29–36. Academic Press, 1993.
16

130. J. P. R. B. Walton. World processing: data sharing with
VRML. In R. A. Earnshaw and J. A. Vince, editors,
The Internet in 3D: Information, Images and Interac-
tion. Academic Press, 1997.20

131. J. P. R. B. Walton. NAG’s IRIS Explorer. In C. R.
Johnson and C. D. Hansen, editors,Visualization Hand-
book. Academic Press, 2003, in press. Available from
http://www.nag.co.uk/doc/TechRep/Pdf/
tr2_03.pdf. 3, 17

132. J. P. R. B. Walton and D. Knight. Rock ’n’ Roll: Using
VRML2.0 for Visualization. IRIS Explorer Technical
Report TR27 IETR (NP3159), NAG Ltd, 1997. Avail-
able fromhttp://www.nag.co.uk/doc/
TechRep/HTML/tr2_97.html. 8

133. R. Weggenkittl and E. Groeller. Fast Oriented Line In-
tegral Convolution for Vector Field Visualization via
the Internet. In R. Yagel and H. Hagen, editors,Pro-
ceedings of IEEE Visualization ’97, pages 309–316.
IEEE Computer Society Press, 1997.21

134. G. Welch, H. Fuchs, R. Raskar, H. Towles, and M. S.
Brown. Projected imagery in your ’office of the future’.
IEEE Computer Graphics and Applications, 20(4):62–
67, July/August 2000.14

135. J. Wernecke. The Inventor Mentor. Programming

Object-Oriented Graphics with Open Inventor, Release
2. Addison-Wesley, 1994.15, 22

136. A. Wierse, U. Lang, and R. Rühle. Architectures of
Distributed Visualization Systems and their Enhance-
ments. presented at 4th Eurographics Workshop on Vi-
sualization in Scientific Computing, Abingdon, U.K.,
1993.15

137. J. D. Wood.Collaborative Visualization. PhD thesis,
School of Computer Studies, University of Leeds, U.K.,
1998.12

138. J. D. Wood, K. W. Brodlie, and H. Wright. Visualiza-
tion Over The World Wide Web and its Application to
Environmental Data. In R. Yagel and G. M. Nielson,
editors,Proceedings of IEEE Visualization ’96, pages
81–86. IEEE Computer Society Press, 1996.20

139. J. D. Wood, H. Wright, and K. W. Brodlie. Collabora-
tive Visualization. In R. Yagel and H. Hagen, editors,
Proceedings of IEEE Visualization ’97, pages 253–259,
1997.10, 12, 17, 20

140. A. Yeo. Client-based Web Visualization. Master’s the-
sis, School of Computer Studies, University of Leeds,
U.K., 1998.9, 21

141. M. Young, D. Argiro, and J. Worley. An Object Ori-
ented Visual Programming Language Toolkit.Com-
puter Graphics, 29(2):25–28, 1995.3

142. H. Zhou, M. Chen, and M. F. Webster. Comparative
evaluation of visualization and experimental results us-
ing image comparison metrics. In H. Pfister and M. Bai-
ley, editors,Proceedings of IEEE Visualization 2002.
IEEE Computer Society Press, 2002.2

c© The Eurographics Association 2003.


