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Abstract
Occlusion culling methods are an important tool for efficient rendering of large scenes. Usually only a small
part of such a scene is visible from a specific viewpoint. Therefore occlusion culling methods try to determine
which parts of the scene are invisible and can be culled. That way usually only a small part of the scene´s
primitives has to be drawn. This is especially important for real-time rendering because large scenes can easily
contain much more primitives than available hardware can render in real-time. In this state of the art report we
present an overview of the already large number of existing occlusion culling methods and their different
approaches and characteristics.

1. Introduction

A large scene, eg. the interior of a building or even a
whole city, may contain several millions of polygons, but
usually only a small part of such a scene is actually visible.
Therefore it would be inefficient to simply draw all the
geometry of this scene, because most of the rendering time
would be spent into drawing invisible objects.

This is especially a problem in real-time rendering, since
available graphics hardware can not render such a large
number of primitives at interactive frame-rates. Although
graphics hardware is continuously becoming faster, it will
probably never be fast enough, because the scenes are also
becoming more complex.

The number of rendered primitives can be reduced to some
extent by usage of hierarchical view frustum culling and
back face culling. View frustum culling 5, 12, 36 determines
which parts of the scene are outside of the viewing

frustum. These objects are definitely invisible and can
therfore be culled.

In large scenes view frustum culling is usually applied on a
spatial subdivision structure or on a hierarchy of bounding
volumes of the scene, which avoids that every single
primitive has to be tested separately.

Back face culling 36 determines which polygons are facing
away from the viewer. These polygons are invisible and
can be culled. Back face culling can also be done
hierarchically 33 so that not every single polygon has to be
tested separately.

Nevertheless, only with hierarchical view frustum culling
and back face culling in many scenes the number of
primitives that would have to be drawn would still be too
high.

This problem can be solved by usage of occlusion culling
methods which try to determine those parts of the scene
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that are invisible due to occlusion by other parts. Only
those parts of the scene which are potentially visible have
to be rendered. Parts which are identified as occluded are
culled so that they do not have to be processed further.

Many occlusion culling methods use a hierarchical
representation of the scene. This allows that the occlusion
testing and culling can be done for large parts of the scene
at once without having to test all their sub-parts
individually.

Eg. if we already know that a building in a city is occluded
from the current viewpoint then we do not have to test the
occlusion of each object inside the building, because these
objects are of course also occluded.

Exact global visibility methods try to solve the visibility
problem by determining all visibility events in the scene
for all possible viewpoints 16, 17, 40, but due to their
complexity they are impractical for large scenes.

The high expense of exact global visibility calculations can
be avoided by overestimating the set of visible objects.
Most occlusion culling methods do not solve exact
visibility. They return objects which are potentially visible,
which includes not only those primitives that are
completely visible, but also objects that are only partially
visible and maybe even some objects that are completely
invisible.

The exact visibility of these potentially visible objects is
then calculated with an additional visibility technique. In
most cases the z-buffer of conventional graphics hardware
is used for the exact visibility determination.

Nowadays exist a large number of solutions that realize
occlusion culling in different ways. These occlusion
culling methods can be categorized according to several
different criteria. In the following sections we describe the
most important of these characteristics to give an overview
of occlusion culling methods for real-time rendering.

2. Visibility from region or from viewpoint

Occlusion culling methods have to determine the set of
objects that are potentially visible (potentially visible set
(PVS)) from the current viewpoint. This can be done for
this single viewpoint alone (see figure 1), but it can also be
done for a entire region (cell) in space 3 (see figure 2).

Figure 1: From-point visibility: the gray objects are
potentially visible from the current viewpoint, the white
objects are occluded.

Figure 2: From-region visibility: the gray objects are
potentially visible from at least one viewpoint within the
square cell, the white objects are occluded.

In the latter case the generated potentially visible set
consists of all those objects which are completely or
partially visible from at least one viewpoint in the region.
From-region visibility methods use the coherence of
visibility of the viewpoints in a region. They also distribute
the computational expense of the visibility calculations
over all the viewpoints in the region.

On the other hand the potentially visible set that is
returned from a from-point visibility method can be
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noticeably smaller than the one from a from-region
visibility method, because the visibility has to be
calculated only for a single viewpoint.

3. Visibility calculations in a preprocessing step or on
the fly

Occlusion culling methods can do their visibility
calculations in a preprocessing step that precedes the
rendering of the images, or it can be done on-the-fly during
rendering.

Methods like eg. the technique by Law et al. 34, the
visibility octree method 41, or the technique by Wang et al.
51, which use a preprocessing step for their visibility
calculations, subdivide the static scene into cells. In the
preprocessing step these methods calculate the potentially
visible set of each of the cells.

These methods are therefore from-region visibility
methods, and the potentially visible set of a cell consists of
all those objects which are completely or partially visible
from at least one viewpoint in the cell.

During the rendering-phase these methods only have to
render the objects from the potentially visible set of the
cell in which the current viewpoint is located. Therefore
these methods have the advantage that their rendering-
phase is usually very fast because the potentially visible
objects can be rendered without any further occlusion
culling overhead.

But the visibility preprocessing also has some
disadvantages:

• The visibility precomputation usually requires between
several minutes and several hours depending on the
complexity of the scene. This makes it impossible to
immediately render a scene after it has been modified.

• The memory requirements for the precomputed
visibility information can easily become very large.
Compression techniques 50 can be used to minimize
this memory consumtion.

• Only static objects can be used as occluders for the
generation of the potentially visible sets in the
visibility preprocessing step. Occlusion by dynamic

objects is not taken into consideration in the
precomputed visibility information.

Visibility preprocessing methods are often used in games 1,
because the frame-rate of the released product is the major
criterion, and the cost of the time-expensive visibility
precomputation after modeling is only secondary.

The typical scenes of these games consist of a large static
environment and several dynamic objects which are
relatively small. Usually the static environment can be
designed in a way that only a very small portion of the
scene is visible from each possible viewpoint. Due to their
small size in the image the dynamic objects usually do not
have to be considered as important occluders. Therefore
the visibility preprocessing works quite well.

Most occlusion culling methods that do their visibility
calculations on the fly during rendering have the following
advatages:

• No time-expensive visibility precomputation is needed.
This makes these methods suitable for applications
where the scene has to be instantly displayed after it
has been modified, eg. during modeling or for scenes
that can be interactively manipulated by the user.

• Dynamic objects can be used as occluders. Apart from
using temporal coherence (see section 13) on-the-fly
occlusion culling methods do not have to distinguish
between static and dynamic objects, because visibility
is computed for the entire actual scene at the given
point in time of the image.

Exceptions are occlusion culling techniques like virtual
occluders 32 or directional discretized occluders 8 which do
a part of their visibility calculations on the fly during
rendering, but which additionally also use a preprocessing
step to generate an intermediate visibility information.

Hierarchical occlusion maps 58 also use a preprocessing
step. They need it to generate a database of potential
occluders. This occluder precomputation can be avoided
with incremental occluder selection as it is used for
incremental occlusion maps 2, or by combining
hierarchical occlusion maps with frustum slicing 10.

The disadvantage of all occlusion culling methods which
are done on the fly is that their visibility calculations
produce some overhead during rendering.
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4. Visibility calculations in object space or image space

Occlusion culling methods can do their visibility
calculations in object space or in image space. Image space
methods do their visibility calculations typically on-the-fly
during rendering.

Several image-based occlusion culling techniques use a
hierarchical representation of their occlusion information
in the image 22, 23, 24, 26, 27, 58. In figure 3 this is shown for a
hierarchical occlusion map 58 as an example. The
hierarchical occlusion map consists of a mipmap pyramid
of grayscale images. The intensity of a pixel in this
pyramid represents the percentage of underlying pixels that
are occluded in the full resolution image.

Figure 3: The hierarchical occlusion map represents the
occlusion in the image hierarchically at several
resolutions.

These hierarchical representations allow efficient culling in
large occluded image areas, because occluded objects can
be culled with a few accesses to entries in the high levels
of the occlusion information hierarchy instead of having to
access a much larger number of low level entries.

5. Continuous or point sampled visibility

Continuous visibility methods determine the visibility in
all view directions that pass through the image, which is an
infinitely large set of view directions. In contrast to that are
point sampled visibility methods which determine the
visibility only for a limited set of view directions, eg. for
the centers of all pixels in the image. Point sampling can
also be used for object space occlusion culling 21.

6. Conservatism of visibility

Most occlusion culling methods return conservative
visibility information. This means that their returned set of
potentially visible objects contains at least all objects that
are completely or partially visible.

Several methods support non-conservative occlusion
culling, which means that they do not guarantee that their
returned potentially visible set contains all objects that are
completely or partially visible. This increases the
performance, but of course it causes artifacts in the image.

Non-conservative occlusion culling can be done by
rendering only those objects which are most likely to be
visible 30, by using stochastic point sampled visibility in
object space 21, by testing only a few of the pixels of a
bounding volume 7, or by culling objects which are visible
only in a few pixels 58.

7. Hardware acceleration

Especially for image space occlusion culling methods it is
very important whether they support some kind of
hardware acceleration to enhance the performance of their
visibility calculations.

Hierarchical occlusion maps 58 read the frame buffer from
the graphics hardware and use it to generate a pyramid of
occlusion maps. They also use the mipmap functionality of
the graphics hardware to generate the downsampled
versions of the occlusion map.

An opacity map 27 can be used instead of a hierarchical
occlusion map. Whereas the the hierarchical occlusion
map resembles a pyramid of mipmaped textures, the
opacity map corresponds to a summed area table which
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allows to perform an overlap test in constant time. The
generation of the summed area table has to be done in
software.

The hierarchical z-buffer 22 requires a specialized graphics
hardware for full efficiency. A variant of the hierarchical z-
buffer for parallel architectures has been implemented for
Pixel-Planes 5 20. An optimized version of the hierarchical
z-buffer has been proposed 24 that allows to integrate a
hierarchical z-buffer stage into the rendering pipeline of
conventional graphics hardware.

Adaptive hierarchical visibility 55 is a simplified one layer
version of the hierarchical z-buffer where bucket sorted
polygon bins are rendered and occlusion tested. It is
simpler to implement in graphics hardware than the
hierarchical z-buffer.

Hierarchical coverage masks 23 are very efficient in
comparison to a software implementation of a
conventional scanline rasterizer, but unfortunately
hardware acceleration is very limited because conventional
graphics hardware can only be used for texturing and
shading.

The lazy occlusion grid 26 uses currently available graphics
hardware to update the occlusion information that is stored
in this grid. Due to a lazy update scheme of this occlusion
information the number of accesses to the hardware z-
buffer is usually even lower than the number of pixels in
the image. Nevertheless it is a conservative method.

Occlusion queries are currently implemented in graphics
hardware on a few systems, eg. on Hewlett-Packard’s
Visualize fx series of graphics accelerators 28, 44, 45, on
Silicon Graphics Visual Workstations 11, and on Nvidia’s
GeForce3 39.

These occlusion queries test the occlusion of a given
bounding volume by rasterizing it without modifying any
buffer. The occlusion query then returns whether the
bounding volume passed the z-test (is visible) in any of its
pixels. The relative cost of such an occlusion query in
comparison to the cost of drawing triangles varies between
different hardware 45.

Such an occlusion query is used eg. in the conservative
prioritized-layered projection algorithm 31 to cull occluded
cells from the set of cells that are candidates for projection.
Hardware accelerated occlusion queries could also be

extended to return additional occlusion information and to
work in parallel 6.

A similar occlusion query can also be implemented on
systems where such an occlusion query is not implemented
in the graphics hardware. This can be done by usage of the
stencil buffer 7. The write access to the color buffer and the
z-buffer is disabled, and then the bounding volume is
drawn. For each pixel a bit in the stencil buffer is set to 0
or 1 corresponding to whether the bounding volume
passed the z-test in that pixel or not.

After that the pixels in the bounding volume’s image area
must be read from the stencil buffer, and it must be tested
in software if their stencil bits are 0 or 1. Reading the
stencil buffer and testing it in software is of course a
significant performance bottleneck.

8. Selection of occluders

Occlusion culling methods can use all objects as occluders,
or they can select a set of objects and use only these
objects as occluders. Using all objects as occluders has the
advantage that it maximizes the occlusion, but several
occlusion culling methods require to use a selected set of
occluders.

Such methods 9, 14, 15, 29, 58 select the occluders heuristically
based on the assumption that these objects occlude large
parts of the scene. In cases where these heuristics do not
work will large parts of the scene remain unoccluded.

Additionally simplified representations of the occluders
can be synthesized, eg. by using sets of boxes that are
enclosed by the original geometry of the occluders 4. This
allows to increase the performance of visibility tests.

9. Occluder fusion

Not only the number and distribution of the occluders is
important, but also the ability of the occlusion culling
method to support occluder fusion. This means that several
(small) occluders together can occlude parts of the scene
that the single occluders alone would not occlude if they
were used independently of each other, which is illustrated
in figure 4 and 5.
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Occluder fusion is supported eg. by the directional
discretized occluders method 8, by the extended
projections method 18, by the conservative volumetric
visibility method 42, or in the visibility preprocessing
method for urban walkthroughs by Wonka et al. 54.

Figure 4: The single occluders (gray) occlude only a small
region (gray) of the scene if they are used independently of
each other.

Figure 5: Together the same set of occluders as in figure 4
occludes a considerably larger region (gray) of the scene.

Point sampled image space occlusion culling methods
implicitly support occluder fusion 22, 23, 26, 27, 44, 58, because

in their image space occlusion information they do not
distinguish between different occluders. Therefore the
occluders are automatically combined without having to do
additional computations for the occluder fusion.

Occluder fusion is very important for occluders like trees,
because each single leaf of a tree usually occludes only
very few objects, if any, behind it. But all the leafs of the
tree together can represent an important occluder that
occludes many objects behind it.

Occlusion culling methods which do not support occluder
fusion can usually only be used efficiently in restricted
scenes which contain objects that are large enough to
represent strong occluders 13.

10. Supported scenes

Although it is desirable to support general scenes, many
occlusion culling methods are nevertheless restricted to
certain types of scenes. Visibility precomputation methods
are restricted to mainly static scenes. Occlusion culling
methods which use portals for their visibility calculations 3,

35, 49 usually require architectural environments.

Several methods are restricted to terrains 46, 57 which are
usually based on a height field, and several other methods
are restricted to walkthroughs in urban environments 52 or
to 2½D scenes 43, 53 which are modeled on a ground plan.

But of course also the (in)ability of a method to use all
objects as occluders and to support occluder fusion decides
whether the method is suitable for general scenes or not.

11. Traversal of the scene

Many occlusion culling methods require that the scene is
traversed in a front to back order to make efficient
occlusion culling possible. This means that objects which
are nearer to the viewpoint are processed before objects
that are farther away, so that the nearer objects can occlude
the objects behind them.

It is also important to distinguish whether the method
requires a certain front to back traversal of the scene, or if
the scene can be traversed in any approximative front to
back order.
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12. Supported bounding volumes/spatial subdivision
structure

Several occlusion culling methods require that a certain
kind of bounding volumes or spatial subdivision structure
is used, eg. a regular spatial grid 56. Several methods use a
BSP-tree 19 as spatial subdivision structure in object space
9, 15, 38, or also to subdivide the image 37.

The hierarchical z-buffer 22 has been proposed in
combination with an object space octree, but in principle it
can also be used with other space subdivision structures or
with hierarchies of bounding volumes.

13. Temporal coherence

The successive frames of a walkthrough or an animation
usually have a high temporal coherence. In the context of
occlusion culling this means that it is likely that objects
which have been visible/hidden in the previous frame will
still be visible/hidden in the current frame.

Some occlusion culling methods utilize temporal
coherence 25 to enhance their efficiency. This can be done
eg. by caching the objects’ occlusion relations of the
previous frame and reusing them in the current frame 14.

The hierarchical z-buffer 22 can be initialized by rendering
all visible objects of the previous frame before the
hierarchical z-buffer is used for visibility testing. After this
initialization the hierarchical z-buffer will usually contain
most of the visible objects of the current frame.

Temporal coherence can also be utilized by usage of
temporal bounding volumes 47, 48. A temporal bounding
volume encloses a dynamic object not only at a single
point in time. Instead it encloses the object at every
position that the object has during a time interval.

14. Conclusion

In this state of the art report we have presented an
overview of existing occlusion culling methods for real
time rendering. We have described the major
characteristics that allow to distinguish these methods, and
that allow to select appropriate methods for a given
application.

It is likely that hardware support for occlusion culling
methods will increase and will become more popular on
graphics hardware in the near future. Of course this will
make occlusion culling even more interesting for real-time
applications.

The widespread availability of fast hardware accelerated
occlusion queries will possibly also make the majority of
other occlusion culling methods obsolete, similar as the z-
buffer has superseded most of the other visibility
techniques.
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