
EUROGRAPHICS ’98 STAR – State of The Art Report

Overview of Parallel Photo-realistic Graphics

E. Reinhard†, A. G. Chalmers† and F. W. Jansen‡

Abstract
Global illumination is an area of research which tries to develop algorithms and methods to render images of
artificial models or worlds as realistically as possible. Such algorithms are known for their unpredictable data
accesses and their high computational complexity. Rendering a single high quality image may take several hours,
or even days. For this reason parallel processing must be considered as a viable option to compute images in a
reasonable time. The nature of data access patterns and often the sheer size of the scene to be rendered, means
that a straightforward parallelisation, if one exists, may not always lead to good performance. This holds for all
three rendering techniques considered in this report: ray tracing, radiosity and particle tracing.

1. Introduction

Physically correct rendering of artificial scenes requires the
simulation of light behaviour. Such simulations are compu-
tationally very expensive, which means that a good simula-
tion may take between a couple of hours to several days. The
best lighting simulation algorithms to date are ray tracing109,
radiosity 29 and particle tracing70. These algorithms differ
in the way the light paths are approximated. This means that
the obtainable lighting effects differ from algorithm to algo-
rithm.

As pointed out by Kajiya47, all rendering algorithms aim
to model the same lighting behaviour, i.e. light scattering off
various types of surfaces, and hence try to solve the same
equation, termed the rendering equation. Following the no-
tation adopted by Shirley89, the rendering equation is for-
mulated as:

Lo(x;Θo) = Le(x;Θo)+ (1)Z
allx0

v(x;x0) fr(x;Θ0

o;Θo)Lo(x
0
;Θ0

o)cosΘi
cosΘ0

odA0

kx0�xk2

This equation simply states that the outgoing radianceLo

at surface pointx in directionΘo is equal to the emitted ra-
dianceLe plus the incoming radiance from all pointsx0 re-
flected into directionΘo. In this equation,v(x;x0) is a visi-
bility term, being 1 ifx0 is visible from surface pointx and 0

† Dept. of Computer Science, University of Bristol, UK
‡ Faculty of Information Technology and Systems, Delft University
of Technology, The Netherlands

otherwise. The material properties of surface pointx are rep-
resented in the bi-directional reflection distribution function
(BRDF) fr(x;Θ0

o;Θo), which returns the amount of radiance
reflected into directionΘo as function of incident radiance
from directionΘ0

o. The cosine terms translate surface points
in the scene into projected solid angles.

The rendering equation is an approximation to Maxwell’s
equation for electromagnetics47 and therefore does not
model all optical phenomena. For example, it does not in-
clude diffraction and it also assumes that the media inbe-
tween surfaces do not scatter light. This means that partic-
ipating media, such as smoke, clouds, mist and fire are not
accounted for without extending the above formulation.

There are two reasons for the complexity of physically
correct rendering algorithms. One stems from the fact that
the quantity to be computed,Lo is part of the integral in
equation 1, turning the rendering equation into a recursive
integral equation. The other is that, although fixed, the in-
tegration domain can be arbitrarily complex. Recursive in-
tegral equations with fixed integration domains are called
Fredholm equations of the second kind and have to be solved
numerically18. Ray tracing (section 3), radiosity (sections 4
to 7) and particle tracing (section 8) are examples of such nu-
merical methods approximating the rendering equation. Ray
tracing approximates this Fredholm equation by means of
(Monte Carlo) sampling from the eye point, particle tracing
by sampling from the light sources. Radiosity is a finite el-
ement method for approximating energy exchange between
surfaces in a scene.

To speed up these algorithms, many different schemes
have been proposed, of which parallel processing is one. To

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

succesfully implement a rendering algorithm a number of is-
sues must be addressed. First of all, a decision must be made
whether the algorithm is going to be decomposed into sepa-
rate functional parts (algorithmic decomposition), or if iden-
tical programs are going to be executed on different parts of
the data (domain decomposition). The latter tends to be more
suitable for parallel rendering purposes and is certainly the
method that is most used nowadays. This report therefore
concentrates on domain decomposition methods.

Second, the type of parallel hardware must be consid-
ered. If no dedicated parallel hardware is available, clus-
ters of workstations may be used (distributed processing),
otherwise with dedicated multiprocessors a decision must
be made whether to use shared or distributed memory ma-
chines. Shared memory systems have the advantage of sim-
plicity of programming, as all processors address the same
pool of data. On the other hand, this is also a disadvantage,
because memory access may become a bottleneck when
a large number of processors are connected together. Dis-
tributed memory systems are theoretically more scalable,
but in practice moving data from processor to processor is
a costly affair, limiting the scalability of the system. Most
parallel rendering algorithms are implemented on distributed
memory systems, with a few notable exceptions.

Third, tasks need to be identified and the appropriate data
for them selected. Managing which tasks are going to be ex-
ecuted by which processors and if and how data is going to
be moved around between various processors are important
design decisions which directly affect performance of the re-
sulting parallel system. Improper task and data management
may lead to idle time, for example because the workload is
unevenly distributed between processors (load imbalance) or
because of the time delay when data needs to be fetched
from remote processors. Excessive data or task communi-
cation between processors is another common performance
degrading effect. Choreographing tasks and data such that
all processors have sufficient work all the time, while ensur-
ing that the data needed to complete all tasks is available at
the right moments in time, are the main issues in parallel
processing.

Generally, three different types of task scheduling are dis-
tinguished, which are data parallel, data driven and demand
driven scheduling. If data is distributed across a number of
processors, then data parallel scheduling implies that tasks
are executed with the processors that hold the data required
for those tasks. If some data items are unavailable at one pro-
cessor, the task is migrated to the processor that holds these
data items. Very large data sets can be processed in this way,
because the problem size does not depend on the size of a
single processor’s memory.

In data driven scheduling, all tasks are distributed over the
processors before the computations start. Scheduling is ex-
tremely simple, but data management is more difficult. Data
either has to be replicated, or data fetches may occur, penal-

ising performance. Another disadvantage is that the work-
load associated with each task (and thus each processor) is
unknown, and therefore load imbalances may occur.

Demand driven scheduling is generally most succesful in
avoiding load imbalances, because work is distributed on de-
mand. Whenever a processor finishes a task, it requests a new
task from a master processor. Data management is similar
to data driven scheduling, which means that demand driven
scheduling, with data replicated across the processors, leads
to the best performance.

Demand driven and data parallel types of scheduling are
sometimes combined into a hybrid scheduling algorithm.
Each processor then stores part of the data. Whenever data
accesses are unpredictable, or a large amount of data is re-
quired to complete a task, these tasks are handled in data
parallel fashion. If a task requires a relatively small amount
of data, which can be determined before the task is executed,
then this task can be executed in demand driven fashion. By
scheduling such tasks with processors that have a low work-
load, load imbalances due to data parallel scheduling can be
minimised, while at the same time very large problems can
be solved.

For really complex scenes, the above scheduling approach
may loose efficiency because of loss of data and cache co-
herence, in particular for the demand-driven scheduling. Re-
cently, several techniques have been developed to improve
data locality, either by replacing complex objects by simpler
approximations or by reordering computations. Similar data
management strategies have been proposed to reduce the
amount of task communication in data parallel approaches.

This report is structured as follows. Section 2 discusses
the overheads which are invariably associated with paral-
lel processing and which must be dealt with in any paral-
lel rendering system. In section 3 ray tracing and its parallel
variants are explained, while the same is done for radios-
ity in section 4 and for stochastic rendering in section 8. Is-
sues pertaining to preserving and exploiting coherence and
data locality are discussed in section 9. Finally, this paper is
rounded up with a discussion in section 10.

2. Realisation penalties

If the same processor is used in both the sequential and paral-
lel implementation of a problem, then we should expect, that
the time to solve the problem decreases as more processors
are added. The best we can reasonably hope for is that two
processors will solve the problem twice as quickly, three pro-
cessors three times faster, andn processors,n times faster. If
n is sufficiently large then by this process, we should ex-
pect our large scale parallel implementation to produce the
answer in a tiny fraction of the sequential computation.

However, in reality we are unlikely to achieve these op-
timised times as the number of processors is increased. A

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

more realistic scenario is that the time taken to solve the
example problem on the parallel system initially decreases
up to a certain number of processing elements. Beyond this
point, adding more processors actually leads to an increase
in computation time.

Failure to achieve the optimum solution time means that
the parallel solution has suffered some form of realisation
penalty9. A realisation penalty can arise from the algorithm
itself or from its implementation. The algorithmic penalty
stems from the very nature of the algorithm selected for par-
allel processing. The more inherently sequential the algo-
rithm, the less likely the algorithm will be a good candidate
for parallel processing. It has been shown, albeit not con-
clusively, that the more experience the writer of the parallel
algorithm has in sequential algorithms, the less parallelism
that algorithm is likely to exhibit10.

The sequential nature of an algorithm and its implicit data
dependencies will translate, in the domain decomposition
approach, to a requirement to synchronise the processing el-
ements at certain points in the algorithm. This can result in
processing elements standing idle awaiting messages from
other processing elements. A further algorithmic penalty
may also come about from the need to reconstruct sequen-
tially the results generated by the individual processors into
an overall result for the computation.

Solving the same problem twice as fast on two processing
elements implies that those two processing elements must
spend 100% of their time on computation. We know that
a parallel implementation requires some form of commu-
nication. The time a processing element is forced to spend
on communication will naturally impinge on the time a pro-
cessor has for computation. Any time that a processor can-
not spend doing useful computation is an implementation
penalty. Implementation penalties are thus caused by:

The need to communicateAs mentioned above, in a mul-
tiprocessor system, processing elements need to commu-
nicate. This communication may not only be that which is
necessary for a processing element’s own actions, but in
some architectures, a processing element may also have to
act as a intermediate for other processing elements’ com-
munication.

Idle time Idle time is any period of time when a processing
element is available to perform some useful computation,
but is unable to do so because either there is no work lo-
cally available, or its current task is suspended awaiting
a synchronisation signal, or a data item which has yet to
arrive.
The computation to communication ratio within the sys-
tem will determine how much time is available to fetch a
task before the current one is completed. A load imbal-
ance is said to exist if some processing elements still have
tasks to complete, while the others do not.
The domain decomposition approach means that the prob-
lem domain is divided amongst the processing elements

in some fashion. If a processing element requires a data
item that is not available locally, then this must be fetched
from some other processing element within the system. If
the processing element is unable to perform other useful
computation while this fetch is being performed, for ex-
ample by means of multi-threading, then the processing
element is said to be idle.

Concurrent communication, data management and
task management activity Implementing each of a pro-

cessing element’s activities as a separate concurrent pro-
cess on the same processor, means that the physical pro-
cessor has to be shared. When another process other than
the application process is scheduled then the process-
ing element is not performing useful computation even
though its current activity is necessary for the parallel im-
plementation.

The fundamental goal of parallel processing is to min-
imise the implementation penalty. While this penalty can
never be removed, intelligent communication, data manage-
ment and task scheduling strategies can avoid idle time and
significantly reduce the impact of the need to communicate.

3. Ray tracing

The basic ray tracing algorithm109 follows, for each pixel of
the image, one or more rays into the scene. If such a primary
ray hits an object, the light intensity of that object is assigned
to the corresponding pixel. From the intersection point of
the ray and the object, new rays are spawned towards each
of the light sources (figure 1). When these shadow rays in-
tersect other objects between the intersection point and the
light sources, intersection point is in shadow, and if the light
sources are hit directly, the intersection point was directly lit.

Mirroring reflection and transparency may be modelled
similarly by shooting new rays into the reflected and/or
transmitted directions (figure 1). These reflection and trans-
parency rays are treated in exactly the same way as primary
rays. Hence, ray tracing is a recursive algorithm.

In terms of the rendering equation, ray tracing is defined
as53:

Lo(x;Θo) = Le(x;Θo)+

∑
L

Z
allxi2L

v(x;xl) fr;d(x)Le(xl ;Θ0

o)cosΘl dωl +

Z
Θs2Ωs

fr;s(x;Θs;Θo)L(xs;Θs)cosΘsdωs+

ρdLa(x)

Here, the second term on the right hand side computes
the direct contribution of the light sourcesL. The visibility
term is evaluated by casting shadow rays towards the light
sources. The specular contribution is computed by evaluat-
ing the third term. If the specular component (the same holds

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

Eye point

Reflection ray

Shadow rays

Primary ray

Shadow rays

Screen

Figure 1: Modelling reflection and shadowing.

for transparency) intersects a surface, this equation is eval-
uated recursively. As normally no diffuse interreflection is
computed in ray tracing, the ambient component is approxi-
mated by a constant, the fourth term.

This recursive process has to be carried out for each indi-
vidual pixel separately. A typical image therefore costs at
least a million primary rays and a multiple of that in the
form of shadow rays and reflection and transparency rays.
The most expensive parts of the algorithm are the visibil-
ity calculations. For each ray, the object that intersected the
ray first, must be determined. To do this, a potentially large
number of objects will have to be intersected with each ray.

One of the first and arguably one of the most obvious op-
timisations is to spatially sort the objects as a pre-process, so
that for each ray instead of intersecting all the objects in the
scene, only a small subset of the objects need to be tested.
Sorting techniques of this kind are commonly known as spa-
tial subdivision techniques28. All rendering algorithms that
rely on ray casting to test visibility, benefit from spatial sub-
divisions. The simplest of all spatial subdivisions is the grid,
which subdivides the scene into a number cells (or voxels)
of equal size. Tracing a ray is now performed in two steps.
First each ray intersects a number of cells, and these must be
determined. This is called ray traversal. In the second step
objects contained within these cells are intersected. Once an
intersection in one cell is found, subsequent cells are not tra-
versed anyfurther. The objects in the cells that are not tra-
versed, are therefore not tested at all.

Although the grid is simple to implement and cheap to
traverse, it does not adapt very well to the quirks of the par-
ticular model being rendered. Complex models usually con-
centrate a large number of objects in a few relatively small
areas, whereas the rest of the scene is virtually empty. Fig-

ure 1 is one such example of a complex scene in which a
large concentration of objects is used to model the musical
equipment and the couches. The floor and the walls, how-
ever, consist of just a few objects.

Adaptive spatial subdivisions, such as the octree27 and the
bintree are better suited for complex scenes. Being tree struc-
tures, space is recursively subdivided into two (bintree) or
eight (octree) cells whenever the number of objects in a cell
is above a given threshold and the maximum tree depth is
not yet reached. The cells are smaller in areas of high object
concentration, but the number of objects in each cell should
be more or less the same. The cost of intersecting a ray with
the objects in a cell is therefore nearly the same for all cells
in the tree.

Experiments have shown that as a rule of thumb, the num-
ber of cells in a spatial subdivision structure should be of the
same order as the number of objectsN in the scene78. Given
this assumption, an upper bound for the cost (in seconds) of
tracing a single ray through the scene for the three spatial
subdivision structures is derived as follows80:

Grid The number of grid cells isN, so that in each of the
orthogonal directionsx, y andz, the number of cells will
be 3

p
N. A ray travelling linearly through the structure will

therefore cost

T =
3
p

N(Tcell+Tint)

= O(3
p

N)

In this and the following equationsTcell is the time it takes
to traverse a single cell andTint is the time it takes on
average to intersect a single object.

Bintree Considering a balanced bintree withN leaf cells,

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

the height of the tree will beh, where 2h=N. The number
of cells traversed by a single ray is thenO(2

h
3), giving

T = 2
h
3 (Tcell+Tint)

=
3
p

N(Tcell+Tint)

= O(3
p

N)

Octree In a balanced octree withN leaf cells, the height is
h, where 8h=N. A ray traversing such an octree intersects
O(2h) cells:

T = 2h(Tcell+Tint)

=
3
p

N(Tcell+Tint)

= O(3
p

N)

Although the asymptotic behaviour of these three spatial
subdivision techniques are the same, in practice differences
may occur between the grid and the tree structures due to
the grid’s inability to adapt to the distribution of data in the
scene.

Spatial subdivision techniques have reduced the number
of intersection tests dramatically fromO(N) to O(3

p
N), but

a very large number of intersection tests is still required due
to the sheer number of rays being traced and due to the com-
plexity of the scenes that has only increased over the years.

Other sorting mechanisms that improve the speed of ren-
dering, such as bounding box strategies, exist, but differ
only in the fact that objects are now bounded by simple
shapes that need not be in a regular structure. This means
that bounding spheres or bounding boxes may overlap and
may be of arbitrary size. The optimisation is due to the fact
that intersecting a ray with such a simple shape is often much
cheaper than intersecting with the more complex geometry it
encapsulates. Bounding spheres or boxes may be ordered in
a hierarchy as well, leading to a tree structure that removes
the need to test all the bounding shapes for each ray.

Because bounding boxes (and spheres) are quite similar to
spatial subdivision techniques, their improved adaptability
to the scene and their possibly more expensive ray traversal
cost being the differences, these techniques are not consid-
ered any further. The reduction in intersection tests is of the
same order as for spatial subdivision techniques. As other
optimisations that significantly reduce the time complexity
of ray tracing are not imminent, the most viable route to im-
prove execution times is to exploit parallel processing.

3.1. Parallel ray tracing

The object of parallel processing is to find a number of
preferably independent tasks and execute these tasks on dif-
ferent processors. Because in ray tracing the computation of
one pixel is completely independent of any other pixel, this
algorithm lends itself very well to parallel processing. As the

data used during the computation is read, but not modified,
the data could easily be duplicated across the available pro-
cessors. This would then lead to the simplest possible paral-
lel implementation of a ray tracing algorithm. The only issue
left to be addressed is that of load balancing. Superficially,
ray tracing does not seem to present any great difficulties for
parallel processing. However, in massively parallel applica-
tions, duplicating data across processors is very wasteful and
limits the problem size to that of the memory available with
each processor.

When the scene does not fit into a single processors mem-
ory, suddenly the problem of parallelising ray tracing be-
comes a lot more interesting and the following sections ad-
dress the issues involved. Three different types of scheduling
have been tried on ray tracing, which are the demand driven,
the data parallel and the hybrid scheduling approach. They
are discussed in sections 3.2 through 3.4.

3.2. Demand driven ray tracing

The most obvious parallel implementation of ray tracing
would simply replicate all the data with each processor
and subdivide the screen into a number of disjunct regions
67; 31; 73; 32; 33; 8; 60; 103; 42 or adaptively subdivide the screen and
workload65; 66. Each processor then renders a number of re-
gions using the unaltered sequential version of the ray trac-
ing algorithm, until the whole image is completed.

Tasks can be distributed before the computation begins42.
This is sometimes referred to as a data driven approach.
Communication is minimal, as only completed subimages
need to be transferred to file. However, load imbalances may
occur due to differing complexities associated with different
areas of the image (see figure 2).

Areas of high complexity

Areas of low complexity

Figure 2: Different areas of the image have different com-
plexities.

To actively balance the workload, tasks may be distributed

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

at run-time by a master processor. Whenever a processor fin-
ishes a subimage, it asks the master processor for a new task
(figure 3). In terms of parallel processing, this is called the
demand driven approach. In computer graphics terms this
would be called a screen space subdivision. The speed-ups
to be expected with this type of parallelism are near linear, as
the overhead introduced is minimal. Because the algorithm
itself is sequential as well, this algorithm falls in the class of
embarrassingly parallel algorithms.

Slave 4

Slave 3

Slave 2

Slave 1

Master processor

Pixel data
Task
Task request

Figure 3: Demand driven ray tracing. Each processor re-
quests a task from the master processor. When the master
receives a requests, it sends a task to the requesting proces-
sor. After this processor finishes its task, it sends the result-
ing pixel data to the master for collation and requests a new
task.

Communication is generally not a major problem with this
type of parallel ray tracing. After finishing a task, a proces-
sor may request a new task from a master processor. This
involves sending a message to the master, which in turn will
send a message back. The other communication that will oc-
cur is that of writing the partial images to either the frame
buffer or to a mass storage device.

Load balancing is achieved dynamically by only send-
ing new tasks to processors that have just become idle. The
biggest problems occur right at the beginning of the compu-
tation, where each processor is waiting for a task, and at the
end of the computation, when some processors are finishing
their tasks while others have already finished. One way of
minimising load imbalances would be task stealing, where
tasks are migrated from overloaded processors to ones that
have just become idle3.

In order to facilitate load balancing, it would be advan-
tageous if each task would take approximately the same
amount of computer cycles. In a screen space subdivision
based ray tracer, the complexity of a task depends strongly

on the number of objects that are visible in its region (fig-
ure 2). Various methods exist to balance the workload.

The left image in figure 4 shows a single task per proces-
sor approach. This is likely to suffer from load imbalances
as clearly the complexity for each of the tasks is different.
The middle image shows a good practical solution by hav-
ing multiple smaller regions per processor. This is likely to
give smaller, but still significant, load imbalances at the end
of the computation. Finally, the right image in figure 4 shows
how each region may be adapted in size to create a roughly
similar workload for each of the regions. Profiling by sub-
sampling the image to determine the relative workloads of
different areas of the image would be necessary (and may
also be used to create a suitable spatial subdivision, should
the scene be distributed over the processors74).

Unfortunately, parallel implementations based on image
space subdivisions normally assume that the local memory
of each processor is large enough to hold the entire scene. If
this is the case, then this is also the best possible way to par-
allelise a ray tracing algorithm. Shared memory (or virtual
shared memory) architectures would best adopt this strategy
too, because good speed-ups can be obtained using highly
optimised ray tracers55; 92; 48. It has the additional advantage
that the code hardly needs any rewriting to go from a sequen-
tial to a parallel implementation.

However, if very large models need to be rendered on dis-
tributed memory machines or on clusters of workstations, or
if the complexity of the lighting model increases, the storage
requirements will increase accordingly. It may then become
impossible to run this embarrassingly parallel algorithm ef-
ficiently and other strategies will have to be found.

An important consequence is that the scene data will have
to be distributed. Data access will incur different costs de-
pending on whether the data is stored locally or with a
remote processor. It suddenly becomes very important to
store frequently accessed data locally, while less frequently
used data may be kept at remote processors. If the above
screen space subdivision is to be maintained, caching tech-
niques may be helpful to reduce the number of remote data
accesses. The unpredictable nature of data access patterns
that ray tracing exhibits, makes cache design a non-trivial
task31; 33.

However, for certain classes of rays, cache design can be
made a little easier by exploiting coherence (also called data
locality). This is accomplished by observing the fact that
sometimes the order in which data accesses are made are
not completely random, but somewhat predictable. Different
kinds of coherence are distinguished in parallel rendering,
the most important of which are:

Object coherenceObjects consist of separate connected
pieces bounded in space and distinct objects are disjoint
in space. This is the main form of coherence; the others
are derived from object coherence99. Spatial subdivision

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

with adaptive regions
b. Dynamic load balancinga. Static load balancing c. Dynamic load balancing

2

1

2

2

2

1

1

1

4

1

4

3

2

4

4

1

4

3

3

1
3

22

43

21

3

Figure 4: Image space subdivision for four processors. (a) One subregion per processor. (b) Multiple regions per processor. (c)
Multiple regions per processor, but each region should bring about approximately the same workload.

techniques, such as grids, octrees and bintrees directly ex-
ploit this form of coherence, which explains their success.

Image coherenceWhen a coherent model is projected onto
a screen, the resulting image should exhibit local con-
stancy as well. This was effectively exploited in108.

Ray coherenceRays that start at the same point and travel
into similar directions, are likely to intersect the same ob-
jects. An example of ray coherence is given in figure 5,
where most of the plants do not intersect the viewing frus-
tum. Only a small percentage of the plants in this scene are
needed to intersect all of the primary rays drawn into it.

Eye Point

Viewing frustum

Figure 5: Ray coherence: the rays depicted intersect only a
small number of objects.

For ray tracing, ray coherence is easily exploited for bun-
dles of primary rays and bundles of shadow rays (assuming
that area light sources are used). It is possible to select the
data necessary for all of these rays by intersecting a bound-
ing pyramid with a spatial subdivision structure16. The re-
sulting list of voxels can then be communicated to the pro-
cessor requesting the data.

3.3. Data parallel ray tracing

A different approach to rendering scenes that do not fit into
a single processor’s memory, is called data parallel render-
ing. In this case, the data is distributed amongst the proces-
sors. Each processor will own a subset of the scene database
and trace rays only when they pass through its own subspace
12; 50; 51; 6; 31; 74; 43; 94; 72; 104; 105; 49; 79. If a processor detects an
intersection in its own subspace, it will spawn secondary
rays as usual. Shading is normally performed by the pro-
cessor that spawned the ray. In the example in figure 6, all
primary rays are spawned by processor 7. The primary ray
drawn in this image intersects a chair, which is detected by
processor 2 and a secondary reflection ray is spawned, as
well as a number of shadow rays. These rays are terminated
respectively by processors 1, 3 and 5. The shading results of
these processors are returned to processor 2, which will as-
semble the results and shade the primary ray. This shading
result is subsequently sent back to processor 7, which will
eventually write the pixel to screen or file.

In order to exploit coherence between data accesses as
much as possible, usually some spatial subdivision is used to
decide which parts of the scene are stored with which pro-
cessor. In its simplest form, the data is distributed accord-
ing to a uniform distribution (see figure 7a). Each proces-
sor will hold one or more equal sized voxels12; 72; 104; 105; 79.
Having just one voxel per processor allows the data decom-
position to be nicely mapped onto a 2D or 3D grid topology.
However, since the number of objects may vary dramatically
from voxel to voxel, the cost of tracing a ray through each of
these voxels will vary and therefore this approach may lead
to severe load imbalances.

A second, and more difficult problem to address, is the
fact that the number of rays passing through each voxel is
likely to vary. Certain parts of the scene attract more rays
than other parts. This has mainly to do with the view point

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

Primary ray

Shadow rays

Reflection ray

Viewing frustum

Spatial subdivision

76

2

85

1 43

Figure 6: Tracing and shading in a data parallel configuration.

and the location of the light sources. Both the variations in
cost per ray and the number of rays passing through each
voxel indicate that having multiple voxels per processor is
a good option, as it is likely to reduce the impact of load
imbalances.

Another approach is to use a hierarchical spatial subdi-
vision, such as an octree50; 51; 31; 77, bintree (see figures 7b
and 7c) or hierarchical grids94 and subdivide the scene ac-
cording to some cost criterion. Three cost criteria are dis-
cussed by Salmon and Goldsmith87:

� the data should be distributed over the processors such
that the computational load generated at each processor is
roughly the same.

� The memory requirements should be similar for all pro-
cessors as well.

� Finally, the communication cost incurred by the chosen
data distribution should be minimised.

Unfortunately, in practice it is very difficult to meet all
three criteria. Therefore, usually a simple criterion is used,
such as splitting off subtrees such that the number of objects
in each subtree is roughly the same. This way at least the
cost for tracing a single ray will be the same for all proces-
sors. Also, storage requirements are evenly spread across all
processors. A method for estimating the cost per ray on a per
voxel basis is presented in80.

Memory permitting, a certain degree of data duplication
may be very helpful as a means of reducing load imbalances.
For example, data residing near light sources may be dupli-
cated with some or all processors or data from neighbouring
processors maybe stored locally94; 79.

In order to address the second problem, such that each
processor will handle roughly the same number of ray tasks,

profiling may be used to achieve static load balancing74; 43.
This method attempts to equalise both the cost per ray and
the number of rays over all processors. It is expected to out-
perform other static load balancing techniques at the cost of
an extra pre-processing step.

If such a pre-processing step is to be avoided, the load in
a data parallel system could also be dynamically balanced.
This involves dynamic redistribution of data17. The idea is
to move data from heavily loaded processors to their neigh-
bours, provided that these have a lighter workload. This
could be accomplished by shifting the voxel boundaries.

Alternatively, the objects may be randomly distributed
over the processors (and thus not according to some spatial
subdivision)49. A ray will then have to be passed from pro-
cessor to processor until it has visited all the processors. If
the network topology is ring based, communication could be
pipelined and remains local. Load balancing can be achieved
by simply moving some objects along the pipeline from a
heavily loaded processor to a less busy processor.

In general, the problem with data redistribution is that data
accesses are highly irregular; both in space and in time. Tun-
ing such a system is therefore very difficult. If data is redis-
tributed too often, the data communication between proces-
sors becomes the dominant factor. If data is not redistributed
often enough, a suboptimal load balance is achieved.

In summary, data parallel ray tracing systems allow large
scenes to be distributed over the processors’ local memories,
but tend to suffer from load imbalances; a problem which is
difficult to solve either with static or dynamic load balancing
schemes. Efficiency thus tends to be low in such systems.

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

6 7

4 5

6

3

8

2 3

5

1

7

2

8

3

1

5

3

6

2

4

Grid

4

4

8

1

7

1

Octree

2

4

3

Bintree

6 875

21

Figure 7: Example data distributions for data parallel ray
tracing

3.4. Hybrid scheduling

The challenge in parallel ray tracing is to find algorithms
which allow large scenes to be distributed without losing
too much efficiency due to load imbalances (data parallel
rendering) or communication (demand driven ray tracing).
Combining data parallel and demand driven aspects into a
single algorithm may lead to implementations with a rea-
sonably small amount of communication and an acceptable
load balance.

Hybrid scheduling algorithms have both demand driven
and data parallel components running on the same set of pro-

cessors: each processor being capable of handling both types
of task88; 46; 44; 79. The data parallel part of the algorithm then
creates a basic, albeit uneven load. Tasks that are not compu-
tationally very intensive but require access to a large amount
of data are ideally suited for data parallel execution.

On the other hand, tasks that require a relatively small
amount of data could be handled as demand driven tasks.
By assigning demand driven tasks to processors that attract
only a few data parallel tasks, the uneven basic load can be
balanced. Because it is assumed that these demand driven
tasks do not access much data, the communication involved
in the assignment of such tasks is kept under control.

An object subdivision similar to Green and Paddon’s31

is presented by Scherson and Caspary88: the algorithm has
a preprocessing stage in which a hierarchical data structure
is built. The objects and the bounding boxes are subdivided
over the processors whereas the hierarchical data structure is
replicated over all processors. During the rendering phase,
two tasks are discerned: demand driven ray traversal and
data parallel ray-object intersections. Demand driven pro-
cesses, which compute the intersection of rays with the hi-
erarchical data structure, can therefore be executed on any
processor. Data driven processes, which intersect rays with
objects, can only be executed with the processor holding the
specified object.

Another data plus demand driven approach is presented
by Jevans46. Again each processor runs two processes, the
intersection process operates in demand driven mode and the
ray generator process works in data driven mode. Each ray
generator is assigned a number of screen pixels. The envi-
ronment is subdivided into sub-spaces (voxels) and all ob-
jects within a voxel are stored with the same processor. How-
ever, the voxels are distributed over the processors in random
fashion. Also, each processor holds the entire sub-division
structure. The ray generator that runs on each processor is
assigned a number of screen pixels. For each pixel rays are
generated and intersected with the spatial sub-division struc-
ture. For all the voxels that the ray intersects, a message is
dispatched to the processor holding the object data of that
voxel.

The intersection process receives these messages which
contain the ray data and intersects them with the objects it
locally holds. It also performs shading calculations. After
a successful intersection, a message is sent back to the ray
generator. The algorithm is optimistic in the sense that the
generator process assumes that the intersection process con-
cludes that no object is intersected. Therefore, the generator
process does not wait for the intersection process to finish,
but keeps on intersecting the ray with the sub-division struc-
ture. Many messages may therefore be sent in vain. To be
able to identify and destroy the unwanted intersection re-
quests, all messages carry a time stamp.

The ability of demand driven tasks to effectively balance
the load depends strongly on the amount of work involved

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

with each task. If the task is too light, then the load may
remain unbalanced. As the cost of ray traversal is generally
deemed cheap compared with ray-object intersections, the
effectiveness of the above split of the algorithm into data
parallel and demand driven tasks needs to be questioned.

Another hybrid algorithm was proposed by Jansen and
Chalmers44 and Reinhard and Jansen79. Rays are classi-
fied according to the amount of coherence that they exhibit.
If much coherence is present, for example in bundles of pri-
mary or shadow rays, these bundles are traced in demand
driven mode, one bundle per task. Because the number of
rays in each bundle can be controlled, task granularity can
be increased or decreased when necessary. Normally, it is
advantageous to have as many rays in as narrow a bundle as
possible. In this case the work load associated with the bun-
dle of rays is high, while the number of objects intersected
by the bundle is limited. Task and data communication asso-
ciated with such a bundle is therefore limited as well.

The main data distribution can be according to a grid or
octree, where the spatial subdivision structure is replicated
over the processors. The spatial subdivision either holds the
objects themselves in its voxels, or identification tags indi-
cating which remote processor stores the data for those vox-
els. If a processor needs access to a part of the spatial subdi-
vision that is not locally available, it reads the identification
tag and in the case of data parallel tasks migrates the task at
hand to that processor or in the case of demand driven tasks
sends a request for data to that processor.

4. Radiosity

The rendering equation (equation 1) provides a general ex-
pression for the interaction of light between surfaces. No as-
sumptions are made about the characteristics of the environ-
ment, such as surface- and reflectance properties. Whereas
ray tracing focusses mainly on specular effects, because
view point dependent diffuse sampling is quite costly, ra-
diosity is better suited for diffusely lit scenes. If the surfaces
are assumed to be perfectly diffuse reflectors or emitters,
then the rendering equation can be simplified. A Lamber-
tian surface56 has the property that it reflects light in all di-
rections in equal amounts. Radiance is then independent of
outgoing direction and only a function of position:

Lout(x;Θout) = L(x) (2)

In addition, the relation between a diffuse reflector and
its bi-directional reflection distribution function is given by
fr =

ρd
π

53, so that the rendering equation can be simplified
to yield the radiosity equation15:

L(x) = Le(x)+

ρd(x)
Z

all x0

L(x0)
cosΘi cosΘ0

o

π k x0�x k2 v(x;x0)dA0

Here, the radianceL(x) for a pointx on a surface is the
sum of the self-emitted radianceLe(x) plus the reflected en-
ergy that was received from all other pointsx0 in the envi-
ronment.

Unfortunately, it is not practically possible to solve this
equation for all points in the scene. Therefore the surfaces
in a scene are normally subdivided into sufficiently small
patches (figure 8), where the radiance is assumed to be con-
stant over each patch. Ifx is a point on patchi andx0 a point
on patchj, the radianceLi for patchi is given by:

Li = Le
i +

ρd
i ∑

j

L j

Ai

Z
Ai

Z
Aj

cosΘi cosΘ j

πr2 δi j dAjdAi

Figure 8: Subdivision of a polygon into smaller patches.

In this equation,r is the distance between patchesi andj
andδi j gives the mutual visibility between the delta areas of
the patchesi andj. This equation can be rewritten as:

Li = Le
i +ρd

i ∑
j

L j fi! j (3)

fi! j =
1
Ai

Z
Ai

Z
Aj

cosΘi cosΘ j

πr2 δi j dAjdAi (4)

Here, the form factorfi! j is the fraction of power leaving
patch i that arrives at patchj. Form factors depend solely
on the geometry of the environment, i.e. the size and the
shape of the elements and their orientation relative to each
other. Therefore, the radiosity method is inherently view-
independent.

4.1. Form factors

Computing form factors is generally the most expensive part
of radiosity algorithms. It requires visibility computations to
determine which elements are closest to the target element.
One way of doing these computations is by means of ray
tracing106.

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

First, a hemisphere of unit radius is placed over the el-
ement (figure 9a). The surface of this hemisphere is (regu-
larly or adaptively) subdivided into a number of cells. From
the centre point of the element rays are shot through the cells
into the environment. This process yields a delta form factor
for every cell. Summing the delta form factors then gives the
form factor for the element. As rays are shot into all direc-
tions, this method is called hemisphere shooting, MC sam-
pling or undirected shooting.

More sophisticated hemisphere methods direct more rays
into interesting regions, for example by explicitly shooting
towards patches (directed shooting) or by adaptive shooting.
In the adaptive variant the delta form factors are compared to
each other to see where large differences between them oc-
cur. In these directions the cells on the hemisphere are subdi-
vided and for each cell a new delta form factor is computed.
Both directed shooting and adaptive refinement are more ef-
ficient than plain undirected shooting.

Instead of placing half a sphere above a patch to determine
directions at which to shoot rays, by Nusselt’s analogue also
half a cube could be used (figure 9b). The five sides of this
hemi-cube are (possibly adaptively) subdivided and for ev-
ery grid cell on the cube, a delta form factor is computed.
Because the sides of the cube can be viewed as image planes,
z-buffer algorithms are applicable to compute the delta form
factors. The only extension to a standard z-buffer algorithm
is that with every z-value an ID of a patch is stored instead of
a colour value. In this context the z-buffer is therefore called
an item-buffer. The advantage of the hemi-cube method is
that standard z-buffering hardware may be used.

The computational effort required for the calculation of
the form factors ranges in complexity from the need to use
a full analytical procedure so as to reduce inaccuracies, to
a sufficient approximation obtained by means of the hemi-
cube technique, to an evaluation of the form factor from a
previously calculated value via the reciprocity relationship
and finally to the simplest case in which the form factor is
known to be zero when the two patches concerned face away
from each other. In parallel radiosity implementations this
may well lead to load imbalances.

4.2. Parallel radiosity

In contrast to ray tracing, where load balancing is likely to
be the bottleneck, parallel radiosity algorithms tend to suf-
fer from both communicationand load balancing problems.
This is due to the fact that in order to compute a radiosity
value for a single patch, visibility calculations involving all
other patches are necessary. In some more detail, the prob-
lems encountered in parallel radiosity are:

� The form factor computations are normally the most ex-
pensive part in radiosity. They involve visibility calcula-
tions between each pair of elements. If these elements are

stored on different processors, then communication be-
tween processors will occur.

� During the radiosity computations, energy information
is stored with each patch. If the environment is repli-
cated with each processor (memory permitting), the en-
ergy computed for a certain patch must be broadcast to all
other processors. Again, this may well lead to a communi-
cation bottleneck, even if each processor stores the whole
scene data base.

� If caching of objects within a radiosity application is at-
tempted, problems with cache consistency may occur. The
reason is that a processor may compute an updated radios-
ity value for an element it stores. If this element resides in
a cache at some other processor, it should not be used any
further without updating the cache.

� If the scene is highly segmented, such as a house con-
sisting of a set of rooms, there will not be much energy
exchange between the rooms. If some of the rooms do not
contain any light sources, the processor storing that room
may suffer from a lack of work. On the other hand, if all
rooms represent a similar amount of work, partitioning
the scene across the processors according to the layout of
the scene, may lead to highly independent calculations.
Without paying proper attention to load balancing issues,
distributing scenes over a number of processors may or
may not lead to severe load imbalances.

� Another reason for load imbalances is that the time
needed to compute a form factor can vary consider-
ably depending on the geometric relationships between
patches.

In the following sections three different radiosity algo-
rithms and their parallel counterparts are discussed: full ma-
trix radiosity (section 5), progressive refinement (section 6)
and hierarchical radiosity (section 7).

5. Full matrix radiosity

Equations 3 and 4 are the basis of the radiosity method and
describe how the radiance of a patch is computed by gather-
ing incoming radiance from all other patches in the scene29.
Strictly speaking, it is an illumination computation method
that computes the distribution of light over a scene. As op-
posed to ray tracing, it is not a rendering technique, but a
pre-processing stage for some other rendering algorithm.

For a full radiosity solution (also known as gathering),
equations 3 and 4 must be solved for each pair of patches
i andj. Therefore, if the scene consists ofN patches, a sys-
tem ofN equations must be solved (see equation 5).

Normally this system of equations is diagonally dominant,
which means that Gauss-Seidel iterative solutions are appro-
priate14. However, this requires computing all the form fac-
tors beforehand to construct the full matrix. It is therefore
also known as Full Matrix radiosity. The storage require-
ments of this radiosity approach areO(N2), as between any

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

Patch Patch

Discretised hemisphere

Hemicube

Figure 9: Form factor computation by hemisphere and hemicube methods

0
BBB@

1�ρd
1 f1!1 �ρd

1 f1!2 � � � �ρd
1 f1!N

�ρd
2 f2!1 1�ρd

2 f2!2 � � � �ρd
2 f2!N

...
...

...
...

�ρd
N fN!1 �ρd

N fN!2 � � � 1�ρd
N fN!N

1
CCCA

0
BBB@

L1
L2
...
LN

1
CCCA=

0
BBB@

Le
1

Le
2

...
Le

N

1
CCCA (5)

two elements, a form factor is to be computed and stored.
This clearly can be a severe problem, restricting the size of
the model that can be rendered.

In summary, the gather method may be thought of as con-
sisting of two distinct stages:

� calculation of the form factors between all the patches of
the environment and thus set up a matrix of these form
factors; and

� solving this matrix of form factors for the patch radiosi-
ties.

5.1. Setting up the matrix of form factors

The calculation of a single form factor only requires ge-
ometry information and may thus proceed in parallel with
all other form factor calculations.69. This parallel computa-
tion may proceed either as a data driven model or a demand
driven model.

In the data driven approach, each processor may be ini-
tially allocated a certain number of patches for which it will
be responsible for calculating the necessary form factors.
Acting upon the information of a single projecting patch, a
processor is able to calculate the form factors for all its al-
located patches, thereby producing a partial column of the
full form factor matrix. So, for example, if a processor is al-
locatedp patches,k;k+1; : : : ;k+ p, then from the data for
the projecting patchj the form factorsFk; j ;Fk+1; j ; : : : ;Fk+p; j
may be calculated, as shown in figure 10.

The processor may now process the next projecting patch,
and so on until all patches have been acted upon, by which
stage the complete rows of the matrix of form factors, corre-
sponding to the allocated patches, will have been computed.
Once all such rows have been calculated the matrix is ready
to be solved.

F1;2

FN;1

F1;N

FN;N

Fk+1; j

Fk; j

Fk+2; j

Fk+p; j

Figure 10: Calculation of a partial column of the form factor
matrix. Patch j is the projecting patch and the shaded box
indicates the p patches allocated to one processor.

The advantage of this data driven approach is that the
data of each projecting patch only has to be processed once
per processing element75. The obvious disadvantage is the
load balancing difficulties that may occur due to the varia-
tions in computational complexity of the form factor calcu-
lations. These computational variations may result in those
processors which have been allocated patches with compu-
tationally easy form factor calculations standing idle while
the others struggle with their complex form factor calcula-
tions. This imbalance may be addressed by sensible alloca-
tion of patches to processors, but this typically requires a
priori knowledge as to the complexities of the environment
which may not be available.

An alternative strategy to reduce the imbalance may be to
dynamically distribute the work from the processors that are
still busy to those that have completed their tasks. This may
require the communication of a potentially large, partially
completed, row of form factors to the recipient processor. A
preferable technique would be to simply inform the recip-
ient processor which projecting patches have already been

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

examined. The recipient processor need then only perform
the form factor calculations for those projecting patches not
yet processed. Once calculated, the form factors may be re-
turned to the donor processor for storage.

In a demand driven approach, no initial allocation of
patches to processors is performed. Instead, a processor de-
mands the next task to be performed from a master proces-
sor. Each task requires the processor to calculate all the form
factors associated with the receiving patch. The granularity
of the task is usually a single receiving patch, but may in-
clude several receiving patches. A processor thus calculates
a single row (or several rows) of the matrix of form factors
as the result of each task. So, for example if a processor re-
ceives patchk then, as shown in figure 11, the row of form
factors for patchk will be produced before the next task is
requested.

F1;2

FN;1

Fk;1 Fk;N

F1;N

FN;N

Fk;2

Figure 11: Calculation of a row of the form factor matrix.
Patch k is the receiving patch resulting in the row of form
factors in the shaded box.

The demand driven approach reduces the imbalance that
may result from the data driven model by no longer bind-
ing any patches to particular processors. Processor idle time
may still result when the final tasks are completed and this
idle time may be exacerbated by a granularity of several re-
ceiving patches per tasks. The disadvantage of the demand
driven approach is that the data for the projecting patches
have to be fetched for every task that is performed by a pro-
cessor. This data fetching may, of course, be interleaved with
the computation.

5.2. Solving the matrix of form factors

From the form factors calculated in the first stage of the
gather method, the matrix produced must be solved in the
second stage of the method, producing the radiosities of ev-
ery patch. Parallel iterative solvers may be used due to the
fact that this matrix is diagonally dominatn. As the compu-
tational effort associated with each row of the matrix does
not vary significantly, a data driven approach may be used.
This is particularly appropriate if the rows of form factors
remain stored at the processors at the end of the first stage of
the method. Each processor may, therefore, be responsible
for a number of rows of the matrix.

Initially the solution vector at each processor is set to the

emission values of the patches for which each processor is
responsible. At each iteration the processors update their so-
lution vector and then these updated solution vectors are ex-
changed. If each iteration is synchronised then at the end of
an iteration the master processor can determine if the partial
results have converged to the desired level of tolerance and
an image may be generated and displayed.

The Jacobi method is most often used in parallel gather-
ing, because it is directly applicable and inherently paral-
lel. Unfortunately, it has a slow convergence rate (O(N2) 69.
However, it is possible to transform the original coefficient
matrix into a suitable form that allows different iterative so-
lution methods such as a pre-conditioned Jacobi method61

or the scaled conjugate gradient method54.

5.3. Group iterative methods

Alternative radiosity solvers include group iterative meth-
ods. Here, radiosities are partitioned into groups and instead
of relaxing just one variable at a time, whole groups are re-
laxed within a single iteration. Gauss-Seidel group iteration
relaxes each group using current estimates for radiosities in
other groups, while Jacobi group iteration uses radiosity es-
timates from other groups that were updated at the end of the
previous iteration.

Therefore, Jacobi group iteration is suitable for a coarse
grained parallel implementation23. The radiosity mesh is
subdivided into groups. During a single iteration energy is
bounced around between the patches within a group until
convergence, but no interaction with other groups occurs.
After all processors complete an iteration for all the groups
under their control, radiosities are exchanged between pro-
cessors (figure 12).

An additional advantage is that during an iteration, each
processor can use sophisticated radiosity solvers to relax
each group subproblem, such as hierarchical radiosity, which
are more efficient23.

6. Progressive refinement

To avoid theO(N2) storage requirement of the full radios-
ity method, there is another approach for calculating the ra-
diancesLi, which reduces storage requirements toO(N). It
is called progressive radiosity or the shooting method. The
latter name stems from its physical interpretation, which is
that for each iteration the element with the highest unshot
energy is selected. This element shoots its energy into the
environment, instead of gathering it from the environment.
This process is repeated until the total amount of unshot en-
ergy drops below a specified threshold. As most patches will
already receive most of their energy after only a few itera-
tions, this method gives a quick initial approximation of the
global illumination with subsequent refinements resulting in
incremental improvements of the radiosity solution15.

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

group until convergence

Light source

Primary beam

Energy exchange within a

Figure 12: Group iterative method. All the patches making
up the crate form a single group. These patches exchange
energy until there is convergence. After that, energy is ex-
changed between other groups and the next iteration may
commence.

All patches are initialised to have a radiance equal to the
amount of lightLe that they emit. This means that only the
light sources initially emit light. In progressive radiosity ter-
minology the light sources are said to have the most unshot
radiance. For each iteration the patch with the largest un-
shot radiance is selected. This patch shoots its radiance to
all other elements. The elements which are visible to the
shooting patch therefore gain (unshot) radiance. Finally the
shooting element’s unshot radiance is set to zero, since there
is no unshot radiance left. This completes a single iteration.
Thus after each iteration the total amount of radiance is re-
distributed over all elements in the environment and an im-
age of the results can be generated before a new iteration
commences.

By selecting the element with the largest amount of un-
shot radiance at the beginning of each iteration, the largest
contributions to the final result are added first. This greatly
improves the convergence rate in the early stages of the al-
gorithm. Moreover, fewer iterations are needed to have the
residual error in the solution drop below a specified thresh-
old 13.

When intermediary results have to be displayed, an ambi-
ent term can be added to the solution vector. This is compa-
rable to the over-relaxation technique for classical radiosity
methods in that the estimation of the solution is exaggerated.
The ambient term in progressive radiosity is only added for
display purposes, and is not used to improve the solution
vector for the next iteration, as is done in the over-relaxation
technique. The ambient radiosity term is derived from the
amount of unshot energy in the environment. As the solution
vector converges, the ambient term decreases. This way the

sequence of displayed intermediary images gracefully yields
the final image.

In progressive radiosity, form factors are not stored (as
this would lead to a storage requirement ofO(N2)), but only
radiances and unshot radiances are stored for every element
(O(N) storage). The downside of this approach is, that vis-
ibility between elements sometimes has to be recomputed.
This disadvantage is compensated by the number of itera-
tions necessary to arrive at a good approximation13. How-
ever, if the full solution is needed, the convergence rate of
the gathering method is better11.

6.1. Parallel shooting

In parallel progressive refinement methods, the main prob-
lem is that each shooting patch may update most, if not all,
of the remaining patches in the scene. This means that all
the geometry data needs to be accessed for each iteration,
as well as all patch and element data. If data is replicated
with each processor, then updates for each element must be
broadcast to all other processors. If the data is distributed,
then data fetches will be necessary. A number of parallel im-
plementations therefore duplicate the geometry data so that
visibility tests can be carried out in parallel. The patch and
element information could then be distributed to avoid data
consistency problems and to allow larger scenes to be ren-
dered19; 111.

Most parallel progressive refinement approaches tend to
use ray tracing to compute form factors45; 19; 96; 97; 98; 111,
with only a few exceptions that either use a hemicube al-
gorithm76; 11 or analytic form factors11.

As with parallel gathering algorithms, parallel progres-
sive refinement methods can be solved both in data paral-
lel and demand driven mode. A data parallel approach re-
quires the patches to be initially distributed amongst the
processors. Each processor may now assume responsibil-
ity for selecting, from its allocated patches, the next shoot-
ing patch11; 35; 5; 7; 36; 98; 111. The energy of that patch is then
shot to all patches visible from the source patch. For remote
patches, this involves communication of energy to neigh-
bouring processors.

One data parallel technique which allows the scene data
to be distributed across the available processors, is the vir-
tual walls method110. Here the scene is distributed accord-
ing to a grid. When a processor shoots its energy and part of
it would leave that processor’s subspace, the energy is tem-
porarily stored at one or more of the grid walls, which are
subdivided into small patches. As opposed to the original
virtual walls technique (figure 13a), these patches retain di-
rectional information as well (figure 13b)110; 64; 2; 60. After a
number of iterations, the energy stored at a processor’s walls
is transferred to neighbouring processors and from there shot
into the next subscene. Moreover, the computation and com-
munication stages may be overlapping, i.e. each processor

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

communicates energy to neighbouring processor while at
the same time running its local progressive refinement al-
gorithm.

Virtual wall

Subspace 2

Virtual wall

Subspace 2Subspace 1

Subspace 1

a. Loss of directional information
when crossing a virtual wall.

virtual wall prevents this problem.
b. Storing directional information at a

Figure 13: Virtual walls with and without storing direction
vectors

Recently, the virtual walls technique has been aug-
mented with visibility masks and is renamed to virtual in-
terfaces1; 83; 84. When a source shoots its energy, it records
which parts of its hemisphere project onto the boundaries of
its sub-environment. This information is stored in a visibil-
ity mask which allows directional energy to be transferred to
neighbouring processors. This is accomplished without ac-
cumulating energy for multiple iterations of the shooting al-
gorithm.

One of the problems with a data parallel approach is that
careful attention must be paid to the way in which light
sources are distributed over the processors. If one or more
processors do not have a light source patch in their subset of
the scene, then these processors may remain idle until late in
the calculations. Also, during the computations, a processor
may run out of patches with unshot energy. Without proper
redistribution of tasks, this may lead to load imbalances.

Whereas in data parallel shooting, each processor se-
lects locally its patch with the most unshot energy, in de-
mand driven approaches, a master processor would se-
lect the shooting patch with globally the most unshot
energy and send it to a processor that requests more
work 76; 20; 61; 96; 97; 95; 30. The issue of load balancing can then

be addressed either by poaching tasks from busy neighbour-
ing processors98 or by dynamically redistributing data97. In
this computing method, there is a master processor which
selects a number of patches to shoot. These patches are then
communicated to the slave processors. Communication be-
tween slave processors will occur if the geometry is dis-
tributed across the processors, since shooting energy from
a patch requires access to the entire scene database.

After shooting, either the results are communicated back
to the master processor, or the results are broadcast directly
to all other processors. In the former case, the master proces-
sor usually keeps track of patches and elements, while the
surface data is distributed. In the latter case, both geometry
and patches are distributed.

Master-slave configurations like this tend to have the dis-
advantage that there is a single processor controlling the en-
tire computation. This limits scalability as this processor is
bound to become the bottleneck if the number of processors
participating in the computation, is increased. If the master
controls all the patch and element data as well, then the mas-
ter may additionally suffer from a memory bottleneck. For
this reason, master-slave configurations do not seem to be
appropriate to parallel shooting methods.

7. Hierarchical radiosity

In order to minimise insignificant energy exchanges between
patches, hierarchical variants of the radiosity algorithm were
derived. Instead of computing form factors between indi-
vidual patches, radiosity exchanges are computed between
groups of patches at various levels in the hierarchy39; 38; 37; 91.
Therefore it is possible to perform a minimal amount of work
to obtain the best result within a specified error bound. This
is accomplished by selecting the coarsest subdivision in the
hierarchy for the desired level of precision.

As an example, in figure 14 a reference patch on the floot
interacts with some other patches in the scene. Several dif-
ferent situations may occur, based on the distance between a
patch and the reference patch:

� For patches that are close together, as patch 1 and the ref-
erence patch in figure 14 are, a subdivision into smaller
patches may be appropriate.

� For more distant patches, such as patch 2 and the refer-
ence patch in the same figure, the form factor can be ap-
proximated with no additional subdivision of the refer-
ence patch.

� Finally, for very distant patches (patch 3 and the refer-
ence patch), the reference patch may be merged with its
surrounding patches without affecting precision much.

In effect, the form factor matrix is subdivided into a num-
ber of blocks, where each of the blocks represents an interac-
tion between groups of patches. The total number of blocks
is O(N), which is a clear improvement over theO(N2) com-
plexity of the regular form factor matrix.

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

Patch 2 Patch 3

Patch 1
Reference patch

Figure 14: Radiosity exchanges between a reference patch and different surfaces in the scene

7.1. Parallel hierarchical radiosity

In hierarchical radiosity, the surface geometry is subdivided
as the need arises. This leads to clusters of patches in inter-
esting areas, whereas the subdivision remains course in other
areas. If the environment is subdivided amongst a number of
processors, there is a realistic chance that some processors
find their local geometry far further subdivided than the ge-
ometry stored at other processors. For hierarchical radiosity,
the main issue therefore seems to be load balancing.

As opposed to progressive refinement algorithms, only
very few parallel hierarchical radiosity algorithms have been
implemented to date. One is implemented on virtual shared
memory architectures92; 93; 85, and one is implemented on a
cluster of workstations21. Both are discussed briefly in this
section.

The virtual shared memory implementation is attractive in
the sense that the algorithm itself needs hardly any modifica-
tion. Each processor runs a hierarchical radiosity algorithm.
Whenever a patch is selected for subdivision, it is locked be-
fore subdivision. Such a locking mechanism is necessary to
avoid two processors updating the same patch concurrently.
Other than that, there are no changes to the algorithm. A
task is defined to be either a patch plus its interactions or
a single patch-patch interaction. Each processor has a task
queue, which is initialised with a number of initial polygon-
polygon interactions. If a patch is subdivided, the tasks asso-
ciated with its subpatches are enqueued on the task queue of
the processor that generated these subpatches. A processor
takes new tasks from its task queue until no more tasks re-
main. When a processor is left with an empty queue, it will
try to steal tasks from other processors’ queues. This simple
mechanism achieves load balancing.

If no (virtual) shared memory machine is available, the
scene data will have to be distributed amongst the available
processors. Load balancing by means of task stealing then
involves communication between two processors21. Com-
munication will also occur if energy is to be exchanged be-
tween patches stored at different processors. Hence, the be-
haviour of a parallel hierarchical radiosity algorithm is likely

to be similar to parallel implementations of progressive re-
finement radiosity.

8. Particle tracing

Particle tracing70; 18 is a method in which Monte Carlo sim-
ulations are applied to solve the rendering equation directly.
In this model light is viewed as particles being sent out from
light emitting surfaces. These particles are traced from the
light source and followed through the scene bouncing at the
surfaces, until they are absorbed by a surface (figure 15).
The direction in which a particle leaves the light emitter, the
wavelength of the particle and its position on the emitter, are
determined stochastically according to the point spread func-
tion describing the behaviour of the light emitter. A powerful
light source is said to have a higher probability than weaker
light sources. Thus, more particles are assigned to powerful
light sources. The same link exists between the wavelength
of the particles, the direction in which the particle travels and
the position on the light source respectively and their asso-
ciated point spread functions. More important wavelengths
for example, are chosen more often because of their higher
probability of occurring.

Figure 15: Particle tracing

After a particle is emitted from a light source it travels
in a straight path until it hits a surface. If the particle en-
counters participating media on its way, the direction of the

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

particle may be altered. This process is called scattering and
occurs when light is reflected, refracted or diffracted due to
the presence of the medium.

When particles hit a surface, they may be reflected or re-
fracted. First, according to a distribution function, it is deter-
mined whether the particle is absorbed or reflected or re-
fracted. If the particle is reflected, a new direction of the
particle is determined according to a point spread function
which describes the surface properties. If it is decided that
the particle is refracted, the angle of refraction is computed
using a similar distribution function.

The number of particles a patch receives determines its
radiance. In particle tracing, a very large number of particles
have to be traced before a reasonable approximation to the
actual solution of the rendering equation is reached. This re-
sult is due to the law of the large numbers, which states that
the larger the number of samples (traced particles), the better
the agreement of the estimator with the actual value.

8.1. Parallel particle tracing

First impressions of the particle tracing seem to suggest that
it is within the class of embarrassingly parallel problems.
The path of each particle may be computed independently of
all other particles. If each processor stores the entire scene
description in its local memory, then particle tracing is com-
pletely parallelisable112; 40. Each processor will trace a large
number of particles independently of the work of other pro-
cessors. After the computation finishes, the only work that
remains is to collate the results of each processor to deter-
mine the irradiance of all patches.

If a scene is too large to fit into a single processor’s mem-
ory, things become considerably more difficult. Firstly, the
data structure that stores where particles have hit surfaces
now has to be distributed across a number of processors.
Updating this data structure may therefore involve commu-
nication between processors, in a similar vain to radiosity
updates.

Secondly, whereas in ray tracing, certain types of rays ex-
hibit exploitable coherence, the random nature of the Monte
Carlo method restricts any similar approach based on the
coherence of particle paths. Precomputational analysis us-
ing the position and intensity of light sources may provide
some indication as to voxels likely to be requested by parti-
cle paths leaving the light sources. The subsequent path of
the particle is determined by the nature of the environment.

To a certain extend these problems can be solved using
standard parallel processing techniques such as prefetching
and profiling101; 102. This, however, implies an extra prepro-
cessing step.

8.2. Density estimation

Density estimation90 is a relatively recent development
where particle tracing is used to compute a mesh, which
is then fit for display. The algorithm is composed of three
phases. First, a particle tracing pass is performed to detect
where particles intersect surfaces (figure 16a). These inter-
sections (hit points, see figure 16b) are stored in a list. Sec-
ond, for each receiving surface an approximate irradiance
functionH(u;v) is constructed based on these hit points (fig-
ure 16c). Finally, this function is further approximated to a
more compact form̄H(u;v) (figure 16d) which is suitable for
hardware rendering or ray tracing display.

b. Particle hit pointsa. Particle tracing

d. Meshingc. Density estimation

Figure 16: Density estimation

All three steps can be parallelised, with synchronisation
only occurring inbetween consecutive steps. The implemen-
tation in112 uses files for communication between steps. The
first step is straightforward, as it is assumed that the scene
description can be replicated. Each processor creates as out-
put of the first step a file containing the generated hit points.

A master processor then takes the hit points generated by
all processors and reorders them so that each hit points is
matched with its surface. In the second parallel step, the den-
sity estimation and meshing is performed. Each processor re-
ceives an initial number of surfaces to act upon and when this
work is finished, the remainder of the work is distributed on
demand. When a surface is completely meshed it is written
to file. The algorithm terminates when all processors have
finished their work.

For relatively small numbers of processors this algorithm
performs reasonably well. However, it is assumed that the

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

environment fits into a single processor’s memory and it
therefore precludes the rendering of very complex scenes.
It does allow larger scenes to be rendered than radiosity ap-
proaches that replicate their data, as it is not the meshing that
is replicated, but only the surface geometry.

9. Data distribution and data locality

As can be deduced from the above, global illumination al-
gorithms have certain characteristics that make them diffi-
cult to parallelise. First, the sheer amount of data often in-
volved in rendering, requires the database to be distributed
across the available processors. The complexity of the mod-
els to be rendered is increasing all the time, for example due
to 3D model grabbing algorithms becoming more widely
available. Such algorithms tend to generate huge amounts
of polygonal surfaces. Unfortunately, a distributed scene im-
plies that processors either have to migrate tasks, or fetch
data. This incurs overheads that prevent algorithms to scale
beyond a fairly small number of processors.

Second, data access patterns are often unpredictable and
changing rapidly, which means that for large scenes caching
strategies may be less effective.

Third, load patterns may vary significantly, which may
render profiling and other cost estimations of less value as
they only account for the expected average load.

Fourth, near the end of the computation there usually is
less unfinished work in the system which makes it difficult
to keep all processors busy. The termination phase can there-
fore take a substantial amount of time, which reduces effi-
ciency and scalability. Keeping processors busy during the
last phase of the computation is largely an unsolved prob-
lem, since standard task stealing strategies may well intro-
duce a substantial amount of data communication to match
the data and the newly stolen tasks.

To some extent the above problems may be addressed by
localising computations: when it is possible to partition the
computations or the data in subtasks in such a way that the
interaction with other subtasks is minimal, then data commu-
nication may be reduced and cache trashing prevented. We
will in the following first discuss data distribution strategies
and then return to issues of data locality and cache coher-
ence.

9.1. Data distribution

When data has to be distributed, a first issue is how scene
data should be divided over the processors. Initial data dis-
tributions can have a strong impact on how well the system
performs. The more evenly the workload associated with the
data is distributed, the less idle time is to be expected. In or-
der to be able to distribute a part of the scene, for instance
a cell of an octree spatial subdivision, first the expected cost
per voxel should be computed. In a second step, the voxels

can be distributed across the processors, preserving data lo-
cality as much as possible, while at the same time attempting
to equalise the cost per processor.

Some initial research has proved that it is possible to esti-
mate the cost of a single ray traversing an octree structure80.
The number of intersection tests for each node in the octree
is computed by averaging the depth of the leaf cells of the
octree and then weighting these depths by the surface area
of the cells. For each leaf node, the probability that a ray
traversing that voxel intersects one of the objects contained
within the voxel, is computed as well. The ray traversal cost
is then estimated using the average tree depth and the av-
erage blocking factor by summing the probabilities that a
ray is blocked in theith voxel but not in thei �1 preceed-
ing voxels. Repeating this algorithm for each internal voxel,
gives the cost per subtree. Alternatively, the cost per voxel
could be predicted by estimating the number of rays that
would traverse each voxel during rendering57; 81. Such an
algorithm would take into account the distribution of objects
over the scene, as well as the view point and the position of
light sources. The data distribution would therefore be tai-
lored to the particular view point chosen. It may therefore
well outperform other data distribution algorithms.

The second step in such data distribution algorithms
would take the cost function per voxel as a basis for distribut-
ing the voxels across the processors. Such an algorithm has
two conflicting goals for achieving a good data distribution.
First of all, no matter how the cost of each voxel is com-
puted, the cost of the voxels assigned to a processor should
be roughly the same for each of the processors. During ren-
dering, this should simplify the scheduler’s job, because now
the scheduler may assume that if equal numbers of ray tasks
are handed to each processor, then the workload of each pro-
cessor should be roughly the same as well. A better load bal-
ance should therefore be obtained.

The second goal is to maintain coherence as much as
possible. If an octree is arbitrarily split up and distributed
over a number of processors, tasks may have to be migrated
more than necessary. This is especially true for data paral-
lel ray tasks. It also inhibits the possibility of preferred bias
scheduling and if data needs to be fetched, it is likely to in-
volve many different processors. Maintaining coherence on
the other hand, solves most of these problems, but unfortu-
nately, requires sometimes the cost function of the voxels to
be ignored, leading to a less favourable load balance.

Algorithms to distribute octree branches over processors
may attempt to split the octree into separate branches as near
to the root of the tree as possible. In that case the emphasis
is on coherence, so that a ray traversing the octree will not
have to be communicated to too many different processors.
The cost function assigned to each processor may fluctuate
between processors. A slightly better, but also more involved
algorithm may be region growing68, where neighbouring
voxels are assigned to the same processor.

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

Octrees and grids are regular subdivisions that do not al-
ways segment a model in an optimal way. Better data co-
herence may be obtained with a space partitioning that is
aligned with the internal structure of the model. The BSP-
tree method uses planar surfaces of the model to derive a
binary space partition. Several strategies have been devel-
oped to choose the most suitable faces as primary dividing
planes and to optimize the data coherence within the result-
ing space partitions (preferably cubic and not long and thin)
while keeping the number of splitted surfaces as low as pos-
sible 22; 62. Meneveaux59 applies a clustering algorithm to
the surfaces in a scene to align the partitioning even better
with the structure of the floor plan.

9.2. Visibility preprocessing

A very fruitful approach is to partition the scene on basis
of intervisibility 100. Energy transfer can only take place be-
tween surfaces that are mutual visible. A visibility prepro-
cessing can be used to create local clusters and to calcu-
late visibility between these clusters. This information can
be stored in a visibility graph with the clusters as nodes. The
graph can then be segmented in groups to perform for in-
stance the group iterative methods that we already encoun-
tered in section 5.3. For the clustering, the importance of the
energy transfer between surfaces can be taken into account
as well. Two surfaces with a high ’form-factor’ interaction
are likely to end up in the same cluster23.

9.3. Environment mapping

However, even with a suitable data partitioning, interaction
between data partitions can not completely be avoided, lead-
ing to either data or task communication. Reducing commu-
nication by applying local ’place holders’ to represent re-
mote objects and space partitions is a recent development.
One of the first applications of this idea are the virtual walls
(already mentioned in section 6.1). A similar strategy is ap-
plied with environment mapping4; 34. A data distribution can
be created in such a way that each processor stores part of
the scene and this geometry is surrounded by an environment
map. Instead of fetching data from remote processors, or mi-
grating tasks to other processors, a simple table lookup can
be performed to approximate a shading value which would
otherwise be very costly to compute82.

9.4. Geometric simplification

Geometric simplification is another successful strategy. The
basic idea is that if a complex object or a densely populated
part of the scene is at some distance, then without sacrifyc-
ing accuracy, the complex geometry can be replaced with
a simplified geometry carrying the same energy and hav-
ing similar reflection and emission properties. In addition,
under certain circumstances using simplified geometry may
increase the quality of sampling as well52.

Figure 17: The plants close-by need to be sampled at full
resolution, whereas the plants far away can be sampled at a
far lower resolution.

An example where the full resolution of geometry data is
not always required is given in figure 17. Assuming that the
plants are distributed across a number of processors, the pro-
cessors responsible for the area where the viewpoint is, may
occasionally need to access data that is far away. The plants
at the back of the greenhouse could be fetched at a far lower
resolution without impacting the quality of the sampling.

There are many different ways in which geometry can be
simplified or stored at different resolutions. The methods
that should be considered are ones where geometry is re-
placed with simpler geometry (geometric simplification and
level of detail techniques), and techniques where geometry is
augmented with an extra data structure (impostors, grouping
of patches).

Geometric simplification algorithms attempt to reduce the
polygon count of objects by replacing large groups of small
surfaces by a small group of larger surfaces41; 25. Such algo-
rithms usually do not replace different surface reflectance
properties by an average brdf. However, preserving aver-
age material properties is important for geometric simplifica-
tion algorithms to be useful in realistic rendering algorithms.
This issue is addressed by Rushmeieret. al.86.

Levels of detail algorithms build a hierarchy of models in
different resolutions by repeatedly applying some geometric
simplification algorithm. In parallel rendering, building this
data structure would be performed as a pre-processing step.
During rendering, the distance between the origin of a ray
(whether in ray tracing, particle tracing or radiosity) and the

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

data requested should be used to determine the level in the
hierarchy. The further the distance between two processors,
the smaller the amount of data sent.

A locally dense occupation of small polygons, e.g. a plant,
can be grouped or clustered and replaced by an enclosing
volume that inherits the same reflection, emission, absorp-
tion or transparancy properties as the original. Methods may
differ in the way they represent these properties, either as
transfer functions52, volume rendering91 or blocking and
reflection estimation86.

Impostors24; 58 work in much the same way as environ-
ment maps, the difference being that rather than replacing
the surroundings of an object with a box plus texture map,
the object itself is replaced with a simple cube plus texture
map. Therefore, impostors borrow from both environment
mapping in construction and geometric simplification in us-
age.

9.5. Directional caching

The disadvantage with the above techniques is that they all
require a pre-processing stage, and sometimes even require
user intervention, which makes them slightly awkward to
use. A possible method to overcome this, is to build a datas-
tructure on the fly. If a processor holds a part of the scene,
then locally sampling proceeds as normal. For rays that leave
a processor’s local subspace, this data structure is queried. If
there is sufficient information present in the data structure,
this is used (as in environment mapping). If not, the ray task
is migrated to another processor and when a shading result
is returned, it is used for both shading the ray and updat-
ing the data structure. The further the computation proceeds,
the less communication between processors will be neces-
sary, as processors will build up an image of what surrounds
them. We term such methods “directional caching”26.

9.6. Re-ordering computations

All the above methods try to reduce the amount of data
needed from remote processors in order to reduce the com-
munication overhead or to prevent local caches from trash-
ing. In combination with these methods or when the above
methods loose their strength then yet another strategy can be
applied: re-ordering of the computations to improve cache
performance. The general idea is that request for remote data
can be surpressed at the cost of storing some extra state in-
formation and at a possible penalty for not taken the opti-
mal order of computations. For instance in progressive ra-
diosity some shootings may be deferred which may lead to
a slower convergence. This penalty may be accepted as it
will lead to a much higher efficiency in the use of remote
data citeMene97a.

In Pharret al.71 and Nakamura and Ohno63 rays are pro-
cessed in voxel order. A voxel with object data is only loaded

when enough work is available or when its contribution to
the final rendering wins over processing other data voxels.

10. Discussion

Photo-realistic rendering of large models remains still very
much an open research issue. Model sizes rapidly increase
and models of more than 1 GB of data including radiosity
meshes and textures are no exception anymore. Utilizing the
computing and memory resources of a distributed set of pro-
cessors is very attractive in that respect. However, task and
data distribution generate their own problems which are not
trivial to solve.

In this overview we started with load balancing and load
scheduling strategies and we ended with data distribution
and data locality methods. This order in itself illustrates the
shift from simple to more complex and larger models. The
larger the models will become, the more emphasis will be
put on cache-coherence improving methods. The above dis-
cussed methods are only a few of a large number of possible
ways to proceed.

This state of the art report has also shown that par-
allel photo-realistic graphics is a challenging area of re-
search which is being actively pursued by a relatively small
number of groups. Two significant forums exist specifi-
cally for the presentation and discussion of ideas in this
area, the Parallel Rendering Symposium and the Euro-
graphics Workshop on Parallel Graphics & Visualisation
(http://www.irisa.fr/caps/workshop/). In addition, a number
of key journals have published special issues on this topic,
for example, Parallel Computing, vol 23, no. 7, July 1997.
We believe that parallel photo-realistic graphics will con-
tinue to be a vibrant research topic in the future.

Acknowledgements

All images were rendered using the Radiance lighting sim-
ulation package107. Thanks to Arjan Kok and Jan Eek for
allowing us to use the results of their modelling efforts. This
work was partly funded by the EC under TMR grant number
ERBFMBICT960655.

References

1. B. Arnaldi, T. Priol, L. Renambot, and X. Pueyo.
Visibility masks for solving complex radiosity com-
putations on multiprocessors.Parallel Computing,
23(7):887–897, jul 1997. Special Issue on Parallel
Graphics and Visualisation.

2. B. Arnaldi, X. Pueyo, and J. Vilaplana. On the division
of environments by virtual walls for radiosity compu-
tation. InPhotorealism in Computer Graphics, pages
198–205, 1991. Proceedings 2nd EG Rendering Work-
shop.

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

3. D. Badouel, K. Bouatouch, and T. Priol. Distributed
data and control for ray tracing in parallel.IEEE Com-
puter Graphics and Applications, 14(4):69–77, 1994.

4. J. F. Blinn and M. E. Newell. Texture and reflection
in computer generated images.Communications of the
ACM, 19(10):542–547, okt 1976.

5. K. Bouatouch, D. Menard, and T. Priol. Parallel ra-
diosity using a shared virtual memory. InFirst Bilkent
Computer Graphics Conference, ATARV-93, pages 71–
83, Ankara, Turkey, jul 1993.

6. K. Bouatouch and T. Priol. Parallel space tracing: An
experience on an iPSC hypercube. In N. Magnenat-
Thalmann and D. Thalmann, editors,New Trends
in Computer Graphics (Proceedings of CG Interna-
tional ’88), pages 170–187, New York, 1988. Springer-
Verlag.

7. K. Bouatouch and T. Priol. Data management
scheme for parallel radiosity.Computer-Aided Design,
26(12):876–882, dec 1994.

8. M. B. Carter and K. A. Teague. The hypercube ray
tracer. In D. Walker and Q. Stout, editors,The 5th Dis-
tributed Memory Computing Conference Vol. I, pages
212–216. IEEE Computer Society Press, apr 1990.

9. A. Chalmers and J. Tidmus.Practical Parallel Pro-
cessing: An Introduction to Problem Solving in Paral-
lel. International Thomson Computer Press, London,
1996. ISBN 1-85032-135-3.

10. A. G. Chalmers. Occam - the language for educating
future parallel programmers?Microprocessing and Mi-
croprogramming, 24:757–760, 1988.

11. A. G. Chalmers and D. J. Paddon. Parallel processing
of progressive refinement radiosity methods. In2nd EG
Workshop on Rendering, pages 1–11, Barcelona, Spain,
may 1991.

12. J. G. Cleary, B. M. Wyvill, G. M. Birtwistle, and
R. Vatti. Multiprocessor ray tracing.Computer Graph-
ics Forum, 5(1):3–12, mar 1986.

13. M. F. Cohen, S. E. Chen, J. R. Wallace, and D. P. Green-
berg. A progressive refinement approach to fast ra-
diosity image generation. In J. Dill, editor,Computer
Graphics (SIGGRAPH ’88 Proceedings), volume 22,
pages 75–84, aug 1988.

14. M. F. Cohen and D. P. Greenberg. The hemi-cube: A
radiosity solution for complex environments. In B. A.
Barsky, editor,Computer Graphics (SIGGRAPH ’85
Proceedings), volume 19, pages 31–40, jul 1985.

15. M. F. Cohen and J. R. Wallace.Radiosity and Realis-
tic Image Synthesis. Academic Press, Inc., Cambridge,
MA, 1993.

16. M. . der Zwaan, E. Reinhard, and F. W. Jansen. Pyra-
mid clipping for efficient ray traversal. In P. Hanrahan
and W. Purgathofer, editors,Rendering Techniques ’95,
pages 1–10. Trinity College, Dublin, Springer - Vienna,
June 1995. proceedings of the 6th Eurographics Work-
shop on Rendering.

17. M. A. Z. Dippé and J. Swensen. An adaptive subdi-
vision algorithm and parallel architecture for realistic
image synthesis. In H. Christiansen, editor,Computer
Graphics (SIGGRAPH ’84 Proceedings), volume 18,
pages 149–158, jul 1984.

18. P. Dutré. Mathematical Frameworks and Monte
Carlo Algorithms for Global Illumination in Computer
Graphics. PhD thesis, Katholieke Universiteit Leuven,
Belgium, sept. 1996.

19. M. Feda. Parallel radiosity on transputers with low
communication overhead. In S. Ferenczi and P. Kacsuk,
editors, Proceedings of the2nd Austrian-Hungarian
Workshop on Transputer Applications, pages 62–70,
Budapest, Hungaria, sep–oct 1994. Hungarian Trans-
puter Users Group and Austrian Centre for Parallel
Computing. Report KFKI-1995-2/M, N.

20. M. Feda and W. Purgathofer. Progressive refinement
radiosity on a transputer network. In2nd EG Work-
shop on Rendering, Barcelona, Spain, may 1991. held
in Barcelona, Spain; 13-15 May 1991.

21. C.-C. Feng and S.-N. Yang. A parallel hierarchical ra-
diosity algorithm for complex scenes. In1997 Sympo-
sium on Parallel Rendering, pages 71–77. ACM SIG-
GRAPH, oct 1997. ISBN 1-58113-010-4.

22. H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible
surface generation by a priori tree structures. InACM
Computer Graphics, volume 14, pages 124–133, July
1980.

23. T. A. Funkhouser. Coarse-grained parallelism for hi-
erarchical radiosity using group iterative methods. In
H. Rushmeier, editor,SIGGRAPH 96 Conference Pro-
ceedings, Annual Conference Series, pages 343–352.
ACM SIGGRAPH, Addison Wesley, aug 1996. held in
New Orleans, Louisiana, 04-09 August 1996.

24. T. A. Funkhouser and C. H. Séquin. Adaptive display
algorithm for interactive frame rates during visualiza-
tion of complex virtual environments. In J. T. Kajiya,
editor,Computer Graphics (SIGGRAPH ’93 Proceed-
ings), volume 27, pages 247–254, aug 1993.

25. M. Garland and P. S. Heckbert. Surface simplification
using quadric error metrics. In T. Whitted, editor,SIG-
GRAPH 97 Conference Proceedings, pages 209–216.
ACM SIGGRAPH, Addison Wesley, aug 1997.

26. R. Germs, E. Reinhard, and F. W. Jansen. Directional
caching strategies. Submitted for publication, 1998.

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

27. A. S. Glassner. Space subdivision for fast ray tracing.
IEEE Computer Graphics and Applications, 4(10):15–
22, oct 1984.

28. A. S. Glassner, editor.An Introduction to Ray Tracing.
Academic Press, San Diego, 1989.

29. C. M. Goral, K. E. Torrance, D. P. Greenberg, and
B. Battaile. Modeling the interaction of light between
diffuse surfaces. InComputer Graphics (SIGGRAPH
’84 Proceedings), volume 18, pages 213–222, jul 1984.

30. P. Green and E. Morgan. Parallelisation schemes for the
progressive refinement radiosity method for the syn-
thesis of realistic images. In P. Nixon, editor,Trans-
puter and Occam Developments (Proceedings of the
18th World Occam and Transputer User Group Techni-
cal Meeting, pages 97–112, Amsterdam, apr 1995. IOS
Press. ISBN 90-5199-222-X.

31. S. A. Green and D. J. Paddon. Exploiting coherence for
multiprocessor ray tracing.IEEE Computer Graphics
and Applications, 9(6):12–26, nov 1989.

32. S. A. Green and D. J. Paddon. A highly flexible mul-
tiprocessor solution for ray tracing. Technical Re-
port TR-89-02, Computer Science Department, Univer-
sity of Bristol, Merchant Venturers Building, Woodland
Road, Bristol BS8 1UB, mar 1989.

33. S. A. Green and D. J. Paddon. A highly flexible mul-
tiprocessor solution for ray tracing.The Visual Com-
puter, 6(2):62–73, mar 1990.

34. N. Greene. Environment mapping and other applica-
tions of world projections.IEEE Computer Graphics
and Applications, pages 21–29, nov 1986.

35. P. Guitton, J. Roman, and C. Schlick. Two parallel ap-
proaches for a progressive radiosity. In2nd EG Work-
shop on Rendering, pages 1–11, Barcelona, Spain, may
1991.

36. P. Guitton, J. Roman, and G. Subrenat. Implementation
results and analysis of a parallel progressive radiosity.
In 1995 Parallel Rendering Symposium, pages 31–38.
ACM SIGGRAPH, oct 1995. ISBN 0-89791-774-1.

37. P. Hanrahan and D. Saltzman. A rapid hierarchical
radiosity algorithm for unoccluded environments. In
C. Bouville and K. Bouatouch, editors,Photorealism
in Computer Graphics, Eurographics Seminar Series,
New York, 1992. Springer Verlag.

38. P. Hanrahan, D. Saltzman, and L. Aupperle. A rapid
hierarchical radiosity algorithm.Computer Graphics,
25(4):197–206, aug 1991.

39. P. Hanrahan and D. Salzman. A rapid hierarchical ra-
diosity algorithm for unoccluded environments. Tech-
nical Report CS-TR-281-90, Department of Computer
Science, Princeton University, aug 1990.

40. A. Heirich and J. Arvo. Scalable monte carlo image
synthesis. Parallel Computing, 23(7):845–859, July
1997.

41. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Mesh optimization. In J. T. Kajiya,
editor,Computer Graphics (SIGGRAPH ’93 Proceed-
ings), volume 27, pages 19–26, aug 1993.

42. S. E. Hyeon-Ju Yoon and J. W. Cho. Image parallel ray
tracing using static load balancing and data prefetching.
Parallel Computing, 23(7):861–872, jul 1997. Special
Issue on Parallel Graphics and Visualisation.

43. V. İ sler, C. Aykanat, and B. Özgüç. Subdivision of 3D
space based on the graph partitioning for parallel ray
tracing. In Proceedings of the Second Eurographics
Workshop on Rendering, Barcelona, Spain, may 1991.

44. F. W. Jansen and A. Chalmers. Realism in real time?
In M. F. Cohen, C. Puech, and F. Sillion, editors,4th
EG Workshop on Rendering, pages 27–46. Eurograph-
ics, jun 1993. held in Paris, France, 14–16 June 1993.

45. J. P. Jessel, M. Paulin, and R. Caubet. An extended
radiosity using parallel ray-traced specular transfers. In
2nd Eurographics Workshop on Rendering, pages 1–12,
Barcelona, Spain, may 1991. held in Barcelona, Spain;
13-15 May 1991.

46. D. A. J. Jevans. Optimistic multi-processor ray trac-
ing. In R. A. Earnshaw and B. Wyvill, editors,New
Advances in Computer Graphics (Proceedings of CG
International ’89), pages 507–522, New York, 1989.
Springer-Verlag.

47. J. T. Kajiya. The rendering equation. In D. C. Evans
and R. J. Athay, editors,Computer Graphics (SIG-
GRAPH ’86 Proceedings), volume 20, pages 143–150,
aug 1986. held in Dallas, Texas, August 18–22, 1986.

48. M. J. Keates and R. J. Hubbold. Accelerated ray tracing
on the KSR1 virtual shared-memory parallel computer.
Technical Report UMCS-94-2-2, Department of Com-
puter Science, University of Manchester, Oxford Road,
Manchester, UK, feb 1994.

49. H.-J. Kim and C.-M. Kyung. A new parallel ray-tracing
system based on object decomposition.The Visual
Computer, 12(5):244–253, 1996. ISSN 0178-2789.

50. H. Kobayashi, T. Nakamura, and Y. Shigei. Parallel
processing of an object space for image synthesis us-
ing ray tracing.The Visual Computer, 3(1):13–22, feb
1987.

51. H. Kobayashi, T. Nakamura, and Y. Shigei. A strat-
egy for mapping parallel ray-tracing into a hypercube
multiprocessor system. In N. Magnenat-Thalmann and
D. Thalmann, editors,New Trends in Computer Graph-
ics (Proceedings of CG International ’88), pages 160–
169, New York, 1988. Springer-Verlag.

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

52. A. J. F. Kok. Grouping of patches in progressive ra-
diosity. In M. Cohen, C. Puech, and F. Sillion, editors,
Fourth Eurographics Workshop on Rendering, pages
221–231, Paris, France, jun 1993.

53. A. J. F. Kok. Ray Tracing and Radiosity Algorithms
for Photorealistic Image Synthesis. PhD thesis, Delft
University of Technology, The Netherlands, may 1994.
Delft University Press, ISBN 90-6275-981-5.

54. T. M. Kurç, C. Aykanat, and B. Özgüç. A paral-
lel scaled conjugate-gradient algorithm for the solution
phase of gathering radiosity on hypercubes.The Visual
Computer, 13(1):1–19, 1997.

55. Z. Lahjomri and T. Priol. KOAN: A shared virtual
memory for the iPSC/2 hypercube. Technical Re-
port Report 597, IRISA, Campus de Beaulieu, 35042
Rennes Cedex, France, jul 1991.

56. Lambert. Photometria sive de mensura et gradibus lu-
minis, colorum et umbrae, 1760.

57. J. D. MacDonald and K. S. Booth. Heuristics for ray
tracing using space subdivision.The Visual Computer,
(6):153–166, 1990.

58. P. W. C. Maciel and P. Shirley. Visual navigation of
large environments using textured clusters. In P. Han-
rahan and J. Winget, editors,1995 Symposium on Inter-
active 3D Graphics, pages 95–102. ACM SIGGRAPH,
apr 1995. ISBN 0-89791-736-7.

59. D. Meneveaux, E. Maisel, and K. Bouatouch. A new
partitioning method for architectural environments.
Technical Report TR 3148, INRIA, April 1997. To ap-
pear in Journal of Visualization and Computer Anima-
tion, 1998.

60. K. Menzel. Parallel rendering techniques for multipro-
cessor systems. InProceedings of Spring School on
Computer Graphics, pages 91–103. Comenius Univer-
sity Bratislava, jun 1994. Held june 6–9 in Bratislava,
Slovakia.

61. S. Michelin, G. Maffeis, D. Arquès, and J. C. Grossetie.
Form factor calculation: a new expression with imple-
mentations on a parallel t.node computer.Computer
Graphics Forum, 12(3):C421–C432, 1993. Eurograph-
ics ’93.

62. P. Morer, A. M. García-Alonso, and J. Flaquer. Opt-
mization of a priority list algorithm for 3-D rendering
of buildings. Computer Graphics Forum, 14(4):217–
227, October 1995.

63. K. Nakamaru and Y. Ohno. Breadth-first ray tracing uti-
lizing uniform spatial subdivision.IEEE Transactions
on Visualization and Computer Graphics, 3(4):316–
328, 1997.

64. R. van Liere. Divide and conquer radiosity. InPhoto-
realism in Computer Graphics, pages 191–197, 1991.
Proceedings 2nd EG Rendering Workshop.

65. I. Notkin and C. Gotsman. Parallel adaptive ray-tracing.
In V. Skala, editor,Proceedings of the Third Inter-
national Conference in Central Europe on Computer
Graphics and Visualisation 95, volume 1, pages 218–
226, Plzĕn, Czech Republic, feb 1995. University of
West Bohemia. WSCG 95.

66. I. Notkin and C. Gotsman. Parallel progressive ray-
tracing. Computer Graphics Forum, 16(1):43–56,
march 1997.

67. D. E. Orcutt. Implementation of ray tracing on the hy-
percube. In G. Fox, editor,Third Conference on Hyper-
cube Concurrent Computers and Applications, pages
1207–1210, 1988. vol. 2.

68. T. J. P.Task and Data Management for Parallel Particle
Tracing. PhD thesis, University of the West of England,
December 1997.

69. D. Paddon and A. Chalmers. Parallel processing
of the radiosity method. Computer-Aided Design,
26(12):917–927, dec 1994. ISSN 0010-4485.

70. S. N. Pattanaik.Computational Methods for Global Il-
lumination and Visualisation of Complex 3D Environ-
ments. PhD thesis, National Centre for Software Tech-
nology, Bombay, India, feb 1993.

71. M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Ren-
dering complex scenes with memory-coherent ray trac-
ing. In T. Whitted, editor,SIGGRAPH 97 Conference
Proceedings, Annual Conference Series, pages 101–
108. ACM SIGGRAPH, Addison Wesley, aug 1997.
ISBN 0-89791-896-7.

72. P. Pitot. The voxar project.IEEE Computer Graphics
and Applications, 13(1):27–33, jan 1993.

73. M. Potmesil and E. M. Hoffert. The pixel machine: A
parallel image computer. InComputer Graphics (SIG-
GRAPH ’89 Proceedings), volume 23, pages 69–78, jul
1989.

74. T. Priol and K. Bouatouch. Static load balancing for a
parallel ray tracing on a MIMD hypercube.The Visual
Computer, 5(1/2):109–119, mar 1989.

75. W. Purgathofer and M. Zeiller. Fast radiosity by par-
allelization. In Proceedings Eurographics Workshop
on Photosimulation, Realism and Physics in Computer
Graphics, pages 173–183, Rennes, France, jun 1990.

76. R. J. Recker, D. W. George, and D. P. Greenberg. Ac-
celeration techniques for progressive refinement radios-
ity. In R. Riesenfeld and C. Sequin, editors,Computer
Graphics (1990 Symposium on Interactive 3D Graph-
ics), pages 59–66, mar 1990. held in Snowbird, Utah;
25-28 March 1990.

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

77. E. Reinhard and A. Chalmers. Message handling in
parallel radiance. In M. Bubak, J. Dongarra, and
J. Wásniewski, editors,Proceedings EuroPVM-MPI’97
- Recent Advances in Parallel Virtual Machine and
Message Passing Interface (Fourth European PVM-
MPI Users’ Group Meeting), Lecture Notes in Com-
puter Science (1332), pages 486–493. Springer - Ver-
lag, nov 1997. ISBN 3-540-63697-8.

78. E. Reinhard and F. W. Jansen. Pyramid clipping. Ray
Tracing News, volume 8, number 2, may 1995.

79. E. Reinhard and F. W. Jansen. Rendering large
scenes using parallel ray tracing.Parallel Computing,
23(7):873–886, July 1997. Special issue on Parallel
Graphics and Visualisation.

80. E. Reinhard, A. J. F. Kok, and F. W. Jansen. Cost pre-
diction in ray tracing. In X. Pueyo and P. Schroeder,
editors,Rendering Techniques ’96, pages 41–50, Porto,
June 1996. Eurographics, Springer Wien.

81. E. Reinhard, A. J. F. Kok, and F. W. Jansen. Cost distri-
bution prediction for parallel ray tracing. Accepted for
the Second Eurographics Workshop on Parallel Graph-
ics and Visualisation, 1998.

82. E. Reinhard, L. U. Tijssen, and F. W. Jansen. Environ-
ment mapping for efficient sampling of the diffuse in-
terreflection. In G. Sakas, P. Shirley, and S. Müller, ed-
itors,Photorealistic Rendering Techniques, pages 410–
422, Darmstadt, jun 1994. Eurographics, Springer Ver-
lag. proceedings of the 5th Eurographics Workshop on
Rendering.

83. L. Renambot, B. Arnaldi, T. Priol, and X. Pueyo. To-
wards efficient parallel radiosity for DSM-based paral-
lel computers using virtual interfaces. Technical Report
3245, Institut National de Recherche en Informatique
et en Automatique (INRIA), Campus Universitaire de
Beaulieu, 35042 Rennes Cedex, France, sep 1997.

84. L. Renambot, B. Arnaldi, T. Priol, and X. Pueyo. To-
wards efficient parallel radiosity for DSM-based paral-
lel computers using virtual interfaces. In1997 Sympo-
sium on Parallel Rendering, pages 79–86. ACM SIG-
GRAPH, oct 1997. ISBN 1-58113-010-4.

85. J. Richard and J. P. Singh. Parallel hierarchical com-
putation of specular radiosity. In1997 Symposium on
Parallel Rendering, pages 59–69. ACM SIGGRAPH,
oct 1997. ISBN 1-58113-010-4.

86. H. E. Rushmeier, C. Patterson, and A. Veerasamy. Ge-
ometric simplification for indirect illumination calcula-
tions. InProceedings of Graphics Interface ’93, pages
227–236, Toronto, Ontario, may 1993. Canadian Infor-
mation Processing Society.

87. J. Salmon and J. Goldsmith. A hypercube ray-tracer.
In Proceedings of the 3rd Conference on Hypercube

Concurrent Computers and Applications Vol. II, pages
1194–1206. ACM Press, 1988.

88. I. D. Scherson and C. Caspary. Multiprocessing for ray
tracing: A hierarchical self-balancing approach.The
Visual Computer, 4(4):188–196, 1988.

89. P. Shirley.Physically Based Lighting Calculations for
Computer Graphics. PhD thesis, University of Illinois,
Urbana-Champaign, nov 1991.

90. P. Shirley, B. Wade, D. Zareski, P. Hubbard, B. Wal-
ter, and D. P. Greenberg. Global illumination via den-
sity estimation. InProceedings of the Sixth Eurograph-
ics Workshop on Rendering, pages 187–199. Springer-
Verlag, June 1995.

91. F. X. Sillion and C. Puech.Radiosity and Global Il-
lumination. Morgan Kaufmann Publishers, Inc., San
Francisco, California, 1994. ISBN 1-55860-277-1.

92. J. S. Sing, A. Gupta, and M. Levoy. Parallel visualiza-
tion algorithms: Performance and architectural implica-
tions. IEEE Computer, 27(7):45–55, jul 1994.

93. J. P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hen-
nessy. Load balancing and data locality in adaptive hi-
erarchical N-body methods: Barnes-hut, fast multipole
and radiosity.Journal of Parallel and Distributed Com-
puting, 27(1):118–141, jun 1995. ISSN 0743-7315.

94. S. Spach and R. Pulleyblank. Parallel raytraced image
generation.Hewlett-Packard Journal, 43(3):76–83, jun
1992.

95. W. Stürzlinger, G. Schaufler, and J. Volkert. Load bal-
ancing for a parallel radiosity algorithm. In1995 Par-
allel Rendering Symposium, pages 39–45. ACM SIG-
GRAPH, oct 1995. ISBN0-89791-774-1.

96. W. Stürzlinger and C. Wild. Parallel progressive ra-
diosity with parallel visibility calculations. In V. Skala,
editor,Winter School of Computer Graphics and CAD
Systems, pages 66–74. University of West Bohemia, jan
1994.

97. W. Stürzlinger and C. Wild. Parallel visibility com-
putations for parallel radiosity. In B. Buchberger and
J. Volkert, editors,Parallel Processing: CONPAR 94 -
VAPP VI (Third Joint International Conference on Vec-
tor and Parallel Processing), volume 854 ofLecture
Notes in Computer Science, pages 405–413, Berlin, sep
1994. Springer-Verlag. ISBN 3-540-58430-7.

98. D. Stuttard, A. Worral, D. Paddon, and C. Willis. A par-
allel radiosity system for large data sets. In V. Skala,
editor, The Third International Conference in Central
Europe on Computer Graphics and Visualisation 95,
volume 2, pages 421–429, Plzen̆, Czech Republic, feb
1995. University of West Bohemia.

Reinhard et al. / Overview of Parallel Photo-realistic Graphics

99. I. E. Sutherland, R. F. Sproull, and R. A. Schumacker.
A characterization of ten hidden-surface algorithms.
Computing Surveys, 6(1):1–55, mar 1974.

100. S. Teller and P. Hanrahan. Global visibility algorithms
for illumination computations. InProceeding SIG-
GRAPH 93, pages 239–246, 1993.

101. J. P. Tidmus, A. G. Chalmers, and R. M. Miles. Dis-
tributed monte carlo techniques for interactive photo-
realistic image synthesis. In R. Miles and A. Chalmers,
editors,17th World Occam and Transputer Users Group
conference, pages 139–147, Bristol, 1994. IOS Press.

102. J. P. Tidmus, R. Miles, and A. Chalmers. Prefetch data
management for parallel particle tracing. In A. Bakkers,
editor,Parallel Programming and Java, Proceedings of
WoTUG-20, volume 50 ofConcurrent Systems Engi-
neering, pages 130–137, University of Twente, Nether-
lands, 1997. World occam and Transputer User Group
(WoTUG), IOS Press, Netherlands.

103. I. Verdú, D. Giménez, and J. C. Torres. Ray tracing
for natural scenes in parallel processors. In H. Lid-
dell, A. Colbrook, B. Hertzberger, and P. Sloot, edi-
tors, Highe-Performance Computing and Networking,
volume 1067 ofLecture Notes in Computer Science,
pages 297–305. Springer-Verlag, apr 1996. ISBN 3-
540-61142-8.

104. J. Žára, A. Holěcek, and J. P̌rikryl. Parallelisation of the
ray-tracing algorithm. In V. Skala, editor,Winter School
of Computer Graphics and CAD Systems 94, volume 1,
pages 113–117. University of West Bohemia, jan 1994.
WSCG 95.

105. J. Žára, A. Holěcek, and J. P̌rikryl. When the paral-
lel ray-tracer starts to be efficient? InProceedings of
Spring School on Computer Graphics, pages 108–116.
Comenius University Bratislava, jun 1994. Held jun 6–
9 Bratislava, Slovakia.

106. J. Wallace, K. Elmquist, and E. Haines. A ray trac-
ing algorithm for progressive radiosity. InComputer
Graphics (ACM SIGGRAPH ’89 Proceedings), vol-
ume 23, pages 315–324, jul 1989.

107. G. J. Ward. The RADIANCE lighting simulation and
rendering system. In A. Glassner, editor,Proceed-
ings of SIGGRAPH ’94 (Orlando, Florida, July 24–
29, 1994), Computer Graphics Proceedings, Annual
Conference Series, pages 459–472. ACM SIGGRAPH,
ACM Press, July 1994.

108. H. Weghorst, G. Hooper, and D. P. Greenberg. Im-
proved computations methods for ray tracing.Trans-
actions on Graphics, 3(1):52–69, jan 1984.

109. T. Whitted. An improved illumination model for shaded
display. Communications of the ACM, 23(6):343–349,
jun 1980.

110. H. Xu, Q. Peng, and Y. Liang. Accelerated radiosity
method for complex environments. InEurographics
’89, pages 51–61, Amsterdam, sep 1989. Elsevier Sci-
ence Publishers. Eurographics ’89.

111. Y. Yu, O. H. Ibarra, and T. Yang. Parallel progres-
sive radiosity with adaptive meshing. In A. Ferreira,
J. Rolim, Y. Saad, and T. Yang, editors,Parallel Algo-
rithms for Irregularly Structured Problems (Third In-
ternational Workshop, IRREGULAR ’96), volume 1117
of Lecture Notes in Computer Science, pages 159–170.
Springer-Verlag, aug 1996. ISBN 3-540-61549-0.

112. D. Zareski, B. Wade, P. Hubbard, and P. Shirley. Ef-
ficient parallel global illumination using density esti-
mation. In1995 Parallel Rendering Symposium, pages
47–54. ACM SIGGRAPH, 1995. ISBN 0-89791-774-
1.

