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Abstract

The analysis of large graphs plays a prominent role in various fields of research and is relevant in many important
application areas. Effective visual analysis of graphs requires appropriate visual presentations in combination
with respective user interaction facilities and algorithmic graph analysis methods. How to design appropriate
graph analysis systems depends on many factors, including the type of graph describing the data, the analytical
task at hand, and the applicability of graph analysis methods. The most recent surveys of graph visualization and
navigation techniques were presented by Herman et al. [HMM00] and Diaz [DPS02]. The first work surveyed the
main techniques for visualization of hierarchies and graphs in general that had been introduced until 2000. The
second work concentrated on graph layouts introduced until 2002. Recently, new techniques have been developed
covering a broader range of graph types, such as time-varying graphs. Also, in accordance with ever growing
amounts of graph-structured data becoming available, the inclusion of algorithmic graph analysis and interaction
techniques becomes increasingly important.
In this State-of-the-Art Report, we survey available techniques for the visual analysis of large graphs. Our re-
view firstly considers graph visualization techniques according to the type of graphs supported. The visualization
techniques form the basis for the presentation of interaction approaches suitable for visual graph exploration. As
an important component of visual graph analysis, we discuss various graph algorithmic aspects useful for the
different stages of the visual graph analysis process.

Categories and Subject Descriptors (according to ACM CCS): Data Structures [E.1]: Graphs and Networks;
Trees—Mathematics of Computing [G.2.2]: Discrete Mathematics—Graph Theory Information Systems [H.4]:
Applications— Information Systems [H.5.2]: Interfaces and Presentation—User Interfaces

1. Introduction

The analysis of large graphs is important in many applica-
tion areas including finance, biology, sociology, transporta-
tion, and software engineering. The proper understanding of
global and local graph structures is an essential aspect in
many analysis tasks in such areas.

Analysis of graphs leads to a variety of different tasks.
The analytical tasks often consist of a series of low level
tasks [LPS∗06]. The main aspect is often the understanding
of global and local structure of the graph, the connections be-
tween entities, their connectivity, the clusters of highly con-
nected entities, etc. These tasks get very complicated when

dealing with large and complex graphs. Obviously, the vi-
sualization itself becomes more problematic, but also search
and analysis tasks become time demanding, even to a critical
extent. One can think of tasks like finding and selecting rel-
evant adjacent nodes, or determining if nodes are accessible,
locating clusters of nodes, determining the shortest path be-
tween nodes. Furthermore, finding nodes or links satisfying
a certain property becomes more and more time demanding.

The analysis of graphs is often supported by visual pre-
sentations of the graph. Graph visualization research con-
centrates on the development of efficient graph layouts and
visual mappings supported by interaction and analysis tech-
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Figure 1: The main components of visual graph analysis
considered in this report.

niques that enable efficient understanding of the data. The
exploration of large graphs is supported by effective inter-
action techniques, in particular, in cases when the whole
graph is too complex or large to be visualized in one static
view. The interaction alone may not be sufficient accom-
plish certain analytical tasks. Therefore, also algorithmic
support, such as machine learning, or graph analysis algo-
rithms need to be combined in interactive visualization sys-
tems. Such integrated visual analysis of large data sets is
the main focus of the research field Visual Analytics, which
evolved from Information Visualization and Scientific Visu-
alization [KMS∗08]. It has effectively started to grow after
the publication of the seminal book by Thomas and Cook
in 2005 [TC05]. Therein, Visual Analytics is defined as the
science of analytical reasoning facilitated by interactive vi-
sual interfaces. Recently, Visual Analytics has been a major
driving force for the research and development of interactive
visualization techniques for large amounts of data including
graphs.

Our motivation for this report is two-fold. First, we rec-
ognize that by now most recent graph visualization surveys
[HMM00, DPS02] date back several years. Therefore, we
aim to provide an update by adding more recent publica-
tions to the body of work presented in these surveys. Sec-
ond, we aim to take a Visual Analytics perspective on the
field of visual graph analysis by explicitly considering in a
unified way the aspects of visual representation, algorithmic
analysis, and user interaction (see Figure 1). These three el-
ements form the basis for effective visual graph analysis sys-
tems, and are closely interrelated. For example, algorithmic
graph analysis may be applied as a preprocessing step before
a specific graph layout is determined for visual representa-
tion. Interactive direct object manipulation approaches are
often useful for exploring large and complex visual graphs.
Also, by means of user interaction, further graph analytic
processing steps, or updates to the presented views, can be
requested. The algorithmic analysis thereby helps to reveal
interesting aspects of the data. The user involvement in this
analytic process can vary from an automatic analysis, where

the calculation is done without user involvement, over a user-
driven analysis, where the user triggers the algorithmic pro-
cessing of the data, up to a user-steered processes where the
user has full control of the analytical process including set-
ting the algorithm parameters.

Visualization

User interaction
3Visualization

Transformation

Mapping
2

KnowledgeData
ModelModel

1

4
Model 
visualization

Model 
building 4

Models
Parameter 
refinement

Feedback loop

Information mining

Figure 2: The Visual Analytics process by Keim et al.
[KAF∗08] with the four key steps 1: data pre-processing,
2: mapping/layout 3: visual user interaction 4: model-based
analysis. c©2008 Springer-Verlag Berlin Heidelberg.

The structure of the report mirrors the steps of the visual
analytics process by Keim et al. [KAF∗08] (see Figure 2).
Section 2 details definitions and a classification of graphs by
types and introduces main pre-processing methods for visual
graph analysis. This section is the basis for a discussion of
visual graph representations given in Section 3. Sections 4
and 5 survey key approaches for interaction with and algo-
rithmic analysis of graphs, respectively, as these three com-
ponents are tightly interwoven. Finally, Section 6 concludes
and outlines future challenges in this research domain.

2. Basic Graph Definition and Preprocessing
Techniques

In this section, we recall fundamental graph definitions as
well as approaches for graph preprocessing useful for subse-
quent graph visualization.

2.1. Graph Types

Graphs are a prominent data structure within Visual Ana-
lytics and related research fields. Often, graphs are applied
for describing relationships between entities. A graph refers
to a set of vertices (nodes) and a set of edges that connect
pairs of vertices. It is a pair G = (V,E);E ⊆ [V 2];V ∩E = 0,
where elements of V are vertices and elements of E are
edges [Die05]. A tree is a graph without cycles. Cycles are
closed paths in the graph, i.e., sequences of nodes following
the graph edges, where the first node equals the last node.
Trees are called rooted when one leaf node (one node with
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only one incident edge) is distinguished as a so called root
node. Such trees are often treated as hierarchies, where the
length of the path to the root denotes the level of nodes in
the hierarchy.

Connected graphs can be transformed to trees by remov-
ing edges in the cycles while the graph stays connected (i.e.,
there is an undirected path between all pairs of nodes) and
includes all vertices of the original graph. This process can
be reversed by adding back the removed edges. For weighted
graphs (graphs with weight-attributes assigned to edges),
algorithms for calculating minimum spanning trees (e.g.,
Kruskal’s Algorithm [Kru56]) can be used for this task. Fur-
thermore, attributes can be attached to vertices and nodes,
e.g., to denote their type, size, or some other application re-
lated information.

Graphs are often classified according to the direction of
edges into undirected and directed [HMM00]. In graph the-
ory literature directed graphs with weighted edges are also
called networks. In information visualization, the term net-
work is often used in a broader sense also including graphs
with cycles.
The classification in directed and undirected graphs, how-
ever, is not sufficient if hierarchical and generic relationships
exist within one graph at the same time. E.g., in social net-
works persons in an organization can be in a subordination
(hierarchic) relationship and at the same time in a friendship
(generic) relationship. This type of graph in the following is
referred to as a compound graph. Compound graphs can also
be created by successive aggregation (or clustering) of graph
vertices in a bottom-up approach. In this case, nodes (and
implicitly, also edges) of the original graph are aggregated
(i.e., merged), thereby creating constructed meta-nodes or
super-nodes. The attributes of the meta-nodes are calculated
from the attributes of the merged nodes. Similarly, edges be-
tween meta-nodes are aggregated into meta-edges and their
attributes are calculated from the original edges. Compound
graphs which are constructed in this way are also referred to
as aggregated graphs. The type of calculation used is depen-
dent on the particular application and graph type.

Graphs may also evolve over time, implying changes in
the graph structure and/or in the attributes of vertices and
nodes. If such a development is considered, we consider
dynamic graphs (i.e., time-dependent graphs) in contrast
to static graphs. Time-dependent changes may affect the
node/edge attributes, the graph structure, or both. Figure 3
summarizes the graph classification presented above.

From the Information Visualization point of view, a spe-
cific group of graphs are graphs with geographic refer-
ence, such as transportation graphs. In this case, the nodes
and possibly also edges of the graph have an inherent geo-
graphic location, which needs to be taken into consideration
in their graphic presentation. For example, a specific graph
layout algorithm is not needed for determining the position
of each node on the screen. However, the fixed node position
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Figure 3: Classification of graphs according to their time
dependence and graph structure.

exacerbates graph readability problems, such as crossings
and long edges. These problems need to be solved appropri-
ately. Visualization of geographic data is a special research
field, which we do not address here in detail.

Furthermore, graphs may be distinguished according to
their topological properties. There exists a variety of litera-
ture on graph theory (e.g., [Die05]) which focuses on graph
terminology, classification, and algorithmic graph analysis.
In the following, we mention only the most relevant termi-
nology used later in this report. Basic graph properties in-
clude the number of nodes, graph density, and connectiv-
ity. Properties are often taken into account (or are a pre-
requisite) for certain visualization techniques. The number
of nodes (i.e., graph order) often heavily influences which
methods can be used or fall short, with respect to read-
ability and performance. Another important attribute is the
graph density, the number of edges relative to the maxi-
mum potential number of edges. Sparse graphs have around
O(|V |) < |E| < O(|V 2|) edges, while dense graphs show
density values close to one. Graphs with the maximum num-
ber of edges are called complete graphs. A clique is a subset
of a graph that is fully connected. Large and/or dense graphs
pose a scalability problem in visualization owing to limited
display space and human perception capabilities.

Several special graph structures appear often in real-world
cases, and dedicated visualization methods have been devel-
oped for these [ACJM03, vHW08, JHGH08, MJW∗09]. For
example, in the so called small world graphs often found
in social networks, most nodes are connected to each other
with short paths. Scale-free networks, e.g., protein networks
or certain types of social networks have degree distributions
following approximately the power law. Bipartite graphs
are graphs whose nodes form two disjoint sets V1 and V2,
V1 ∪V2 = V , such that every edge e = v1,v2 ∈ E connects
vertex v1 ∈V1 with one vertex v2 ∈V2.

2.2. Algorithmic Graph Preprocessing

In graph visualization, algorithmic graph preprocessing of-
ten includes graph simplification to reduce the size, while
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maintaining the main graph structure. Also pre-processing of
graph properties can be used for graph visualization (in algo-
rithms for positioning of nodes and edges) or highlighting of
interesting parts of the graph. This modified graph is used
then for an easier visual inspection as large and complex
graphs are difficult to understand even using advanced node
and edge positioning algorithms (layouts). Such preprocess-
ing steps can usually be performed automatically without
user interaction. There are two main approaches to graph re-
duction: graph filtering and graph aggregation.

Graph filtering There are two types of filtering: stochas-
tic and deterministic. Stochastic filtering is mainly based
on random selection of nodes and edges from the original
graph. These methods are compared in [LF06]. Determinis-
tic filtering uses, as its name suggests, a deterministic algo-
rithm for selecting of the nodes/edges to be removed. This
filtering can be based on node/edge attributes, on topologic
values such as betweenness centrality, or other graph prop-
erties. For example, filtering based on edge-betweenness-
centrality can be used for removal of less important edges
while keeping the underlying structure (connectedness and
other features such as cliques) of the graph [JHGH08] (see
Figure 4).

Graph aggregation Here, nodes and edges are merged to
single nodes and edges, thereby reducing the size of the
graph and revealing relationships between groups of nodes.
Graph aggregation can be repeated multiple times, creating a
hierarchical graph. There are various ways of graph aggrega-
tion, including using predefined node hierarchies, or aggre-
gation according to node attributes, to name a few [EDG∗08]
(see Figure 5).

3. Visual Representations of Graphs

For an efficient representation of graphs, aesthetic criteria
need to be followed. Beck et al. [BBD09] recently pre-
sented aesthetic criteria for drawing graphs. They consider
three groups of criteria, which are irrespective of the type of
graphic representation: general, dynamic and aesthetic scal-
ability.
The general criteria include reduction of visual clutter, re-
duction of spatial misunderstanding resulting from spatial
closeness, maximization of spatial matching of items for fol-
lowing paths and maximization of space efficiency.
For dynamic graphs, the following criteria are desired: max-
imization of display stability between time points, reduction
of cognitive load when analyzing time dynamics, minimiza-
tion of temporal aliases mainly owing to positioning of dif-
ferent nodes in the same place in two time periods.
Aesthetic scalability criteria refer to graph readability for
larger graphs, i.e., scalability in number of vertices (i.e, in-
creasing graph order), scalability in number of edges (i.e., in-
creasing graph density), and scalability in number of graphs,

(a) Original graph (b) Stochastic edge sampling

(c) Geodesic clustering (d) Structure-based filtering

Figure 4: Example of various graph reduction techniques.
The graphs are visualized using GEM layout [JHGH08].
c©2008 IEEE.

Figure 5: Graph aggregation for multi-scale graph visual-
ization [EDG∗08]. c©2008 IEEE. Top: Graph aggregation
schema. Bottom: Example of graph aggregation using a ma-
trix visualization.

in particular with increasing number of time steps for which
graph data is given.

In this section, we describe main graph visualization tech-
niques following the graph classification from Section 2. We
introduce techniques for static and time-varying graphs. In
each part, techniques for hierarchies, generic directed and
undirected graphs, and compound graphs are presented.
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3.1. Visual Representations of Static Graphs

The visualization of static graphs has received much at-
tention in the Information Visualization community. Of-
ten, static graph visualization serves as a basis for time-
dependent graph visualization as described in Section 3.2.

3.1.1. Trees Including Hierarchies

Techniques displaying trees can be divided into three main
groups: Space filling, node-link based, and combined (see
Figure 6). There have been several studies comparing the
different ways of tree visualization, in particular hierarchy
visualization [BN01,AK07,Kob04,Sta00,vHvW02]. In gen-
eral, it is difficult to unify these results as they differ signifi-
cantly. Recently, it has been found that the effectivity of the
respective technique largely depends not only on the task to
be solved, but also on the formulation of the task assignment,
i.e., if it reflects a containment or a levels metaphor [ZK08].

(a) Node-link diagram (b) Space-filling diagram

(c) Combined representation

Figure 6: Three types of hierarchy visualization techniques.
a) Node-Link, b) space-filling, c) combined. [ZMC05],
c©2005 IEEE.

Space filling techniques These are mainly applied to rooted
trees. They use the spatial position of the nodes (such as
closeness or enclosure) to represent the hierarchic structure
of the graph. Moreover, they try to use the full area of the
display to present the graph. They are mainly used to visual-
ize the hierarchic partitioning of the set of all data items into
partitions, e.g., when considering the set of files in a standard
file system. The size of the nodes is encoded by the area size
of the displayed items. Additionally, color and height can
represent additional data attributes. In case more complex
additional information needs to be displayed, specialized
data presentations can be placed in the child nodes such as

icons, parallel coordinate diagrams, etc. Space-filling tech-
niques can be categorized by the placement strategy em-
ployed into enclosure, adjacency and crossing (see Figure 7).

• Enclosures These techniques recursively layout child
nodes within the area of their parent nodes. The most
prominent examples are treemaps – rectangular shapes re-
cursively subdividing rectangular display space according
to the underlying hierarchy, introduced by Shneiderman
[Shn92] (so called slice-and-dice algorithm). They can be
displayed both in 2D [BSW02] and 3D [SLS07]. Variants
include using Voronoi tessellations [BDL05] or bubble
layouts [Bed01]. Further types, such as elliptic [OCNF09]
or circular shapes have been proposed but by definiton
cannot fully use rectangular input display area as the child
nodes do not fully cover the parent nodes.
The main advantage of enclosures is the very good usage
of the available space, as the child node do not need extra
space owing to the overlap with the parent nodes. The dis-
advantage is that the overlapping of the parent nodes may
also lead to a more difficult distinction of the hierarchy
structure by the user, as it is rather implicitly encoded. For
treemaps, several layout techniques have been developed
including ordered (i.e., pivot-based) [BSW02], squarified
[BHvW99], and spiral [TS07] treemap layouts. For exam-
ple, squarified treemaps aim at generating subrectangles
of square-like aspect ratios, supporting easier compari-
son of sizes and presentation of additional diagrams or
other elements within the rectangles. According to Tu and
Shen [TS07], the slice-and-dice algorithm leads to high
aspect ratios with high readability. Strip, pivot-based and
spiral techniques have medium aspect ratios with medium
readability. Squarified treemap has very good (low) aspect
ratios but low readability. In order to better distinguish the
hierarchical structure, cushion treemaps [vWvdW99] ap-
ply shading of the shapes. Treemaps that reflect the ge-
ographic distribution of the hierarchical data were pre-
sented in [WD08].

• Adjacency In contrast to treemaps, adjacency-based tech-
niques do not overlap the parent nodes by child nodes
and instead, represent the node relationships by placing
the child nodes next to their parent nodes. The placement
can be in circular layers such as in the SunBurst method
(2D [SZ00] or 3D [SKW∗07] variants), or on linear lay-
ers, yielding so-called “icicle plots”. The advantage of this
visualization is that the parent nodes are not overlapped
by their child nodes and therefore, their attributes can be
more easily displayed and analyzed. However, this visu-
alization consumes more space.

• Crossings The crossing method places child nodes across
the parent node, thereby only partially overlapping the
parent. The “Beamtree” method [vHvW02] improves over
the classic Treemap problem where the hierarchic struc-
ture may be difficult to visually assess, while still being
more space efficient than the adjacency techniques. The
main drawback of this technique is that if users are un-
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familiar with this approach. It is often less readable than
other methods.

(a) Treemap (b) Icicle plot

(c) Beamtree

Figure 7: Three types of space filling hierarchy visualization
techniques. a) Enclosure – Cushion treemap [vWvdW99],
c©1999 IEEE. b) Adjacency — Icicle plot [TS08a], c©2008

IEEE. c) Crossing – Beamtrees [vHvW02], c©2002 IEEE.

Node-link techniques These approaches use links between
items to depict their relationship. Layout algorithms con-
trolled by optimization criteria or layout heuristics calculate
a layout for the positions of the nodes. The method by design
typically leaves significant background space empty and
thereby may encounter scalability problems when applied to
larger graphs. Many layout algorithms have been proposes to
date in the Graph Drawing community. They include radial
or balloon layouts in 2D [HMM00], Cone trees [RMC91] in
3D, point based trees [SSH09], nature inspired Phyllo trees
[NCA06], or Hyperbolic layouts [Mun97, AH98] (see Fig-
ure 8). For the visualization of node attributes, specialized
techniques for multi-dimensional data visualization such as
glyphs, radial or parallel plots can be used.

Combined approaches These approaches combine node-
link diagrams with treemaps. In these, a part of the hierarchy
is displayed in an enclosing (treemap) mode, and the rest as
a node-link diagram (see Figure 6c). They present the data
in a flexible space-efficient way while still clearly present-
ing the data structure and emphasizing the content. The most
prominent representative are “elastic hierarchies” [ZMC05].
In connection to interactive determination of the type of vi-
sual metaphor used for each part of the hierarchy, this tech-
nique allows for flexible analysis of the data using advan-
tages of both representations.

(a) Phyllotrees (b) Point-based tree

Figure 8: Examples of node-link tree visualizations. a)
Phyllotrees [NCA06], c©2006 IEEE. b) Point-based tree
[SSH09], c©2009 IEEE.

3.1.2. Directed and Undirected Graphs

Graph visualization techniques can be classified according
to the visual metaphor used into node-link, matrix or com-
bined representation (see Figure 9 for an illustration). A
comparison of node-link and matrix techniques is presented
by Ghoniem et al. [GFC04]. According to the study, the ad-
vantage of node-link diagrams is their intuitiveness, com-
pactness, and better suitability for path following tasks. They
are more effective for smaller and sparse graphs. Matrix
representations inherently do not have edge crossings and
node overlapping problems, and are thereby suitable also for
dense graphs. When using appropriate node ordering, they
can easily reveal dense substructures in the graph. However,
they also suffer from scalability in limited display spaces,
especially for very large graphs. In visual graph analysis,
graph layout and matrix ordering influence the effectiveness
of these representations. These issues are therefore in the
core of graph visualization research.

(a) Node-link
diagram

(b) Adjacency
matrix diagram

(c) Combination

Figure 9: Three types of general graph visualization tech-
niques: a) Node-link diagram, b) adjacency matrix, c) com-
bination. From [HFM07], c©2007 IEEE.

Node-link representations The main challenge is the
placement of the nodes so that graph readability and certain
notions of graph aesthetics are supported (see Figure 10 for
an illustration). Typical requirements include that the nodes
do not overlap, the number of edge crossings is minimized,
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edge length is homogeneous, and in general, graph substruc-
tures are easily recognizable. This problem is intensively
studied in the graph drawing community. Given these aes-
thetic goals and constraints, the aim is to find algorithms
that efficiently provide good solutions. An overview of graph
drawing algorithms is given by Battista et al. [DBETT99].
The graph layout field is very large, and an extensive sur-
vey of proposed techniques is beyond the scope of this re-
port. There has been a dedicated state-of-the art report by
Diaz [DPS02] summarizing techniques up to 2002. More-
over, the related work part in [AAM07, MM08] as well as
the comparison in [HJ07] nicely summarize many current
techniques. In our report, we classify the techniques accord-
ing to the type of node placement.

• Force-based layouts. These techniques are based on a sim-
ulation of mechanical laws by assigning forces among
nodes and edges. Basically, the forces between edges cor-
respond to springs and the forces between nodes to elec-
tric forces between charged particles. The classic tech-
niques lead to pleasing results for small graphs up to a
hundred nodes (examples are the Fruchterman-Reingold
[FR91] and the Kamada-Kawai [KK89] layouts). They,
however, do not scale well to graphs of thousands of nodes
or more. For larger graphs, other approaches have been
introduced (see below). For example, the GEM algorithm
[FLM95] uses heuristics for faster calculation of forces.

• Constraint-based layouts. This family of layouts extends
the force-directed approach with constraints on node po-
sition. These constraints include horizontal and vertical
alignment of nodes, non-overlapping nodes, edge direc-
tion or closeness of grouped nodes [DMW09a]. An ex-
ample are orthogonal layouts, where the edges are only
composed of straight vertical and horizontal lines. These
layouts can be supported also by user interaction (see
also Section 4). Example works from this category in-
clude [DMS∗08, DMW09b, DMW09a].

• Multi-scale approaches. These techniques first lay out a
coarser graph (a subgraph of the original graph) and then
include more nodes in a level-by-level fashion. Exemplary
works include [GK01, FT07, KCH02, HJ05, MM08] (see
Figure 10a for an illustration). These methods are typ-
ically much faster than traditional force-directed meth-
ods. They can be differentiated according to the technique
used for creating the node hierarchy, and the layout of
the resulting layers. For example, [MM08] employs node
clustering and subsequent positioning of the nodes along
space filling curves.

• Layered layouts. These approaches, also called “hierar-
chic layouts”, place nodes of the graph on parallel hori-
zontal layers, e.g., [Bab02]. They are mainly used for di-
rected graphs and are based on the Sugiyama approach
[STT81]. It works in four phases: (1) cycle removal, (2)
assignment of nodes to levels, (3) reduction of edge cross-
ings and (4) assignment of coordinates to nodes. Improve-
ments to these layouts, specifically for cyclic graphs, po-

sition all nodes of a cycle within one level; examples in-
clude the Dig-Cola layout [DK05] and Cyclic Leveling
[BBBL09] (see Figure 10b).

• Further approaches. Other approaches exist that com-
bine the previous techniques, or use completely alterna-
tive approaches to graph layouts. Projection of a node
layout from high-dimensional to two-dimensional space
has been proposed in [HK02]. LGL [ADWM04] uses a
layout of the minimum spanning tree as a basis for the
drawing of the whole graph. TopoLayout [AAM07] uses
topologic properties of the graph parts, to choose the
best graph layout. A layout revealing specific graph sub-
structures (motifs) was presented in [KSS06]. The ISOM
method [Mey98] applies the Self-Organizing Map algo-
rithm [Koh01] for finding a suitable graph layout. A graph
layout visualization based on the semantics of the graph
(on node labels) was presented in [SA06]. Semantically
identical nodes (e.g., with the same labels) are placed
in boxes using standard layout algorithms (e.g., force-
directed) (see Figure 11).

(a) Multi-level graph layouts

(b) Dig-cola layout

Figure 10: Graph layout examples. a) A comparison
of multi-level graph layouts GRIP, FM3 and Topolayout
[AAM07]. c©2007 IEEE. b) Layered layout of cyclic directed
graph [DK05]. c©2005 IEEE.

Comparison of graph layouts A recent comparison of
the readability of graph layouts using eye-tracking [Hua07,
PSD09] has shown that force directed layouts outperform
orthogonal and layered layouts on various user tasks. An-
other comparison of advantages and disadvantages of nu-
merous current layouts was published by Hachul and Jünger
[HJ07]. They compare the graph drawing outputs accord-
ing to various criteria finding that the HDE layout [HK02]
is very fast but frequently produces layouts with many
overlapping edges. In contrast, FM3 [HJ05] creates pleas-
ing layouts in reasonable time. Both algorithms together
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Figure 11: Graph visualization using data semantics
[SA06]. c©2006 IEEE.

with GRIP [GK01] scale well with graph size. A compar-
ison of user-produced vs. automatically generated layouts
[vHR08, DLF∗09] found also that the results of physics-
based algorithms, such as force-directed layouts, were pre-
ferred by the users.

Design of graph drawing The above mentioned techniques
cover graph layout. In addition to specific layouts, occlu-
sion and readability of the display can be improved by
edge-bundling [CZQ∗08, Hol06] (see Figure 12) and the re-
moval of node overlap [GH09, IAG∗09]. Drawing of node-
link diagrams also includes a suitable design of edge and
node drawing primitives. For directed graphs, the represen-
tation of edge directions is of importance. There are mul-
tiple design possibilities including usage of arrows, color
transitions (from color A to color B), thickness transi-
tions (from thick to narrow), curves, and animated textures
[HvW09, TK08, BBG∗09]. These options may also be com-
bined. A comparison of graph drawing different ways to
represent edges was presented in [HvW09]. It shows that
arrows, although popular and widely used, do not perform
as well as color and thickness transitions. Graph nodes and
edges often have associated attributes that are included in the
analysis. This study did not concentrate on attributed edges.
For such edge attributes, in particular edge weight, coloring
of edges or edge thickness can be employed. For the visual-
ization of node attributes, a visualization of multivariate data
items (e.g., glyphs or radial plots) is employed.

Visualization of multiple graph connected components
For the visualization of multiple components, first layout
for each individual connected component is calculated and
then a specific placement of these components on the screen
is performed. The mostly used placement method is called
packing. It lays out the components so that they do not over-
lap and are space efficient. Dogrusoz [Dog02] compares sev-
eral two-dimensional packing algorithms for graphs which
use representation of graphs by their bounding rectangles.

(a) Original graph (b) Edge bundling

Figure 12: The use of edge bundling for improving graph
readability. a) original graph b) graph with edge bundling.
[Hol06], c©2006 IEEE.

They include strip packing, tiling and alternate-bisection.
The polyomino algorithm of Freivalds et al. [FDK02] uses
polyomino representation of the graph objects, which sub-
stantially reduces the unused display space in comparison
to rectangular shapes. Goehlsdorf et al. [GKS07] introduce
new quality measures to evaluate a two-dimensional place-
ment which yields more compact layouts than the previously
mentioned approaches.

Matrix These techniques visualize the adjacency matrix of
a given graph, where edge attributes are encoded in the ma-
trix cells. It can display both directed and undirected graphs,
where the latter leads to a symmetric matrix. The advan-
tage of this representation with respect to node-link repre-
sentation is the non-overlapping display of graph edges, and
the easy readability of the graph especially for larger and
more dense graphs. The disadvantage is an increased diffi-
culty for users to follow paths, and a possible unfamiliar-
ity of matrices to the users. In a matrix visualization, the
ordering of rows/columns plays an important role. Differ-
ent strategies to sort the matrix prior to visualization can
be employed (see Figure 13 for an illustration). A proper
reordering can reveal clusters in the graph and other pat-
terns. For a discussion of these, we refer to [EDG∗08,HF06].
Although matrices are suitable for larger graphs, they also
suffer from scalability issues as they use linear order of
nodes along the matrix rows/columns. Therefore, interac-
tion techniques and aggregated displays have been pro-
posed [EDG∗08, HF06, AvH04, vHSD09, vH03] (see also
Sections 4 and 5).

Combination of matrix and node-link approach Tech-
niques using a combination of the two previous approaches
aim at overcoming their limitations by focusing on their
strengths. Three main approaches exist (see Figure 14).

• Multiple synchronized views. These techniques link the
matrix and node-link representation [HF06]. Both views
show the same data and are synchronized during explo-
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(a) HDE matrix ordering (b) NNTSP matrix ordering

Figure 13: Examples of matrix reordering on graph presen-
tation. a) Using HDE algorithm. b) Using NNTSP reorder-
ing. From [EDG∗08], c©2008 IEEE.

ration. Thereby, the user can concentrate on whatever
view is more suitable for the current task.

• Matlink. [HF07] This approach enhances matrix visual-
ization with links at the border of the matrix (connecting
the nodes). Using link highlighting, the paths can be eas-
ily spotted in the Matlink view and at the same time, the
advantages of the matrix representation are retained.

• NodeTrix. [HFM07] It combines both representations in
one view, where node-link diagrams display the overall
graph structure of the network, and adjacency matrices
show communities. The work also discusses three ways of
link display for this setting: aggregated links, underlying
links, and underlying links with full size (see Figure 15).
These forms can be also used for attributed links.

3.1.3. Compound Graphs

Literature on visualization of graphs with hierarchic struc-
ture is relatively rare. We identify three main approaches.

Node-link graph visualization techniques These use
node-link diagrams for the lowest hierarchy level and then
use “bubbles” (enclosures) for various hierarchy levels.
Examples include TugGraph [AMA09] and GrouseFlocks
[AMA08]. The advantage of this method is its intuitive-
ness. However, for large graphs with many links, this view
gets easily overcrowded (see Figure 16 a). Edge overplotting
problem can be partially solved by edge bundling [Hol06]
(see Figure 12). Alternatively, only links between merged
nodes can be drawn (see Figure 16 c).

Treemap-based A Treemap visualization of the node hier-
archy uses overlaid links between nodes [FWD∗03] (see Fig-
ure 16b). This approach may suffer from strong overplotting
in case of many links between nodes of the hierarchy. There-
fore, edge bundling is advised to improve the readability
of the display [Hol06](see Figure 12). Similarly, also one-
dimensional Treemaps with links between nodes, so called

(a) Multiple linked views

(b) Links connected to the matrix view

(c) Node-link and matrix com-
bined

Figure 14: Combined matrix and node link graph visualiza-
tion techniques. a) Multiple linked views [HF06]. c©2006
IEEE. b) Links connected to the matrix view [HF07]. c©2007
Springer-Verlag Berlin Heidelberg. c) Node-link and matrix
combined - part and part [HFM07]. c©2007 IEEE.

ArcTrees [BDJ05] can be employed (see Figure 16d), but
these do not scale well for large hierarchies.

Matrix view with links These visualizations combine the
generic node relationship visualization with a tree-based vi-
sualization of the hierarchic node relationships. This is an
analogy to MatLink [HF07]. This view is very clear, how-
ever, it may be difficult to understand the compound rela-
tionships between nodes (see Figure 16e).
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(a) Aggregated
links

(b) Underlying
links

(c) Underlying
links with full size

Figure 15: Three ways of link visualization in a combined
node-link and matrix data representation using the NodeTrix
approach [HFM07]. c©2007 IEEE.

Figure 16: Visualization techniques for compound graphs
[Hol06], c©2006 IEEE. (a) Node-link visualization with
grouped nodes in “bubbles”. (b) Links overlaying a Treemap
visualization. (c) Compound drawing using enclosures and
links between merged nodes. (d) ArcTrees - links overlaying
a 1D Treemap [BDJ05]. (e) A matrix view for showing rela-
tions between entities linked with tree view of the nodes as
in MatLink approach [HF07].

3.2. Visual Representation of Dynamic Graphs

In this section, we discuss two categories of visual display of
the time changes on graph elements: Using animation, and
using static displays. Animated displays usually employ or
enhance static visualization techniques such as presented in
Section 3.1. Animation is a natural way of conveying the
change of the data over time. However, its effectiveness is
limited by human perception capabilities. Usually, users are
able to recognize and remember larger changes in the data.
The static view is preferred for more detailed analysis of
data changes. Static views which also incorporate the time-
dimension of the data are more complex. In the following,
we categorize the visualization techniques according to the
type of data changes captured into those that affect only data
attributes, and those that affect also data relationships.

3.2.1. Trees Including Hierarchies

For the visualization of dynamic trees with only data at-
tribute changes, either Treemaps with time series in the leaf
nodes [SKM06, DHKS05] or the so called Timeline Trees
[BBD08] can be used (see Figure 17 a and b). Timeline trees
show the hierarchy on one side and the time sequences on the
other side of the view. The Treemap representation directly
shows the hierarchic structure and time-variation in one
combined view. This allows for an easy comparison of the
time-developments across the hierarchy. However, the com-
parison is affected by different node sizes and difficult for
small nodes. Therefore, a specific Treemap layout preserv-
ing the aspect ratio has been developed [SKM06,DHKS05].
Timeline Trees assign the same space to all nodes. The ver-
tical positioning of time lines allows for very good compar-
ison of the values at the same time points. The separation of
the time dimension from the hierarchic structure, however,
complicates the comparison of tree branches.

For visualization of dynamic data with structural changes,
animated views are used. In this respect animated graphs
(see Section 3.2.2) can be employed in general. In particular,
the layouts based on the Sugiyama approach [GBPD04] are
suitable. Alternatively, animated treemaps [GF01, TS07] or
icicle/circular plots [TS08a] can be used (see Figure 17 c).
When choosing the graph layout, the layout stability needs
to be taken into consideration. E.g., in the treemap represen-
tations, the spiral layout [TS07] achieves a high continuity
with high stability of the layout. Strip and pivot-by-middle
layouts have also been shown to have higher layout suitabil-
ity. All these layouts are preferable in spite of their higher
aspect ratios in comparison to the Squarified Treemap. Tu
and Shen [TS07] propose also static comparison of two time
points in a Treemap visualization (called contrast Treemap).

3.2.2. Directed and Undirected Graphs

For attribute changes only, techniques for visualization of
static graphs can be combined with visualizations of individ-
ual time dependent data items (e.g., color charts [SLN05])
(see Figure 18a). The advantage of this approach is the large
number of the available graph layouts.

In case of structural changes, time-dependent graph
layouts (animated graphs) need to be employed [KG06,
DGK01]. In animated graph visualization (in analogy to
animated tree visualization), a stable graph layout, which
changes minimally, is of essence. A stable graph layout pre-
serves the mental map of the user and therefore, facilitates
the analysis of graph changes. In laying out dynamic graphs,
there is a large difference between strategies for drawing
graphs with known histories and those that need to be ad-
justed in real-time depending on new data streams. A paper
of Frishman and Tal [FT08] addresses this particular issue
by proposing an online algorithm for dynamic layout imple-
mented on the GPU, thereby accelerating the layout compu-
tation (see Figure 18b).
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(a) Time line tree

(b) Treemap with time series

(c) Animated circular icicle plot

Figure 17: Visualization of time-dependent trees. (a) Time
line tree [BBD08], c©2008 ACM. (b) Time series in the
Treemap nodes [DHKS05], c©2005 IEEE. (c) Animated hi-
erarchic circlular plots [TS08a], c©2008 IEEE.

3.2.3. Compound Graphs

There are only few techniques that visualize time-varying
compound graphs. They employ either animation or static
data representations.

Kumar et al. [KG06] present a specific layout for anima-
tion of a node-link diagram with transparent “bubbles” for
the hierarchic grouping of nodes (see Figure 19a). Frishman
and Tal [FT04] present a layout which focuses on maintain-
ing the clustered structure during the animation. The groups
of nodes are displayed using bounding boxes around the

(a) Node-link diagram with time series in
nodes

(b) Animated node-link diagram

Figure 18: Visualization of time dependent graphs. (a) Time
series in nodes [SLN05], c©2005 IEEE. (b) Animated graphs
[FT08], c©2008 IEEE.

groups. Reitz et al. [RPD09] use dynamic graph layouts for
showing areas of interest in dynamic compound graphs.

A static approach to visualization of dynamic compound
Digraphs using TimeArcTrees was presented by Greilich
et al. [GBD09] (see Figure 19b). They show a sequence
of node-link diagrams with horizontal node alignment in
a single view, thereby supporting their direct comparison.
TimeRadarTrees [BD08] use radial tree layouts for the hier-
archy and a sequence of circle segments for representation of
the temporal change of the structure (edges) of the Digraph
(see Figure 19c). This view easily gets complex for larger
graphs.

4. User Interaction in Graph Visualization

An overview of interaction techniques in Information Vi-
sualization is presented in [KHG03]. Standard interaction
techniques such as zooming, panning, brushing and link-
ing [CMS99, War00] can also be applied in graph visualiza-
tion. However, additional specialized interaction techniques
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(a) Animated compound graphs

(b) TimeArcTrees

(c) TimeRadarTrees

Figure 19: Visualization of time varying compound graphs.
(a) Animated graphs by Kumar et al. [KG06], c©2006 IEEE.
(b) TimeArcTrees [GBD09], c©2009 held by the authors. (c)
TimeRadarTrees [BD08], c©2008 held by the authors.

have been developed for interactive visual graph navigation
and exploration.

Recently, Yi et al. [YKSJ07] presented a general taxon-
omy of interaction techniques. This taxonomy is based on
a broad literature survey of available taxonomies. It catego-
rizes interaction according to user intention into seven cate-
gories:

1. Select: mark something as interesting,
2. Explore: show something else,
3. Reconfigure: show a different arrangement,
4. Encode: show a different representation,

5. Abstract/Elaborate: show more or less detail,
6. Filter: show something conditionally,
7. Connect: show related items.

Alternatively, user interaction can be categorized accord-
ing to the action that is taken by the user. This categorization
is more suitable for dividing interaction techniques into cat-
egories, as each action is supported by the employed tech-
nique. The two categorization approaches are interrelated.
A user intention can be achieved by several user actions or,
vice versa, an action can suit several intentions.

We categorize interaction techniques according to
whether the action of the user affects the data (the selection
of the displayed data or the data values) or the visual dis-
play of the data itself (visual parameters or visual represen-
tation). Data and view manipulation can be used for inter-
active data exploration and navigation. This categorization
follows the idea of Elmqvist and Fekete [EF09] and Bertini
and Lalanne [BL09]. It is in line with the Information Vi-
sualization reference model of Card et al. [CMS99]. Please
note that these two types of interaction are often closely
connected. For example, data manipulation may automati-
cally lead to changes of visual parameters (e.g., data filter-
ing can influence the graph layout, or zooming can be com-
bined with data filtering forming a type of semantic zoom-
ing). Such techniques that combine both types of techniques
are assigned to one of the categories and marked “(*)”.

4.1. Data Manipulation

Data manipulation affects the selection of the data to be dis-
played, or may change the data values.

4.1.1. Data selection

These interaction techniques influence which parts of the
data set are displayed. The data selection may follow three
paths.

A top down approach This approach starts from the whole
graph and then constrains the part of the data set to be vi-
sualized by filtering according to criteria or by manual data
selection. The disadvantage of this approach is the need to
show the whole graph at the beginning, which may require
higher computational time for the layout and may lead to
occlusions owing to the limited screen size. The advantage
is gaining an overview of the graph structure first and then
concentrating on interesting parts.

A bottom up approach This approach starts from one se-
lected node [vHP09, Fur86, AF07] and successively shows
more nodes/connections on demand. There are two main
methods of choosing the additional nodes/edges to be dis-
played: based on graph structure, or based on a degree-
of-interest function. The advantage of this approach is that
only the most interesting part of the data set is visualized,
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however it is difficult to determine the starting point for
the exploration and to define the degree-of-interest function.
Therefore, we consider these methods in more detail.

• Navigation based on graph structure. These techniques
reveal/hide that part of the graph that is determined by
the connections between nodes. In graphs, neighborhood
traversal shows neighbor nodes of a focus node up to
a certain level [HB05]. For hierarchies, several traversal
methods for have been described in [EF09]. The hierar-
chy traversal methods include: (1) above traversal, where
nodes up to a certain level are shown; (2) below traversal,
where nodes starting from a selected level are displayed;
(3) level traversal, where nodes at a certain level are dis-
played; (4) range traversal, where nodes in a range of lev-
els are shown; and (5) unbalanced traversal, where certain
branches of a tree are visible (see Figure 20).

(a) (b)

(c) (d)

(e)

Figure 20: Hierarchy traversal strategies [EF09], c©2009
IEEE. (a) above traversal, (b) below traversal, (c) level
traversal, (d) range traversal. (e) unbalanced traversal.

• Navigation based on a degree of interest function. These
methods start from a selected node, and next the edges
and nodes of highest interest are shown [Fur86, vHP09].
For the determination of the interesting nodes, a specific
degree of interest (DOI) function is used. Depending on
the specification of the DOI function, various graph ex-
ploration paths can be followed. These DOI functions
were used for building specific views on trees (DOITrees)
[CN02,HC04]. In the work of Furnas [Fur86], the DOI of

a node depends on the distance to the node in focus and
the a priori interest in this node (e.g., according to node
importance in the network, or node properties). van Ham
and Peer [vHP09] extended this function with user interest
(UI), which reflects the current specific exploratory focus
of the user.

A middle-out approach This method combines both
bottom-up and top-down approaches. It starts with a coars-
ened graph (middle) and then interactively either reduces or
increases the graph coarsening level by hiding visible nodes
or showing additional nodes [WMC∗09]. For determining
the middle coarsening level and the next interactive steps,
graph algorithms are used (see Section 5).

4.1.2. Changes of data values

In these approaches, the change of the displayed data set
result from direct data value manipulation. Specifically, the
user can change the data values on one level or create/change
graph aggregations.

Graph editing The user can interactively delete or add
nodes or edges directly in the visual interface. These graph
editing actions trigger adjustment of the layout, while still
maintaining the layout style and, where reasonable, the cur-
rent layout topology. Graph editing affects the structural
properties of the graph. In particular, the changes can affect
specific types of subgraphs (so-called motifs). Automatic
identification and highlighting of such structural changes
was presented in [vLGRS09].

Interactive graph aggregation For simplification of
graphs, graph aggregation is often used. The graph ag-
gregation can be pre-defined, or determined interactively
by the user [AMA08, AMA09, HF06]. E.g., GrouseFlocks
[AMA08] allows the user to add and remove aggregated
nodes on demand (see Figure 21). This allows for variable
views on the graph and its structure.

4.2. Changes of Visual Display

In these approaches, the change of the visual presentation of
the data concerns adjusting the type of visual presentation
and its parameters.

4.2.1. Changes of Visual Parameters

These techniques affect the parameters of the visual presen-
tation. They include highlighting of items, zooming, pan-
ning, view distortion, and other techniques.

Highlighting The emphasis of interesting items is a stan-
dard interaction technique. Recently, new techniques for
highlighting a node and its neighborhood using hotbox and
lasso selections were presented in [MJ09].
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(a) Creating new aggregation node

(b) Deleting an aggregation node

Figure 21: Interactive editing of a graph hierarchy. a) Cre-
ating a new aggregation node by merging of nodes. b) Delet-
ing an aggregation node, thereby revealing the underlying
merged nodes. From [AMA08], c©2008 IEEE.

Linking & Brushing Multiple coordinated views are used
to show the data from different perspectives. In these views,
changes in one visualization (e.g. highlighting) are automat-
ically transfered to the other views. For example, a matrix
view coupled to a hierarchical view of the data can be used
to reveal important information in the data [AvH04].

Panning Panning allows to navigate in any direction in the
view. For graphs, a specific type of panning (guided pan-
ning) has been proposed. It allows to navigate along edges
of a selected node and thereby to explore the structure of the
graph. It can be combined with automatic zooming on the
edge and distortion of end-node position closer to the cur-
rently selected node [MCH∗09].

Semantic Zooming(*) Semantic zooming combines zoom-
ing with an increasing level of detail. In particular, graph ag-
gregation can be used for gaining a coarser view on a large
graph. The semantic zooming increases the level of detail by
drilling down to lower levels of aggregation of the original
data [EDG∗08, AvH04].

Distortion techniques Owing to the limited display space,
showing the whole data set leads to strong overplotting or
very small (up to, unreadable) data items. Distortion tech-
niques allocate more space to items in focused areas and
thereby, improve the readability of the data of interest. They
are used both for node-link and space filling graph visualiza-
tion techniques. The distortion can concentrate either on one
area or on multiple areas of the screen. The distorted views
are also called fisheye views. Interactive selection of the fo-
cus area helps to explore different parts of the data in more
detail.

• Single focus. Graphical fisheye views were introduced in
[SB92]. So called edge lenses resolve strong overlaps of
edges in the view. They displace the edges to a larger

area [WCG03] (see Figure 22). This approach is espe-
cially useful for geographic-based graphs, where node-
edge repositioning is not desired and therefore, cannot
help to solve edge overlap. Another approach uses filter-
ing of interesting edges in a specified area (*), or mov-
ing neighbor nodes closer to a selected node relying on
the graph structure [MCH∗09]. This type of node posi-
tion change can be combined with geometric view dis-
tortion [TAvHS06] (see Figure 23). In node-link visual-
ization of hierarchies, a degree-of-interest function can be
used for allocating more area to more interesting parts of
the tree, e.g., in DOITrees [CN02, HC04].

• Multiple foci. Multiple foci distort several view areas at
the same time. It is useful for comparing various parts of
the display or focusing on several items that are spread
across the view. In node-link diagrams either magnifi-
cation of the areas of interest [TS99, SZG∗96] or space
folding (shrinking of area out of focus) can be used
[ERHF09, MGT∗03] (see Figure 28 bottom right). For
treemaps, the so-called balloon focus can be used for en-
larging multiple items in a treemap [TS08b]. This ap-
proach keeps the form of other areas keeping relative po-
sition of items unchanged (see Figure 24).

(a) Original view (b) Edge lens

Figure 22: Example of edge lens interaction. (a) Origi-
nal view without lens. (b) Using edge lens From [WCG03],
c©2003 IEEE.

4.2.2. Changes of Visual Scheme

Changes of the visual scheme cover changing of the type of
data visualization either by changing the layout or by chang-
ing the visual mapping.

Layout change In node-link diagrams, layout change (ad-
justment) affects the positions of the data items on the screen
(see Section 3). It can be performed by changing of the
layout type with automatic recalculation of the new layout,
by manual movement of nodes, or by adjusting the layout
parameters including automatic readjustment of the layout.
When concentrating on user-defined changes to graph lay-
outs, an approach to easy selection and layout change of
nodes and subgraphs was presented in [MJ09]. Furthermore,
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(a) Original view (b) Local edge lens

(c) Bring neighbors lens (d) Composite lens

Figure 23: Examples of different types of edge lens interac-
tions. (a) Original view without lens. (b) Using local edge
lens. (c) Using bring neighbors lens. (d) Using compos-
ite lens which combines (b), (c) and Fisheye lens. From
[TAvHS06], c©2006 IEEE.

interactive adjustment of the layout constraints was pre-
sented in [DMW09a]. For matrix visualizations, user-driven
reordering of matrix representation was described in [HF06].

Change of visual representation The change of the type of
data presentation, e.g., from a matrix to a node-link diagram
was presented in [ZMC05, HFM07]. This change can affect
the whole data view [HFM07] (see Figure 25) or only a part
of it [ZMC05, HFM07]. By changing of the visual represen-
tation, new insights into the data can be reached. In order
to be able to follow the changes, smooth animations across
transitions should be used.

5. Graph Analysis

Algorithmic graph analysis is beneficial during all stages of
the visual graph analysis process. Relevant techniques allow,
e.g., to reduce a large graph to a smaller graph prior to visu-
alization, to search for specific graph structures of interest,
or to find similarities and dissimilarities for generating com-
parative graph views. In this section, we describe important
graph analytical approaches.

5.1. Analysis of Graph Structure

In most user tasks, the analysis of the relationships between
entities in the graph and the assessment of the global graph
structure plays the key role. These tasks may be effectively
supported by a combination of algorithmic graph analysis
and interactive visualization. The algorithmic methods al-
low, e.g., to calculate node/edge properties, identify clusters
in the graphs, etc., which results are visualized interactively.

(a) Original view

(b) Balloon focus

Figure 24: Multiple foci in a Treemap. (a) Original view. (b)
Using balloon focus. From [TS08b], c©2008 IEEE.

Figure 25: Transformation of visual representation of a
graph from node-link to matrix view. The picture shows five
stages of this process [HFM07], c©2007 IEEE.

In the following, we summarize the methods according to
user tasks starting from more simple to more complex tasks.

Identification of important nodes In networks, some
nodes play a specific role owing to their position within
the network. For example, so called hubs and authorities
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can be identified and visualized in the network, enabling
faster analysis of the graph [OPPROG09]. The importance
of nodes and edges is measured by derived quantities such
as centrality-based measures [Fre79] and ranking-measures
[WS03].

Analysis of connections between two nodes Besides fo-
cusing on single nodes, relations between two nodes can
be analyzed, typically by calculation and highlighting of
shortest paths between the entities. Usually, such analysis
is combined with interactive selection of two entities of in-
terest [TK08, HB05, HF07, GBD09] (see Figure 14b).

Analysis of graph substructures In many applications,
specific types of substructures (i.e., motifs) play an impor-
tant role. For example, in social networks, cliques identify
highly connected communities, or feed-forward motifs (sub-
structures in form of a triangle where directed edges ex-
ist from nodes A to B, A to C and B to C) in biologic
networks indicate the functional properties of the network
[Sch08]. In order to support the substructure analysis, these
motifs can be calculated and visualized in the network [vL-
GRS09, HFM07, MMO05, MJW∗09, SS05] (see Figure 26).
The type of structure can be interactively chosen by the user
in order to support various analytical tasks.

Analysis of graph structure on several aggregation levels
User-defined or data-driven graph aggregation can reveal re-
lationships between groups of entities in a graph. The group-
ing may be based on categoric node attributes [Wat06], or on
a pre-defined node hierarchy [AMA09]. It can also be user-
specified [AMA08], or depend on structural properties of the
graph [vLGRS09] (see Figures 5 and 21).

Identification of the impact of graph changes on the
structural properties In time-dependent graphs, the role
of the nodes can change over time, therefore analysis and
visualization of topologic properties (e.g., betweenness cen-
trality) of selected nodes has been proposed [PD08,PRB08].
Additionally, when analyzing user-defined changes (in what-
if-scenarios) the impact of node or edge deletion/addition
on local substructure can be analyzed and highlighted [vL-
GRS09].

5.2. Graph Comparison

One specifically important analytical task is the examination
of the similarities and differences between multiple graphs,
especially focusing on structural aspects. Usually, structural
differences are in the focus. Such difference may be identi-
fied by the identical node labels in both graphs, or by graph
matching algorithms. After the matching, visualization is
employed to explore the differences [AWW09]. There are
various types of analysis which we describe next.

Figure 26: Interactive graph motif search and visualization.
From [vLGRS09], c©2009 held by the authors.

One-to-one node comparison of two graphs Probably the
most common task in graph comparison is the matching of
individual nodes from one graph to individual nodes of the
second graph. The VisLink visualization approach [CC07]
was developed to support this task. It shows both graphs on
separate planes in 3D, and draws matching links between
corresponding nodes (see Figure 27a). For comparison of hi-
erarchies, a similar approach, based on drawing the two hi-
erarchies in opposite parts of the display and linking of their
leaf nodes was proposed in [HvW08] (see Figure 27b). In
both cases, the visibility of matching links can be increased
by edge bundling.

One-to-many nodes comparison of two graphs One-to-
many nodes comparison concerns correspondence of one
node in one graph to many nodes in another graph. Di Gi-
acomo et al. [GDLP09] developed a system that visual-
izes these one-to-many connections with low overlapping of
links (see Figure 27c).

Structural differences between two graphs When ana-
lyzing structural differences between two graphs, analysts
are often interested in identifying which links or parts of
the graphs correspond to or differ from the other one. For
the analysis of trees, the TreeJuxtaposer system supports
to analyze and highlight structural differences between two
trees [MGT∗03] (see Figure 28). For general graphs, Fung
et al. [FHK∗09] use both multi-level graph views follow-
ing the VisLink approach [CC07], and overlapping of two
networks with highlighting of common structural parts (see
Figure 29a). Archambault [Arc09] uses graph aggregation
and graph filtering to reveal structural differences between
two graphs (see Figure 29b).

Comparison of multiple graphs Clustering of graphs
helps gaining overview of types of graphs in large graph
databases. The use of Self-Organizing Maps for grouping
of graphs according to their structural similarity and visual-
ization of clustering results has been proposed in [vLGS09]
(see Figure 30). The proposed system allows for an interac-
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tive definition of the graph similarity function, and an explo-
ration of the results.

(a) One-to-one graph matching

(b) One-to-one hierarchy matching

(c) One-to-many graph matching

Figure 27: Visualization of graph comparison. a) One-
to-one graph matching [CC07], c©2007 IEEE. b) One-to-
one hierarchy matching [HvW08], c©2009 held by the au-
thors. c) One-to-many graph matching [GDLP09], c©2009
Springer-Verlag Berlin Heidelberg.

6. Concluding Remarks and Future Challenges

Research on visual graph analysis deals with the interre-
lated issues of graph drawing, graph presentation, human-
computer-interaction, and analytics. This state-of-the-art re-
port represents an encompassing overview and systemati-
zation of recent developments in this field. Many advances

(a)

(b)

Figure 28: Tree comparison. a) Schema of the tree compar-
ison. b) Example of tree comparison using highlighting of
tree differences. The left view shows the traditional view, the
right view is distorted in order to emphasize important parts
of the tree [MGT∗03], c©2003 ACM

have been made on individual parts of visual graph analy-
sis. In the following, we attempt an assessment of these, and
outline future research challenges in this area.

Scalability issues in graph drawing There has been much
interest in the development of faster layout algorithms that
produce more readable layouts for large graphs, also using
parallel computing, as provided e.g., by current CPUs and
GPUs. It is recognized that using a combination of automatic
graph layout generation and user-oriented, interactive lay-
out steering, better layouts can be obtained. As graphs get
larger, graph filtering and aggregation have been the main
means of graph simplification allowing to draw them. Alter-
natively, the limited screen space leading to strong overplot-
ting in large graph visualization can be avoided by draw-
ing graphs on large screens, where specialized layouts can
be applied [MGL06]. It can be foreseen that work on more
sophisticated graph layouts revealing the main structures in
the whole graphs or parts thereof will continue. In particu-
lar, user involvement in the graph layout process involving
analytical expertise of the user is a promising approach and
may lead to easier interpretation of the drawings.
From an analytical perspective, also the understanding
of the meaning of the nodes and edges, not only their
global structure, is necessary. In particular, the readable/non-
overlapping drawing of nodes, edges and their labels is an
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(a)

(b)

(c)

Figure 29: Visualization of structural differences between
two graphs. a) A schematic illustration of graph difference.
b) Visualization of graph differences using network overlap-
ping [FHK∗09], c©2009 IEEE. c) Visualization of graph dif-
ferences using difference hierarchies [Arc09], c©2009 held
by the author.

important issue. When displaying graphs with labels, even
smaller graphs can easily lead to overcrowded displays. This
topic is gaining more interest in visual analytics research.

Graph types in graph drawing In recent years, the vari-
ety of considered graph types has increased substantially. In
particular, there has been a large amount of work on draw-
ing dynamic and compound graphs. When drawing dynamic
graphs, layout stability and on-line graph drawing are the
main points of interest for the future research. In visual anal-
ysis, the understanding of the graph changes needs to be
supported by stable layouts that preserve the mental map of
the analyst. These layouts should be very stable for minor
graph changes and, at the same time, be able to effectively
show large graph changes. This issue is far from trivial, but it
leads to easier spotting of structural changes in the graph and

Figure 30: SOM-based graph clustering for analysis of
types of graph data space and similarities between graphs
[vLGS09], c©2009 IEEE.

thereby to faster analytical results. On-line graph drawing,
where the data stream is unpredictable, poses major chal-
lenges in this respect.
Compound graphs as a combined graph type, including ag-
gregated graphs, represent a complex data type. The main
analytical problem there is the understanding of both types
of connections in a graph, as well as the understanding of
the graph structures on multiple abstraction levels. This is a
very cumbersome task, which can be supported by graph vi-
sualization systems. However, the drawing of such complex
graphs is still in its infancy.
In the future, also further graph types such as hypergraphs
[KKS09] may become more prominent in visual graph anal-
ysis research.

Graph uncertainty Graph visualization by now mainly
deals with drawing graphs with given data, largely disre-
garding graph uncertainty. Visualization of uncertain data is
a general challenge in visual analytics. As has been shown in
[GS05], the degree of data certainty affects analytical deci-
sions. Therefore, it is an important issue in visual graph anal-
ysis. In graph visualization, various types of uncertainty can
be regarded. The uncertainty can relate to the graph struc-
ture (the existence of nodes and edges between them) and/or
on graph attributes (edge and node attributes). For display-
ing node and edge attribute uncertainty, various methods
from multivariate data visualization with uncertainty (see
e.g., overviews given in [THM∗05,PWL97,GS06]) could be
applied. However, their suitability for graph needs to be stud-
ied. When dealing with structural uncertainty, it is expected
that completely new methods will need to be developed.
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Perception issues in graph visualization The understand-
ing of graph structures in visualization strongly depends on
human perception capabilities. Studies of human perception
for graph drawing have recently focused on comparison of
graph understanding using varying graph layouts. In graph
design, studies on edge visualization have shown that the
edge design has an influence on the graph reading. These
various studies have given rise to new problems in graph vi-
sualization, which need to be studied in the future.

Taxonomies and benchmarks The field of visual graph
analysis would profit from more elaborate taxonomies for
tasks, interaction, visualization techniques, measures for
quality, and benchmarks for comparing the new techniques.
Although several taxonomies and sample data sets exists, a
more broader scope of theory and data aspects is needed ow-
ing to the large set of problems in visual analysis of graphs.

Graph Interaction Techniques In graph exploration, re-
cently new interaction techniques for various graph types
have been developed. These techniques increasingly make
use of the structural properties of the graph to interactively
navigate in the graph (e.g. in [TS08b, vHP09, TAS09]). This
tendency supports the analytical purpose of graph visualiza-
tion, as analysts can more easily examine the structural re-
lationship between entities in the graph. In the future, this
direction can be extended.

Insight Provenance for Visual Graph Analysis In Visual
Analytics applications, the analytical processes are often
long-running. In order to support the reproducibility, re-
versibility and automation of these processes, user track-
ing of the graph interaction steps is necessary. As a basis
for tracking, a taxonomy of graph interaction techniques is
necessary. The theory of interaction is a general Visual An-
alytics challenge [TC06]. Although several interaction tax-
onomies also for insight provenance have been recently in-
troduced [GZ08, HMSA08], their applicability and the need
for their adaptation to graph analysis needs to be studied.
In return, specific classifications of graph interaction tech-
niques could be developed. In this report, we have aimed to
classify them for gaining a concise overview of the current
state of the research. This classification, however, may not
be directly applicable to user tracking applications.

Visual Analysis Systems In line with Keim’s visual ana-
lytics process [KAF∗08], modern visual graph analysis sys-
tems should interactively integrate data pre-processing, in-
teractive data visualization, building and visualizing of data
models for gaining knowledge from the data. Many visual
analysis techniques already include parts of this process.
However, many of them rely on black box computations
(e.g., automatic graph pre-processing, automatic calculation
of graph similarities, of cliques). In order to support the vari-
able hypothesis-insight-driven analytical process, more user
involvement in the process should be aimed at. The user

should have full control of the type of the analysis and its
parameters. As this process includes multiple loops, inter-
active feedback possibilities are necessary. Therefore, inte-
grated visual analysis systems should include such features.

Visual Graph Comparison One complex analytical task is
the examination of the similarities and differences between
graphs. This task builds up on the examination of the struc-
ture of one graph as discussed above. Lately, several papers
about visual graph comparison for both trees and general
graphs have been published (see Section 5). The compari-
son can concern only two graphs, trying to match nodes and
edges between them. It can focus on finding similar graphs
for one particular graph from a large set of graphs. It can
concern gaining an overview of the types of structures in a
large set of graphs. It can concentrate on analyzing the simi-
larities of whole graphs or on matching of parts of one graph
to other graphs. Owing to its complexity, and the variety of
the problems, it is foreseeable that the research in this area
will continue.

Integration of various data types in visual analysis
Graphs as data structures capturing relationships between
entities are part of a larger set of data types examined in
various applications. Usually, the analysis of graphs is un-
dertaken in combination with analysis of related data sets,
or other data sets are transformed into graphs for their anal-
ysis [CGK∗07, BMGK08]. For analysis of the various data
sets as a whole, the sole focus on visual graph analysis (in
particular graph exploration) without taking other relevant
data into account, is not suitable. In the future, larger inte-
grated visual analytics systems combining research results
from several areas are needed.

Collaborative visual graph analysis For solving complex
analytical tasks concerning multiple large related data sets, a
collaboration of several experts is necessary. Recently, the
development of collaborative visual analysis systems has
received attention [Kee06, Ise07, BMZ∗06]. However, col-
laborative visual graph analysis is not represented promi-
nently. Therefore, the study of collaborative systems includ-
ing graph data sets would be of advantage. The specifics of
graph exploration, in particular, need to be studied.

Applications For analytical purposes, standard graph visu-
alization and analysis methods need to be adapted to the spe-
cific needs of the particular application domain. For exam-
ple, there are specialized systems for visualization of bio-
chemical structures, shareholding structures and many more.
Designing graph visualization systems with fast adaptabil-
ity to various data types, analytical tasks and application-
dependent analytical processes is still a challenge. Even
within one application, often, the network to be analyzed
needs to be constructed from heterogeneous data sources,
and the focus of interest (attributes of nodes and edges)
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varies dynamically. Designing such systems is obviously not
trivial.
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