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Figure 1: Diagram of the method described in this paper. A modified form of the drift-diffusion equation is used, together with the parameters
information contained in a description map and the information about objects interacting with the terrain, to update a Dynamic Displacement
Map. This is then added to the height-map of the terrain to produce the terrain deformation due to object interaction.

Abstract

In the natural world, terrains are dynamic entities which change their morphology due to their interaction with other agents in
the environment. However, in real-time applications terrains are often represented as static meshes, which present no interaction
capabilities. This paper presents a novel real-time 2D method for dynamic terrain simulations, aimed for applications in the
entertainment industry. This method is based on a Dynamically-Displaced Height-map and on the numerical solutions, obtained
using an Euler method, of a modified drift-diffusion equation. The method allows objects to interact with the terrain and to
deform it in real time, it is easy to implement and generates different kinds of realistic tracks depending on the soil composition.

Categories and Subject Descriptors (according to ACM CCS): 1.3.0 [Simulation and Modeling]: Types of simulation — Visual

1. Introduction

Dynamic terrains are terrain representations that are capable of
changing their morphology due to their interaction with the user
or other agents in the environment. Dynamic terrains can be classi-
fied in three categories: physics based, appearance based, or hybrid.
Physics based dynamic terrains [MKMS89, LM93, CLH96, ZB05,
PCGFMDO06] produce realistic deformations but are computation-
ally expensive and, due to the nature of soil physics, often diffi-
cult to implement for generic soils. By contrast, appearance based
methods [SOH99, Ono03, ONOS, Aqu06] improve simulation per-
formances to the detriment of accuracy, but they are also often elab-
orate to implement. Recently developed hybrid methods [ZCO11]
try to balance the correctness of physics based methods and the
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performance of appearance based methods in order to obtain visual
and physical realism during the simulation. However, their imple-
mentation is still elaborate.

The method presented in this paper is an appearance method
that is loosely inspired by Zhu and Bridson [ZB05] method, which
simulate sand as a viscous fluid by incorporating friction into the
Navier-Stokes equations. The method presented in this paper also
represent soil as a fluid with low Reynolds number but it aims to
speed and simplicity of implementation, and even though it is phys-
ically inspired it focuses on producing visually believable tracks.

Developing real time methods for terrain deformations is of in-
terest in the video-game industry. The implementation of these
methods in the industry either takes into account only soil com-
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pression [Reil0, @rul5], thus ignoring material displacement, see
figure 2, or uses multiple overlapping meshes and “push/extrude”
primitives to deform the terrain, thus coupling the method with a
specific shape and making it difficult to implement and manage,
see section “2.c. Mud” of [Zag13].

Figure 2: Comparison of tracks left by a vehicle in an interactive
application (top), image courtesy of Andres @rum [Drul5], and
tracks left in a natural terrain, notice that the terrain is both com-
pressed and displaced at the side of the track.

This paper presents a novel method for dynamic terrain simula-
tions, see figure 1, capable of representing different kinds of soils in
real time. Although the tracks obtained with the method presented
in this paper are similar to those obtained with other methods, such
as Sumner [SOH99], Onoue and Nishita [Ono03,ONO05] or Holz et
al [HBKO09], the methods here presented is simpler to implement.
The method computes changes in the terrain height over time by us-
ing the numerical solutions of a modified drift-diffusion equation,
explained in section 2. These numerical solutions are used to up-
date a Dynamically-Displaced Heigh-map (DDH) [Aqu06] which
is then used to update the height map of the terrain and for shading
purposes, as explained in section 3. The method is implemented on
a GPU through the use of a compute shader, section 3. Results and
future work are discussed in sections 4 and 5.

2. Method

The Zhu and Bridson [ZB05] method uses a modified version of the
Navier-Stokes equations to simulate sand, these equations compute
the change of momentum of fluid over time and take into account

Navier-Stokes
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Figure 3: Structural similarity between the Navier-Stokes equation
and the Drift-Diffusion equation. Notice that in the Drift-Diffusion
equation the mass conservation term is missing.

friction forces. It can be observed that the general structure of the
Navier-Stokes equations is similar to other physics models, such
as the drift-diffusion model [DE86, Smo16], see figure 3, that can
be adapted more easily to incorporate object interactions and ter-
rain deformations. Height-map representations are a standard way
to represent terrains in real-time applications. In these representa-
tions a deformation of the terrain corresponds to a local change of
the scalar height field (x,z,t) over time. The remainder of this sec-
tion explains how to compute a local change of h(x,z,) over time
by using a modified version of the drift-diffusion equation.

2.1. Mathematical Model

To obtain the mathematical model the drift-diffusion equation, also
known as the Smoluchowsky equation [DE86, Smo16], is applied
to the scalar height field A(x, z,¢). In the following formulae explicit
dependency from space and time will be dropped for simplicity of
notation. Under the assumption that the diffusion coefficient D is
constant, the drift-diffusion equation is [DE86]:

%’Z — DALV - (Fg‘%) (1)
where Ah is the Laplacian operator applied to the scalar field &,  is
the friction constant of the diffusion medium, V- is the divergence
operator, and F is an external force field generating an average ve-
locity in the medium. In this paper F will be interpreted as the ex-
ternal force field exerted by an object interacting with the terrain.
In this paper equation (1) is modified by removing from the force
term the dependency from £, thus obtaining:

ai‘:DAh—v.(FQ*I) 2)
ot

The justification for this modification is that the action of the force
over the terrain does not depend on the height of the terrain but only
on the terrain friction and the force itself. Every granular material
when piled up rests with a specific angle o with respect the ground,
this angle is called the angle of repose and it is a property of the
material. However, equation (2) does not take the angle of repose
of the material into account and diffuses piles of material until the
ground is levelled. To include the angle of repose in equation (2)
the slope of the pile of material at time ¢ is split into two angles,
one measured on the xy plane the other measured on the zy plane,
where y is the up direction.

oy = sindy =~ d 3)
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where k € {x,z} and the dys are the displacements along x and z
on a single frame, which are small quantities between subsequent
frames, and will be obtained in the following. The values obtained
from equation (3) are mapped in [0, 1] with the following mapping:

oy — oL

wy = clamp ( nk ,0, 1) “4)
7 - a

where « is the angle of repose characteristic of the material and

k € {x,z} and clamp forces wy in [0,1]. Equation (2) is then re-

written as:

O _ o ( Douh—0RLT" Y\ _ ([ d
o Doh—d.FG" )

where w = (wy,w;) is the vector which has as components the an-
gle’s weights obtained in equation (4).

2.2. Discretization

Due to their simplicity of implementation explicit finite differences
methods have been chosen to obtain a discrete form of equation (5).
The discrete form is obtained using a square n X n grid with cells of
side Ax equal to one. The scheme used is forward in time, centred
in space for the first and second order terms on a von Neumann (4-
cells) neighbourhood. Using the aforementioned scheme the first
component of the vector d in equation (5) becomes:

(do)i; = D( ?—{j"’hz"lJrlj_Zh?j)_
0.5 ((Fo)ij — (Fe)izij)

similarly for the second component. The discrete form of equation
(5) is then:

©)

5 = W+ A (Wl df) )

where wf'j is the discrete form of the weight vector in equation (4)
obtained from:

(0w)ij = |(ce)ij| ®)
where k € {x,z}.

3. Implementation

The numerical scheme in section 2.2 has been implemented on a
GPU using a DirectX11 compute shader with 16 x 16 threads per
group and tested for different grid sizes as explained in section 4.

Two structured buffers have been passed to the compute shader, one
containing the grid properties and one containing the properties of
the objects interacting with the terrain. In addition to the buffers
in the device global memory, two padded buffers of size 18 x 18
elements in shared memory have been used to store the data used
in the group during the evaluation of equation (7). These buffers
speed up the data access during computation. The first shared buffer
contains the grid data while the second contains the distribution of
forces applied by the interacting objects. The force distribution has
been obtained by spreading the force exerted by the object over
the area of interaction. After data fetching from global to shared
memory equation (7) has been evaluated and the results have been
stored in the DDH as a 2D texture. To deform the terrain mesh a
tessellation shader has been used to tessellate a neighbourhood of
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the point where the camera is looking. The DDH obtained from the
compute shader is used in the tessellation domain shader to displace
the vertices of the mesh, and in the fragment shader to compute the
normals to the surface dynamically. The dynamic computation of
normals from the DDH allows the use of dynamic levels of details
for the terrain mesh as the resulting shading simulates the mesh
deformation in a visually convincing way when the deformed area
is far from the camera. Moreover, the blending of dynamic normal
mapping and texture normal mapping allows the removal of the
grid artefacts which appear at the base of the deformation.

4. Results

Results shown in figure 4 have been produced using a 4 core In-
tel(R) Xeon(R) CPU at 3.4 GHz, 8 GB RAM, and a NVIDIA
Quadro 2000 graphics card with a rendered frame size of 1280 x
720. Table 1 reports times for different grid sizes and tessellation
factors, times do not depend on the kind of soil simulated and rep-
resent simulation and rendering time for a single frame. In the last
row the running time of the compute shader has been isolated. The
method proposed scales linearly with the grid size and even with the
largest grid and highest tessellation factor the simulation still runs
over 60 fps. Figure 4 and the companion video show that different
kind of terrains can be simulated changing the parameters T;l, D
and o in equation (5). All images have been obtained on a grid of
size 512 x 512, for the sand and mud scenes the tessellation factor
has been set to 8, while for the pebbles scene the tessellation factor
has been set to 64 to better simulate the pebbles using a displace-
ment map. The displacement map for this scene has been obtained
rendering the depth buffer of the pebbles models reconstructed us-
ing the method described in [GWN14]. As shown in the companion
video, objects can dynamically change sizes during the simulation.
As long as the size of the object stays bigger than the size of one
cell the method proposed is capable of capturing the object track
on the terrain. During simulation a loss of volume has been noticed
during pile of sand simulations while a slight increase of volume
has been noticed during the interaction of objects with the terrain,
which are due to a lack of mass conservation constraints in the sim-
ulation. The simulation produces good looking results with just one
iteration but the material looks slightly viscous, increasing the num-

Table 1: Average rendering times expressed in milliseconds for dif-

ferent grid sizes and tessellation factors. On the top of the table

times refer to the rendering of a single frame comprising tessel-
lation, a single iteration of the compute shader, dynamic normals
computation, texturing, lighting and rasterization. The last row iso-
lates the running time of a single iteration of the compute shader.

Gridsizes | 512512 | 1024 x 1024 | 2048 x 2048
Tessellation
8 2.12 ms 3.88 ms 10.56 ms
16 2.32 ms 4.08 ms 10.78 ms
32 2.80 ms 4.55 ms 11.28 ms
64 4.32 ms 6.08 ms 12.85 ms
Compute 0.58 ms 2.09 ms 7.97 ms
Shader
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Figure 4: Left: comparison of tracks left on simulated terrains with track left on real terrains, notice that both simulations mimic both
the compression of the soil and its displacement to the side of the track. Right: multi-material terrain. Parameters for the materials: Mud:
C'=6x107% a=2n D=025; Pebbles: ' =3x 107 a=2%D=09; Sand: (' =4x 107 a=2, D=1,

ber of iteration reduces this problem. Visual comparisons between
the simulation’s results and tracks on real soil, are shown on the left
side of figure 4, show that the method is well suited for applications
in video-games and real-time applications.

5. Conclusions and Future Work

In this paper a novel method based on the drift-diffusion equation
for dynamic terrain simulation has been presented. The method,
implemented on GPU, is capable of simulating different kinds of
materials in real time. Even though it produces visually appealing
deformations, the method can be improved in many ways. Future
work will focus on solving the issues reported in section 4. As
an explicit method has been used to obtain the discrete form of
equation (5) the simulation is stable for small time-steps, At < 0.3
has been used in this paper, stability can be improved by using an
implicit method. Finally, the implementation can be optimized to
take better advantage of the GPU architecture, for example by us-
ing either the method proposed by Schiifer et al [SKNn*14] or by
Yusov [Yus12]t. Despite its shortcomings, the method presented in
this paper is easy to implement and suitable for interactive applica-
tions and games.
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