
EUROGRAPHICS 2014 / E. Galin and M. Wand Short Paper

Post-Tessellation Geometry Caches

Rahul Sathe, Tim Foley and Marco Salvi

Intel Corporation

Figure 1: Left: A frame from Heaven 2.0 running in our simulator. Center: Redundant shading work (red) occurs along shared
patch edges. Right: Savings from an eight-entry edge cache (green).

Abstract

Current 3D rendering architectures support adaptive tessellation of patches, allowing for increased geometric
detail. Patches are specified independently, giving the implementation freedom to exploit parallel execution. How-
ever, this independence leads to redundant shading computations at patch corners and along edges. In this paper,
we present post-tessellation geometry caches, the edge cache and corner cache, that can reduce redundant shading
along patch edges and corners, respectively. We demonstrate the two caches in a software-simulated D3D11 ren-
dering pipeline, and show that for current tessellation workloads our approach saves up to 37% of post-tessellation
vertex shading using caches with as few as 8 entries.

1. Introduction

To provide high performance, GPU architectures rely on
processing multiple items (e.g., vertices, fragments, patches)
in parallel. However, when there is sharing between items,
independent processing may lead to duplication of work. In
the case of tessellation, processing individual patches in iso-
lation leads to redundant computation along shared bound-
aries. Taking inspiration from post-transformation vertex
caches, we propose to reduce redundant work by introduc-
ing caches for post-tessellation vertices at patch corners and
along edges, respectively. We present a modification to ex-
isting rendering APIs to facilitate use of these caches with
only minimal changes to existing workloads. Figure 1 shows
how even small 8-entry caches can save up to 37% of post-
tessellation vertex processing.

2. Background

The left half of Figure 2 shows the tessellation related stages
of the D3D11 pipeline. Tessellation is controlled by two pro-
grammable stages, the Hull Shader (HS) and Domain Shader

(DS), and a fixed-function Tessellator (TS). While we use
D3D11 terminology, similar functionality is also supported
by OpenGL 4. The HS processes one patch at a time, tak-
ing as input a control cage assembled from vertices output
by the Vertex Shader. Given a control cage, the HS computes
patch control points, as well as desired tessellation rates. The
TS uses these rates to generate domain locations in either a
triangular or quadrilateral domain, along with the connectiv-
ity for tessellated geometry. The DS is then responsible for
computing the properties of each tessellated vertex given the
patch control points output by the HS, and a domain loca-
tion output by the TS (e.g. barycentric coordinates (u,v,w)).
D3D11 makes no assumption about the connectivity of, or
relationship between the input control cage and output con-
trol points. Similarly, no a priori correspondence exists be-
tween the control points and the parameter domain. A benefit
of this approach is that the fixed-function TS is independent
of any particular patch representation. However, this compli-
cates our work since there is no way to automatically deter-
mine which vertices in the control cage, if any, correspond
to the patch corners.

c© The Eurographics Association 2014.

DOI: 10.2312/egsh.20141014

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egsh.20141014

Rahul Sathe & Tim Foley & Marco Salvi / Post-Tessellation Geometry Caches

Input Assembler (IA)

Vertex Shader (VS)

Hull Shader (HS)

Tessellator (TS)

Domain Shader (DS)

Primitive Assembly (PA)

Cache
hit?

Edge / Corner Cache

No
Yes

Fixed function

Programmable

Edge/Corner Cache
Logic

Tessellation
subsystem

Figure 2: D3D11 pipeline extended with the edge and cor-
ner cache.

In order to facilitate parallel processing, each patch in-
put to the HS is completely independent. While independent
processing of patches enables parallelism, it can also lead
to redundant computation. If two subsequent patches share
a common edge, the tessellated vertices along this edge are
evaluated twice. If several patches share a corner, the tes-
sellated vertex at that corner may be shaded many times. If
the duplicate evaluations do not produce bit-identical results,
one can see cracks in the geometry.

Prior work provides several examples of how caching can
reduce redundant shading work in a rendering pipeline. Our
post-tessellation corner cache is similar to the transparent
vertex cache of Hoppe [Hop99]. D3D11 and OpenGL 4 al-
low triangles within a patch to be generated in any order
so long as the order is repeatable. Hardware vendors may
take advantage of this fact by employing a small domain
shader cache akin to vertex cache and control the triangle
order within the patch to maximize the hits into this cache.
We extend the idea of such a domain shader cache to reduce
redundant domain shading across adjacent patches.

3. Algorithm

Figure 2 shows how our caches fit into the D3D11 pipeline.
Our system intercepts the corner identifiers generated by the
HS as discussed in Section 3.1 and the domain locations out-
put by the TS: either (u,v) or (u,v,w) tuples for quadrilateral
or triangle patches, respectively. We identify domain loca-
tions that correspond to patch edges or corners by noting
when u, v, or w are zero or one. We refer to points along
the edges that are not corners as edge points. For these edge
points and corner points we generate a unique edge/corner
identifier and use this as a tag for checking the edge/corner
cache, respectively. If we find a hit in the cache, then we
can re-use an existing shaded vertex for this domain loca-
tion, and we skip the DS stage. If we miss in the cache, we
shade using the DS and update the cache. Cracks generated
by incorrect shaders may disappear at the domain locations
where there are cache hits. However due to the finite size

1

2

0
3

4 A B
C

Figure 3: Triangle patches A, B and C share both corners
and edges. Each of the corners is labeled with its user-
defined corner identifier. Shared corners are shown in red.
Edge points along shared edges are shown in green.

of these caches, there is no guarantee that adjacent patches
will arrive close enough in time for the cache hits. Therefore
users should not rely on the these caches to produce water-
tight surfaces that would otherwise show cracks.

3.1. The Corner Cache

We use distinct caches for patch corners and edges, because
while an edge is typically shared by only two patches, a
corner may be shared by any number of patches. Our cor-
ner cache is similar in spirit to the transparent vertex cache
[Hop99]. The primary difference is that, as discussed in Sec-
tion 2, there is no a priori relationship between the indices
of vertices in a control cage, and the corners of a patch. This
relationship gets defined by the programmer in the HS, and
in general can vary from one patch to another.

Thus, to allow a programmer to identify shared corners
in the most general case, we extend D3D11 so that the HS
may output an arbitrary 32-bit corner identifier for each
patch corner (e.g., three corners for a triangular domain).
These identifiers are exposed to HLSL shaders through a
semantic: SV_CornerID[]. Our system uses these user-
provided identifiers directly as tags for the corner cache –
that is, we trust the user to correctly identify shared corners.
For the example shown in Figure 3, the corner cache stores
entries for corners with identifiers 0, 1 and 2 after processing
patch A. If we next process patch B, we get cache hits on the
shared corners. As a special case, the largest possible iden-
tifier marks corners that should not be cached. This allows
applications to opt out of corner caching. We use this as a
default corner identifier if shaders do not assign one.

One desirable application of tessellation is rendering of

43

16
14

18
47

15 17

20 19 44

45

34

22
74

12

73

72

42

14 16

18 47

35

71

Figure 4: Basis conversion for approximate subdivision sur-
faces. Corner identifiers for the patch can be derived from
vertex identifiers for the base-mesh face.

c© The Eurographics Association 2014.

58

Rahul Sathe & Tim Foley & Marco Salvi / Post-Tessellation Geometry Caches

16
14

18
47

15 17

20 19 44

45

34

22 74

12

72

42

14 16

18 47

71

73

35

43

Figure 5: Basis conversion where one input face yields four
triangular patches. The user needs to generate a unique
identifier for the corner where the four patches meet.

subdivision surfaces: either through direct evaluation [Sta98]
or through approximation with parametric surfaces [LS08,
LSNCn09]. Figure 4 illustrates such an approach, in which
the 1-ring neighborhood of a face in the base mesh is used
to compute coefficients for a bicubic Bézier patch. In this
case, a user can simply assign corner identifiers for the patch
based on the system-generated vertex identifiers (HLSL se-
mantic SV_VertexID) of the base-mesh face. This same
approach is also sufficient for patch representations like PN
triangles [VPBM01], that do not require access to a 1-ring
neighborhood. Figure 5 shows a more complex scenario in
which one base-mesh face is converted to four triangular
patches, so that a new corner is introduced [MNP08]. It is
the user’s responsibility to generate unique corner identifiers
for such new corners. In the general case, it is possible to
precompute corner identifiers and store them in an auxiliary
data structure.

3.2. The Edge Cache

Given user-generated corner identifiers, we can automati-
cally generate suitable identifiers for edges; intuitively, an
edge can be identified by the two corners it connects. In prac-
tice, we must account for the fact that different patches may
orient a shared edge differently, or may assign it different
tessellation rates. We thus generate canonical edge identi-
fiers in the following form:

1 struct EdgeID {
2 unsigned smallerCornerID;
3 unsigned largerCornerID;
4 float tessRate;
5 bool orientation;
6 }; // Size = 97 bits
7 // Corners c1 & c2 and tessFactor t
8 EdgeID GenEdgeId(c1, c2, t) {
9 a = min(c1, c2);

10 b = max(c1, c2);
11 o = (a != c1);
12 if (a or b is kInvalidCornerID)
13 return kInvalidEdgeID; // Do not cache
14 else
15 return EdgeID(a, b, t, o);
16 }
17 }

If either corner of an edge is marked as uncacheable, we do
not cache the edge. We use this generated edge identifier (ex-

cept the orientation bit) as a tag to query into the edge cache.
On a cache miss, we evaluate the DS for all edge points, and
populate an edge cache entry with their vertex attributes (po-
sitions, normals, etc.) and the orientation bit for that edge.
On a cache hit, we retrieve vertex attributes, making sure
that orientation bit is opposite to what is stored in the cache.

4. Implementation

We have implemented our edge and corner caches in a
D3D11 software simulation framework (as depicted in Fig-
ure 2). In order to allow experimentation with unmodified
D3D11 applications, we specify the mapping from control-
cage vertices to patch corners on a per-application basis. Our
work is primarily characterized by two design choices: the
replacement policy for corner and edge entries, and the or-
ganization of entries in the edge cache. Now we describe our
implementation choices, along with some alternatives.

4.1. Replacement Policy

We start with a FIFO replacement policy similar to Hoppe
[Hop99]: when we need a new entry and the cache is full,
we evict the least recently written one. We extend this policy
with one optimization: on a cache hit, we may speculatively
evict entries that are unlikely to be used again. A given edge
is typically shared by at most two patches (for a manifold
mesh). Therefore a hit in the edge cache signals an edge that
is likely to not be used again. We take advantage of this ob-
servation by speculatively evicting an edge cache entry on a
hit, making an additional entry available for other edges. We
have found that this approach saves additional 1 to 1.5% of
DS invocations. A similar, erase after N-hits policy could be
applied to the corner cache too, if we count the number of
cache hits for a given entry (N). However, such an approach
could lead to redundant shading for extraordinary vertices,
so we do not employ it in our implementation.

4.2. Edge Cache Organization

Our decision to cache entire edges leads to a complica-
tion; edges with different tessellation rates will yield differ-
ent numbers of edge points. We considered a few different
strategies to deal with this situation:

Simple We size each edge cache entry for the worst case.
When tessellation rates are low, we end up wasting space.

Threshold We limit each cache entry to store only the first
N vertices along an edge, and re-shade the remaining ver-
tices even on a cache hit. This strategy is motivated by the
observation that the relative benefits of an edge cache de-
crease at higher tessellation rates, because the number of
edge points increases linearly, while the number of inte-
rior points increases quadratically.

Indirect If the vertices shaded by the DS are stored in an
on-chip buffer, then we can simply store pointers rather

c© The Eurographics Association 2014.

59

Rahul Sathe & Tim Foley & Marco Salvi / Post-Tessellation Geometry Caches

0

10

20

30

40

50

1 2 4 8 16 32 64

%
 D

S
 S

a
v
e
d

Cache size (# of entries)

(a) Heaven (moderate)

0

10

20

30

40

50

1 2 4 8 16 32 64

(b) Heaven (normal)

0

10

20

30

40

50

1 2 4 8 16 32 64

(c) Heaven (extreme)

0

10

20

30

40

50

1 2 4 8 16 32 64

(d) Dirt 2

Figure 6: DS invocations saved due to corner cache (green), and corner and edge cache combined (purple). Savings are
expressed as a percentage of all (including internal) DS invocations. Bars correspond to corner/edge caches with a fixed number
of entries; the solid lines show results for infinitely-sized caches. An 8- or 16-entry cache achieves close to peak savings.

than full vertices in edge cache entries. This can be com-
bined with other strategies to reduce the size of cache en-
tries, at the expense of more complex bookkeeping logic.

Flat We append the edge cache tag with the parameter value
of a domain point and store only that domain point in that
entry. This will cause no wasted space at the expense of
higher cache bandwidth and a larger tag.

Our implementation combines the Threshold and Indirect
strategies to minimize the edge cache size. We will discuss
the impact of different threshold cutoffs in the next section.

5. Results

We tested our corner and edge caches using two different
workloads. We measured the results across multiple batches
of 10 frames, separated by 100 frame intervals, in order to
get a good sampling of the workload. The Heaven 2.0 demo,
seen in Figure 1, uses tessellation for terrain and architec-
tural models. This demo supports three different levels of
tessellation: moderate, normal, and extreme. The game Dirt2
uses tessellation for characters and the borders of race tracks.
Figure 6 shows that we save between 18% and 37% of DS
invocations with corner and edge caches of only 8 entries
each. Large caches can achieve higher savings, but the rel-
ative benefit falls off quickly; for the Heaven workload, an
8-entry cache achieves 77% of the savings possible with in-
finitely large caches. If we assume 16-bit pointers are suffi-
cient to point to shaded domain points cached into an on chip
memory, 8-entry Indirect corner cache requires 8*(16+32)

0

2

4

6

8

10

12

14

16

18

2 4 8 16 32 64

%
 D

S
 S

a
v
e

d
 a

lo
n

g
 e

d
g

e
s

N (size of edge cache entry in number of DS output vertices)

Heaven (moderate)

Heaven (normal)

Heaven (extreme)

Dirt 2

Figure 7: DS invocation saved by 8-entry edge cache, as a
function of threshold. We cache at most N vertices per edge
entry, and reshade the rest. No additional benefit for N > 16.

bits plus room for 8 domain shaded points. An 8-entry Indi-
rect edge cache with a threshold of 8 would require 8*(8*16
+ 97) bits and room for 64 shaded domain points. Over-
all, both caches combined need 273 bytes and room for 72
shaded domain points.

The Heaven benchmark illustrates how increased tessel-
lation levels reduce the effectiveness of the edge and corner
cache. In addition, as tessellation rates increase, the savings
coming from the edge cache increase relative to those from
the corner cache. This effect is independent of cache size,
and results from the fact that the number of corner points is
constant, the number of edge points increases linearly with
tessellation rate. Figure 7 shows the effect of thresholds on
the efficiency of an 8-entry edge cache (results are similar
for caches with any number of entries). Savings increase as
we store more vertices per edge, but plateau at 16 vertices
per entry because none of our workloads produce more than
14 edge points.

We have demonstrated an approach for reducing post-
tessellation geometry processing with minimal additional on
chip storage.

References
[Hop99] HOPPE H.: Optimization of Mesh Locality for Transpar-

ent Vertex Caching. In Proceedings of SIGGRAPH 1999 (1999),
pp. 269–276. 2, 3

[LS08] LOOP C., SCHAEFER S.: Approximating Catmull-Clark
subdivision surfaces with bicubic patches. ACM Transactions on
Graphics 27 (March 2008), 8:1–8:11. 3

[LSNCn09] LOOP C., SCHAEFER S., NI T., CASTAÑO I.: Ap-
proximating Subdivision Surfaces with Gregory Patches for
Hardware Tessellation. ACM Transactions on Graphics 28, 5
(Dec. 2009), 151:1–151:9. 3

[MNP08] MYLES A., NI T., PETERS J.: Fast parallel construc-
tion of smooth surfaces from meshes with tri/quad/pent facets. In
Symposium on Geometry Processing (2008), pp. 1365–1372. 3

[Sta98] STAM J.: Exact evaluation of Catmull-Clark subdivision
surfaces at arbitrary parameter values. In Proceedings of SIG-
GRAPH 1998 (1998), pp. 395–404. 3

[VPBM01] VLACHOS A., PETERS J., BOYD C., MITCHELL
J. L.: Curved PN triangles. In Symposium on Interactive 3D
graphics (2001), pp. 159–166. 3

c© The Eurographics Association 2014.

60

