
EUROGRAPHICS 2014 / E. Galin and M. Wand Short Paper

CSG Feature Trees from Engineering Sketches of Polyhedral
Shapes

R. Plumed1, P. Company2, P.A.C. Varley2 & R.R. Martin3

1Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellon de la Plana, Spain
2Institute of New Imaging Technology, Universitat Jaume I, Castellon de la Plana, Spain

3School of Computer Science & Informatics, Cardiff University, Cardiff, UK

Abstract
We give a method to obtain a 3D CSG model from a 2D engineering wireframe sketch which depicts a polyhedral
shape. The method finds a CSG feature tree compatible with a reverse design history of a 2D line-drawing obtained
by vectorising the sketch. The process used seeks the CSG feature tree recursively, combining all design or manu-
facturing features embedded in the sketch, proceeding in reverse order from the most detailed features to the blank.

Categories and Subject Descriptors (according to ACM CCS): J.6 [Computer–Aided Engineering]: Computer–Aided
Design—, I.3.5[Computational Geometry and Object Modeling]: Constructive solid geometry (CSG).

1. Introduction

Most designers use a pencil and paper during conceptual
design, while 3D CAD models are the usual input for sub-
sequent stages of the design process. Sketch-based model-
ling (SBM) aims to automatically obtain 3D models from
2D sketches.

Different approaches exist for SBM, but most output
boundary representation (B-rep) 3D models. Reconstruct-
ing constructive solid geometry (CSG) models is regaining
interest due to recent advances in personal additive man-
ufacturing in the form of 3D printing, or computer-aided
manufacturing systems for mass customization: producing
3D digital models from sketches may shorten and simplify
the CAD/CAM process, easing modifications in customis-
able design features and allowing even non-expert end-users
to produce their own designs.

We present an approach to capturing the design intent em-
bedded in a 2D sketch and automatically producing a 3D
model of it ready for use in a manufacturing process. To this
end we seek a CSG feature tree that suitably combines all the
design and manufacturing features embedded in the sketch.

We apply techniques of feature recognition, designed to
work with solid models; our novel idea is to adapt these to
detect geometric information at a high semantic level in a
2D sketch, before producing a 3D model.

We propose a method to obtain a CSG feature tree from
which a CSG model can be derived. The CSG feature tree
is built in reverse order from child to parent: we first detect
features more likely to be children, add them to the tree, re-
move them from the sketch, and search for their parents. The
process continues recursively until the blank is reached. This
process is done on a 2D drawing using features detected in
2D, before inflation of the sketch to 3D.

Related work is discussed in Section 2. Our approach is
explained in Section 3, while Section 4 details the process of
determining the CSG feature tree. Results are demonstrated
in Section 5; Section 6 summarises our conclusions and dis-
cusses future work.

2. Related Work

The transformation of sketches into line-drawings is a
key task in SBM which we take for granted here. Read-
ers interested in this topic may consult the interesting re-
port [BZC∗98]. In the rest of the paper, we assume that our
input is a line-drawing.

Although 3D B-rep models are the typical output pro-
duced by SBM approaches, some attempts have been made
to reconstruct CSG models. Some of them work with sin-
gle view (axonometric like) representations: Wang and Grin-
stein [WG89] produce a CSG representation where every

c⃝ The Eurographics Association 2014.

DOI: 10.2312/egsh.20141008

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egsh.20141008


R. Plumed et al. / CSG Feature Trees from Engineering Sketches of Polyhedral Shapes

Figure 1: Process diagram for obtaining a 3D model from a sketch.

feature is a cuboid. Branco et al [BCF94] use WIMP interac-
tion combined with sketch input. However these pioneering
approaches seem not to have been followed up.

Other approaches focus on multiple orthographic
views [LH05], and/or require interaction, neither of which
we assume. Furthermore, such CSG-based reconstruc-
tion approaches only detect form features, not design or
manufacturing features.

Varley [Var03] showed how to detect various design or
manufacturing features. However, he did not use feature de-
tection in a systematic way to obtain a feature-based CSG
model, but to complement the main process of cue detec-
tion aimed at labelling and inflating natural drawings, as well
as determining their hidden parts. Our approach is closer to
Suh’s work [Suh07], who proposed to build a feature extru-
sion tree. Nevertheless it was based on geometric features
instead of design features as we do.

Recent work has been done on identifying and cata-
loguing the most common design features in engineering
sketches [PVC13]. Some criteria which can be used to iden-
tify these design features were also discussed.

Algorithms to detect certain features in 2D line-drawings
already exist, e.g. for finding design features such as rounds
and fillets [CV10], ribs, slots and rails [CVPM12], and steps
and pockets [PCVM13].

However, in the field of automated feature recogni-
tion, few approaches deal with 2D drawings. Meeran and
Pratt [MP93] developed general rules for recognising com-
mon machining features in prismatic parts, and could even
handle some features that interact with each other.

Vanderbrande and Requicha [VR93] proposed a rule-
based approach to obtain a volumetric decomposition of fea-
tures from the solid model. They tackle complex interactions
between features through a procedure of feature completion.
The main difference with the approach proposed here is that
their input for feature detection is a 3D model. In our case,
the input is a single 2D wireframe view, which necessar-
ily contains incomplete information. Thus, detecting cues or
hints that may reveal the existence of a particular design or
manufacturing features becomes a critical issue.

3. Modelling Process

As shown in Figure 1, our input data are strokes, and our
final goal is a 3D model. Sketch segmentation and vectori-
sation provide a graph-like line-drawing, where nodes de-
pict the vertices of the sketch and the lines linking the nodes
depict the edges of the sketch. Low level graph recognition
provides clues or cues related to shape, such as sub-graphs,
faces and main directions. All of these provide the input
from which feature recognition is carried out.

Our goal here is to use features detected in the 2D draw-
ing as input to determine the model tree. Thus, we intend
to order the detected features in a hierarchy based on their
mutual parent-child relationships.

Our approach is inspired in the work by Li et al [LLM06],
which decomposes boundary representation models into reg-
ularity feature trees (RFTs). The main differences are that
they work with 3D models instead of 2D drawings, and they
do not look for design features but regularities and intended
geometric relations between subparts.

We move from child to parent, i.e. from branch to root.
Therefore when analysing a sketch, we apply a reverse or-
der strategy: we first try to find child features and remove
them from the drawing, then proceed to consider their par-
ents. The strategy of removing already detected features aids
detection of higher-level features which, due to their inter-
actions with child features, are masked in the 2D drawing.
The process continues until an elementary blank (model of a
lump of material which you can work on by adding or sub-
tracting features on it) is reached, or no more features can
be detected. This work explains how we get the CSG feature
tree by applying this iterative strategy.

The hierarchy of features in the model tree may be dif-
ficult to tackle when interdependencies among them appear.
For instance, if one of two crossing slots is directly removed,
the other may split into two. If a main feature is removed
early in the search process, the remaining drawing may be
difficult to interpret because of disconnected fragments.

Our final goal is to use the determined CSG feature
tree to automatically obtain a CSG model ready for use in
computer-aided process planning (CAPP).

c⃝ The Eurographics Association 2014.

34



R. Plumed et al. / CSG Feature Trees from Engineering Sketches of Polyhedral Shapes

4. Overview

Determining a reverse design history implies finding fea-
tures, deciding which of them are child features, and linking
them to their parents. Our approach recognises features in
a drawing (see Section 4.1). It assumes that the parents are
the most significant features and children are less important
ones. Section 4.2 describes criteria used to classify features
by importance. Next, the types of child and parent features
are used to determine the corresponding Boolean operations
that link them. Finally, we remove child features to help in
detecting their parents (see Section 4.3) and continue the
process recursively, until we get the blank (Figure 2).

Figure 2: Iterative process to get the blank.

4.1. Feature Recognition

Hint-based automatic feature recognition (AFR) strategies
are not new in SBM systems. The novelty is to adapt them
to 2D recognition, as used in Figure 2, rather than 3D. Var-
ious criteria to identify such design features are discussed
in [PVC13], where indeed a catalogue of the most common
design features in engineering is presented. In absence of
depth information, this adaptation relies on consideration of
indirect cues. Currently, we use the following information:

• The main directions of the axonometric view, obtained as
explained in Kang et al [KML04];

• A list of faces detected and numbered as in [VC10];
• Information on subgraphs and edge-labelling, following

the approaches of Varley [Var03].

We then use algorithms to detect rounds and fil-
lets [CV10], ribs, slots and rails [CVPM12], and steps and
pockets [PCVM13]. All these processes aim to algorithmi-
cally replicate human perception of incomplete (sometimes
inconsistent) sketches, and so return statistical likelihoods.
The outcome is a list of candidate features with confidence
values in the range [0, 1].

4.2. Feature Selection

As we try to find child features first, we assume the fol-
lowing hierarchical criteria when searching for features:

• Rounds and chamfers are the least important features.
They are usually added at the last stage of the design pro-
cess as final touches to the product.

• Ribs are usually added in later stages of design, as they
are usually used to reinforce an existing design.

• Other features may be added in any order.

To disambiguate between features of equal priority, a size
strategy is applied:

• Designers are likely to proceed from the largest features
(which may act as containers) to the smallest (usually
contained within the former). So, features with smaller
bounding boxes are considered first.

Finally, our algorithm is aimed at replicating some behaviour
we have observed in designers to get CSG models by way of
2D CAD applications:

• Designers usually start by drawing additive features (rails,
steps and bosses) and proceed later to draw subtractive
features (slots, pockets and holes).

• Designers generally draw features located in faces parallel
to coordinate planes before ones in slanted faces.

Once a feature has been found, we look for a parent fea-
ture. We also use indirect cues to infer the parent–child re-
lationship. For instance, most features we detect (apart from
rounds and chamfers) have a face (referred to as the con-
tained face) which rests on some other face belonging to
the container feature. If it exists, this parent feature will
be the one removed in the next iteration. This allows us to
find branches of the tree by following related contained and
container features until the last container face belongs to the
blank. This finishes the current branch of the tree and, if fur-
ther features are still detected, we start again to obtain the
lowest leaf of a new branch.

Although we can process features where child and parent
interact, currently we can only handle independent branches
without intersection interference. We are working on extend-
ing our approach to cases where interference exists. If a fea-
ture is not supported by the system, it is considered to be part
of the blank. Although no information is lost, this does not
lead to optimal results. In the future, we hope to increase the
catalogue of features and add a strategy to verify the blank’s
structure.

4.3. Drawing simplification

Once a feature has been determined, the next step involves its
removal from the drawing. Simplifying the drawing implies
removing edges and vertices belonging to the selected fea-
ture. This is easy enough if the feature forms a subgraph of
the drawing by itself. Otherwise, the simplified drawing may
require additional modification (when removing rounds and
chamfers, adjacent edges must be merged and/or extended
until they intersect in the corresponding vertices).

5. Results

Figure 3, 4 and 5 show examples of our approach of sequen-
tial simplification. In Figure 3, in the first iteration a slot
(confidence 0.86) and a divider (confidence 0.41) are de-
tected. After removing the slot, the divider becomes a rib.

c⃝ The Eurographics Association 2014.

35



R. Plumed et al. / CSG Feature Trees from Engineering Sketches of Polyhedral Shapes

Figure 3: Block with a rib which contains a slot.

After removing the rib, the remaining shape is the blank, as
there are no more features. In Figure 4, the smaller feature
(Pocket 1) is removed. Then its step exists in a lateral face.
This is because following the current branch is prioritised
container feature, Step 2 is removed, even though a smaller.
Finally, Figure 5 shows how the algorithm detects three slots

Figure 4: A block with two independent branches.

in the first iteration and after removing two of them, the third
slot becomes a pocket. However a designer would likely per-
ceive this as a single slot interrupted by a pocket – this would
give a simpler explanation. Such interference is not yet in-
cluded in the analysis, and remains a topic for improvement
in future work.

Figure 5: Interference among features.

6. Conclusions

We have proposed a general methodology for obtaining a
CSG feature tree from a 2D drawing. Our strategy applies
a recursive strategy where child features are detected and
ranked by a figure of merit. The most suitable feature is se-
lected and removed from the drawing, allowing the draw-
ing to be simplified. This simplification eases the process
of recognition since certain features that were previously
masked may now be recognised; this allows us to handle
some cases of child-parent feature interaction.

Currently, the approach can reach a blank from sketches
with a range of kinds of design or manufacturing feature. We
are continuing to devise further strategies for handling more
complex feature interferences. Implementation of verifica-
tion strategies will also be considered.

Acknowledge

Work partially funded by "Pla de Promocio de la Investiga-
cio de la Universitat Jaume I", project P1 1B2010-01

References
[BCF94] BRANCO V., COSTA A., FERREIRA F.:

Sketching 3D models with 2D interaction devices.
Computer Graphics Forum 13, 3 (1994), 489–502.
doi:10.1111/1467-8659.1330489. 2

[BZC∗98] BLOOMENTHA M., ZELEZNIK R., CUTTS M., FISH
R., DRAKE S., HOLDEN L., FUCHS H.: Sketch-N-Make: Au-
tomated machining of CAD sketches. In DETC98/CIE-5708
(1998), 1–11. 1

[CV10] COMPANY P., VARLEY P.: A method
for reconstructing sketched polyhedral shapes with
rounds and fillets. LNCS 6133 (2010), 152–155.
doi:10.1007/978-3-642-13544-6_14. 2, 3

[CVPM12] COMPANY P., VARLEY P., PLUMED R., MAR-
TIN R.: Perceiving ribs in single-view wireframe sketches
of polyhedral shapes. LNCS 7432 (2012), 557–567.
doi:10.1007/978-3-642-33191-6_55. 2, 3

[KML04] KANG D., MASRY M., LIPSON H.: Reconstruction of
a 3D object from main axis system. AAAI Fall Symposium Series:
Making Pen-Based Interaction Intelligent and Natural (2004). 3

[LH05] LEE H., HAN S.: Reconstruction of 3D inter-
acting solids of revolution from 2D orthographic views.
Computer-Aided Design 37, 13 (2005), 1388–1398.
doi:10.1016/j.cad.2005.01.007. 2

[LLM06] LI M., LANGBEIN F., MARTIN R.: Constructing regu-
larity feature trees for solid models. LNCS 4077 (2006), 267–86.
doi:10.1007/11802914_19. 2

[MP93] MEERAN S., PRATTS M.: Automated feature recogni-
tion from 2D drawings. Computer Aided Design 25, 1 (1993),
7–17. doi:10.1016/0010-4485(93)90061-R. 2

[PCVM13] PLUMED R., COMPANY P., VARLEY P., MARTIN R.:
From sketches to CAM models: Perceiving pockets and steps
in single-view wireframe sketches of polyhedral shapes. ACM
conf. on Pervasive and ubiquitous computing, adjunct publica-
tion (2013), 951–58. doi:10.1145/2494091.2499207. 2,
3

[PVC13] PLUMED R., VARLEY P., COMPANY P.: Fea-
tures and design intent in engineering sketches. Stud-
ies in Comput. Intelligence, 441 (2013), 77–106.
doi:10.1007/978-3-642-31745-3_5. 2, 3

[Suh07] SUH Y.: Reconstructing 3D feature-based CAD
models by recognizing extrusions from a single-view draw-
ing. In Proc. IDETC/CIE 2007 (2007), pp. 197–206.
doi:10.1115/DETC2007-35186. 2

[Var03] VARLEY P.: Automatic creation of boundary represen-
tation models from single line drawing. PhD Thesis. Dept. of
Computer Science. Univ. of Wales, 2003. 2, 3

[VC10] VARLEY P., COMPANY P.: A new algorithm for finding
faces in wireframes. Computer-Aided Design 42, 4 (2010), 279–
309. doi:10.1016/j.cad.2009.11.008. 3

[VR93] VANDERBRANDE J., REQUICHA A.: Spatial reasoning
for the automatic recognition of machinable features in solid
models. IEEE Trans on Pattern Analysis and Machine Intelli-
gence 15, 12 (1993), 1269–85. doi:10.1109/34.250845.
2

[WG89] WANG W., GRINSTEIN G.: A polyhedral object’s CSG-
rep reconstruction from a single 2D line drawing. In Proc. SPIE
Int. Robots and Computer Vision III: Algorithms and Techniques,
1192 (1989), 230–238. doi:10.1117/12.969737. 1

c⃝ The Eurographics Association 2014.

36


