
Interactive Rendering to View-Dependent Texture-Atlases

Matthias Trapp & Jürgen Döllner†

Hasso-Plattner-Institute, University of Potsdam, Germany

Abstract
The image-based representation of geometry is a well known concept in computer graphics. Due to z-buffering, the
derivation of such representations using render-to-texture delivers only information of the closest fragments with
respect to the virtual camera. Often, transparency-based visualization techniques, e.g., ghosted views, also require
information of occluded fragments. These can be captured using multi-pass rendering techniques such as depth-
peeling or stencil-routed A-buffers on a per-fragment basis. This paper presents an additional rendering technique
that enables the derivation of image-based representations on a per-object level within a single rendering pass. We
use a dynamic 3D texture atlas that is parameterized on a per-frame basis. Prior to rasterization, the primitives
are transformed to their respective position within the texture atlas, using vertex-displacement in screen space.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Bitmap and framebuffer operations I.3.6 [Computer Graphics]: Methodology and Techniques—
Graphics data structures and data types

1 Introduction

The concept of image-based representation of 3D shapes
[ST90] has numerous applications in computer graphics.
Despite static and dynamic imposters [DSSD99], they are
the basis for advanced rendering effects performed in post-
processing (e.g., edge detection, screen-space ambient oc-
clusion, deferred shading). For the purpose of image-based
occlusion management [ET08] (ghosted views), object high-
lighting, or the enhancement of depth perception (halos), it
is necessary to efficiently generate such representations for
all, or a subset of scene objects of complex 3D virtual envi-
ronment.

An application that uses render-to-texture (RTT) capabil-
ities of current rendering hardware to derive these represen-
tations on a per-object basis encounters two main problems:
(1) only fragments with the most minimal depth value (with
respect to the virtual camera) are captured; (2) either the
complete 3D scene or a single scene object can be captured
occlusion-free during a single off-screen rendering pass.

The first problem can be efficiently solved using depth-
peeling [LHLW09] or stencil-routed A-buffer [MB07] ap-
proaches. These techniques operate at fragment level and

† {matthias.trapp, juergen.doellner}@hpi.uni-potsdam.de

Figure 1: The five scene objects (A) are rendered occlusion-
free into a view-dependent texture atlas (B). Its parameteri-
zation is computed per-frame, based on the projected bound-
ary volume of each object (red lines).

usually require multiple rendering passes. The second prob-
lem can be compensated using multiple rendering passes in
combination with multiple render-targets (textures). How-
ever, such an approach results in multiple, sparsely popu-
lated texture layers, which require additional management
and, if at high viewport resolution, yielding to high GPU
memory consumptions.

c© The Eurographics Association 2010.

EUROGRAPHICS 2010 / H. P. A. Lensch and S. Seipel Short Paper

http://www.eg.org
http://diglib.eg.org

M. Trapp & J. Döllner / Interactive Rendering to View-Dependent Texture-Atlases

Figure 2: Control flow (red lines) and data flow (blue) for the generation and rendering of view-dependent textures-atlases.

For applications that require only a single layer of an ob-
ject, this paper presents render-to-texture atlas (RTTA): an
interactive and scalable rendering technique that enables dy-
namic generation of occlusion-free, image-based represen-
tations for multiple scene objects using graphics hardware
(Figure 1). It extends RTT by using a single 3D texture-
atlas as render target for all scenes objects. In contrast to the
original concept of texture-atlases [Wlo05], it computes the
texture-atlas parameterization and packaging per rendering
frame, with respect to the projected boundary approximation
(e.g., axis-aligned bounding box) of each object. During off-
screen rendering it uses screen-space vertex displacement
(SSVD) to transform each object into its respective atlas
region. This is done using an additional, object-dependent
2D transformation that is applied to each object prior to
rasterization. Our approach enables the usage of optimized
(batched) scene geometry, which reduces state changes dur-
ing rendering. Further, it can be easily integrated into exist-
ing rendering frameworks and systems. To summarize, our
research has the following contributions to the reader:

1. We present a concept for view-dependent parameteriza-
tion and generation of a texture atlas containing image-
base representations of projected scene objects.

2. We describe the concept of screen-space vertex displace-
ment and its application for generating view-dependent
texture-atlases within a single rendering pass.

3. We briefly describe a hardware accelerated rendering
technique that implements this concept and discuss its
performance and limitations.

2 Render-To-Texture Atlas

Our concept mainly consists of two phases that are per-
formed per frame (Figure 2): the view-depended computa-
tion of the texture-atlas parameterization and subsequently,
the rendering of the scene geometry into the texture atlas.

2.1 Preliminaries

As texture atlas TA = (Tw,Th,Td)∈N3, we denote an a num-
ber of Td layers of 2D textures, each with a fixed width Tw
and height Th. This data structure can be effectively repre-
sented on graphics hardware using 3D textures or 2D texture
arrays. We assume that the orientation and projection trans-
formation of the virtual camera can be described as a matrix

VPM, and that the scene is rendered to a viewport given by
VP = (x,y,w,h) ∈ N4.

At runtime, our concept requires global information about
the objects of a 3D scene. Such record can be computed off-
line for static meshes or dynamically for animated scenes.
For each object, a record RID of the following structure is
stored in a global record setR:

RID = (Bworld,Bviewport,Batlas, l,T) RID ∈R

To identify an object at run-time, an unique object identi-
fier ID ∈ N is required. This identifier must be encoded as a
per-vertex attribute to allow geometry batching and arbitrary
scene partitions for rendering. To approximate the area a 3D
object occupies in a 2D texture atlas, its 3D boundary rep-
resentation Bworld is computed in world-space coordinates.
Our approach uses 3D axis-aligned bounding boxes (AABB)
as boundary representation. The 2D rectangular boundary
Bviewport ∈ VP denotes the clipped on-screen area of Bworld
and Batlas ∈ TA the occupied area within the texture atlas. An
affine 2D transformation matrix T describes the transforma-
tion of Bviewport into Batlas in normalized device coordinates
(NDC). Further, l = 0, . . . ,Td denotes the texture layer each
object is rasterized in.

2.2 Texture-Atlas Parameterization & Packaging

Prior to RTTA, the texture-atlas parameterization needs to
be determined, i.e., the mapping of a 3D boundary repre-
sentation (Bworld) into a 2D texture domain (Batlas) for all
records RID. Algorithm 1 shows the pseudo code for com-
puting this mapping. In the first step, the boundary repre-
sentation Bworld is conservatively culled against the view
frustum defined by VPM. On success, it is then projected
into normalized device coordinates (Bprojected) and clipped
against the area [−1,−1]× [1,1]. The resulting 2D boundary
(Bclipped) is then scaled (Bviewport) with respect to the view-
port VP. To enable artifact-free convolution filtering during
texture-atlas post-processing and compositing (Figure 2), we
can add a border of b ∈ N pixels. Fragments in this bor-
der area can be identified later, e.g, by using a specific al-
pha value. Next, texture-atlas packaging computes Batlas for
each Bviewport, starting a maximal texture-atlas resolution of
Twmax width and Thmax height. After completion, it also de-
livers the resolution and the required number of texture lay-
ers Td . Our current implementation uses a rectangular atlas
packaging approach [IC01], which has a run-time complex-

c© The Eurographics Association 2010.

82

M. Trapp & J. Döllner / Interactive Rendering to View-Dependent Texture-Atlases

Figure 3: Compositing variants derived from a view-dependent texture-atlas containing color and depth values per pixel. A:
reconstruction of the scene by rendering depth-sprites; B: transparent rendering by ignoring the fragments depth (requires
depth sorting); C: ghosted-view visualization showing a brake pad and screws highlighted; D: ghosted-view visualization that
uses screen-space ambient occlusion and edge-enhancement during compositing for important scene objects.

Algorithm 1 Texture-Atlas Parameterization & Packaging
1: for all RID ∈R do
2: if viewFrustumCulling(Bworld,VPM) then
3: Bprojected = project(Bworld,VPM)
4: Bclipped = clip

(
Bprojected

)
5: Bviewport = scale

(
Bclipped,VP

)
6: Bviewport = addBorder

(
Bviewport,b

)
7: RID← Bviewport
8: end if
9: end for

10: TA← atlasPackaging
(
R,Twmax ,Thmax

)
11: for all RID ∈R do
12: T = computeTransform

(
Bviewport,Batlas,TA,VP

)
13: RID← T
14: end for

ity of O(n) = n logn. Finally, based on the packing results,
the transformation T is computed, which basically consists
of a translation and viewport scaling.

2.3 Screen-Space Vertex Displacement

This type of vertex displacement was introduced for render-
ing camera textures [SBGS06]. It can be applied in image-
or object-space by transforming vertices using a translation
vector stored in a 2D texture. For our purposes, we extend
this concept to arbitrary affine 2D transformations in order
to transform a rendered primitive into its respective atlas re-
gion prior to rasterization. Every vertex V = (x,y,z,w) is
transformed into its designated texture-atlas area Batlas by
displacing it parallel to view plane using T. The new ver-
tex position can be obtained by: V ′ = T ·V . Before that, V
is transformed from clipping coordinates (CS) into NDC via
division by the homogeneous vector component w. Because
NDC’s cannot generally be interpolated linearly by the ras-
terizer, V ′ is transformed back to CS, after the transforma-
tion was applied.

3 Real-time Implementation

Our prototypical implementation is based on OpenGL
[SA09] in combination with GLSL [Kes09]. It requires the

encoding of the global data record R into a suitable GPU
data structure to perform SSVD using the geometry shader
stage. Therefore, the transformation matrix T, the target
layer l, and the atlas region Batlas of each record RID are
stored successively in a single texture-buffer object, denoted
as record buffer. At runtime, the ID is used to index this
buffer. The buffer is encoded per-frame and then shared be-
tween RTTA, successive texture atlas post-processing, and
compositing steps (refer to Figure 3 and Section 3.2).

3.1 Vertex Displacement & Layered Rendering

The rendering setup for RTTA is similar to standard RTT
applications. First, the framebuffer objects and render tex-
tures are set up according to TA, then the viewing and
projection transformation VPM is applied and viewport
is set to (0,0,Tw,Th). After binding the record buffer
(recordBuffer) the shader program (Figure 4) is enabled
before rendering the scene geometry. The shader performs
SSVD for each vertex and assigns the respective layer of the
texture atlas to each output primitive. To avoid overdrawing
of other atlas areas, four user clip-planes are set up according
to the view frustum while the clip coordinates of the vertex
are left untransformed.

3.2 Compositing from Texture Atlases

After RTTA is performed, an application-specific process-
ing of the texture-atlas contents, e.g., edge-detection, color
quantization, or similar, can be applied. The final composit-
ing is performed on per-object level. Figure 3 shows results
of per-object compositing using frame-buffer blending. This
is done by generating and rendering 2D sprites for each
object using the point-sprite expansion functionality of the
geometry shader. Therefore, n = |R| point primitives with
their respective object ID are rendered, that are converted
into screen-aligned quads. Given the viewport setting VP,
the four corner points are set according to Batlas and are then
transformed to Bviewport using the inverse transformation ma-
trix T−1.

c© The Eurographics Association 2010.

83

M. Trapp & J. Döllner / Interactive Rendering to View-Dependent Texture-Atlases

uniform samplerBuffer recordBuffer; // global data
in int ID[3]; // per-vertex attribute: object ID
// fetch transformation and layer for object ID
void fetchRecord(inout mat4 T, inout int layer);
...
void main(void) {
mat4 T; int layer; fetchRecord(T, layer);
gl_Layer = layer; // set texture-target layer
for(int i = 0; i < 3; i++) // set every vertex
{
vec4 v = gl_ProjectionMatrix * gl_PositionIn[i];
// screen-space vertex displacement
gl_Position = (T *(v/ v.w))*v.w;
gl_ClipVertex = gl_PositionIn[i];
// set additional attributes...
EmitVertex();

}//endfor
EndPrimitive();
return;

}

Figure 4: GLSL geometry shader (excerpt) that implements
screen-space vertex displacement and layered rendering.

4 Results & Discussion

4.1 Performance Evaluation

The performance tests are conducted using a NVIDIA
GeForce GTX 285 GPU with 2048 MB video RAM on a
Intel Xeon CPU with 2.33 GHz and 3 GB of main memory.
Table 1 shows the results of our comparative evaluation. The
tests are performed at a viewport and texture atlas resolution
of 10242 pixels without view-frustum culling. The perfor-
mance mainly depends on the number of scene objects and
is bound by the performance of the geometry-shader stage.

4.2 Problems & Limitations

One conceptual problem of our implementation concerns the
usage of 2D rectangular boundary approximations for repre-
senting Bviewport and Batlas. Due to perspective projection of
the boundary, this can lead to an under-utilization of the tex-
ture atlas, especially for objects with non-convex shapes. For
capturing objects that cover the entire screen, the utilization
can be improved by choosing Tw and Th as multiples of the
viewport size.

A further problem represents the dynamic allocation of
texture memory if adapting the texture-atlas size on a per-
frame basis. We observe driver stalls during the removal of
layers from the texture array. Currently, we compensate this
problem using lazy-updates of the texture array at rendering
idle time, or if the number of layers have not changed during
a number of passes. Another hardware limitation represents
the maximal number of texture layers Td , as well as its reso-
lution Tw and Th. Thus, the maximal number of objects that
can be captured within a single pass depends on this resolu-
tion and the texture atlas utilization.

5 Conclusions & Future Work

This paper presents the concept of view-dependent textures-
atlases. It enables the generation and management of
occlusion-free, image-based representations for multiple
overlapping objects in complex 3D scenes. We further de-
scribe a real-time, hardware accelerated implementation that

Table 1: Comparative performance evaluation for different
test scenes between plain rendering(STD), standard render-
to-texture (RTT), and render-to-texture atlas (RTTA) (in
frames-per-second).

#Vertex #Face #Obj STD RTT RTTA

2,191 4,236 5 2066 1015 940
32,081 21,246 21 1066 328 239
56,654 34,596 580 65 14 19

1,040,503 346,835 269 39 21 35

generates these textures-atlases within a single rendering
pass and demonstrate its applications for interactive ghosted
views. For future work, we plan to research the usage of
more complex types of boundary representations to achieve
a better texture-atlas utilization. We further evaluate possi-
bilities for atlas-packaging strategies that operate entirely on
GPU.

Acknowledgments

This work has been funded by the German Federal Ministry
of Education and Research (BMBF) as part of the InnoPro-
file research group "3D Geoinformation"’.

References

[DSSD99] DÉCORET X., SCHAUFLER G., SILLION F., DORSEY
J.: Multi-layered Impostors for Accelerated Rendering. In Com-
puter Graphics Forum (Proc. of Eurographics ’99) (Sep 1999).

[ET08] ELMQVIST N., TSIGAS P.: A Taxonomy of 3D Occlusion
Management for Visualization. IEEE Transactions on Visualiza-
tion and Computer Graphics 14, 5 (2008), 1095–1109.

[IC01] IGARASHI T., COSGROVE D.: Adaptive Unwrapping for
Interactive Texture Painting. In I3D ’01: Proceedings of the 2001
symposium on Interactive 3D graphics (New York, NY, USA,
2001), ACM, pp. 209–216.

[Kes09] KESSENICH J.: The OpenGL Shading Language Lan-
guage Version: 1.50 Document Revision: 9. The Khronos Group
Inc., July 2009.

[LHLW09] LIU F., HUANG M.-C., LIU X.-H., WU E.-H.: Effi-
cient Depth Peeling via Bucket Sort. In HPG ’09: Proceedings of
the Conference on High Performance Graphics 2009 (New York,
NY, USA, 2009), ACM, pp. 51–57.

[MB07] MYERS K., BAVOIL L.: Stencil Routed A-Buffer. In
SIGGRAPH ’07: ACM SIGGRAPH 2007 sketches (New York,
NY, USA, 2007), ACM, p. 21.

[SA09] SEGAL M., AKELEY K.: The OpenGL Graphics System:
A Specification (Version 3.2 (Core Profile)). The Khronos Group
Inc., July 2009.

[SBGS06] SPINDLER M., BUBKE M., GERMER T.,
STROTHOTTE T.: Camera Textures. In GRAPHITE ’06:
Proceedings of the 4th international conference on Computer
graphics and interactive techniques in Australasia and Southeast
Asia (New York, NY, USA, 2006), ACM, pp. 295–302.

[ST90] SAITO T., TAKAHASHI T.: Comprehensible Rendering of
3-D Shapes. SIGGRAPH Comput. Graph. 24, 4 (1990), 197–206.

[Wlo05] WLOKA M.: ShaderX3. Charles River Media, 2005,
ch. Improved Batching Via Texture Atlases, pp. 155–167.

c© The Eurographics Association 2010.

84

