
EUROGRAPHICS 2010 / H. P. A. Lensch and S. Seipel Short Paper

Procedural Descriptions of
Anisotropic Noisy Textures by Example

Guillaume Gilet1, Jean-Michel Dischler1 and Luc Soler2

1LSIIT UMR CNRS-UDS 7005, Université de Strasbourg, France
2IRCAD, France

Abstract
This short paper introduces a new approach to automate the creation of procedural anisotropic “noisy” textures by
using an example. As for past approaches that allow one to obtain procedural descriptions of stochastic textures, it
uses a sum of multi-scale noise functions and a combined spectral / histogram-based approach. The improvement,
here, consists in better controlling the spectral domain by using Gabor noise functions. This allows us to extend the
range of textures that can be addressed, while bringing a number of advantages compared to classical example-
based texture synthesis: extreme compactness, continuous definition over infinite space, easy extension to solid
(even animated solid) textures and straight texture value computation in the fragment shader.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction, related works and motivation

Classical example-based synthesis, as initiated by [HB95],
often relies on the pre-generation of texture images (see sur-
vey of [WLKT09]), thus requiring an explicit storage in data
arrays for rendering. This can become a problem for many
interactive applications, since texture memory is limited on
the GPU. Procedural textures [EMP∗98] avoid this limita-
tion. But, unfortunately, creating procedural textures by us-
ing an example image is extremely difficult. There are thus
currently only few published methods that tackle this prob-
lem. In [DG97], for example the authors focus on procedu-
ral displacement maps using example 1D profiles. The pa-
rameters of a sum of noise functions (amplitude and scale)
are progressively adjusted with a combined spectral and
histogram analysis. Beyond displacement textures, isotropic
color textures were also processed by analyzing just 1D lines
extracted from 2D pictures. In [LVLD09], a more complete
spectral and histogram-based technique is proposed to deter-
mine the parameters of the sum. Unfortunately, it is likewise
limited to isotropic and fully stochastic textures. Bour et
al. [BD04] propose to browse the parameter spaces of a com-
plete database of shaders. While addressing a larger range of
textures, this technique requires, however, a database of pre-
existing shader programs.

Our motivation is to extend the works of [DG97]
and [LVLD09], to be able to process more complex noisy
textures, including anisotropic ones. Although combined
spectral and histogram-based approaches were abandoned
for years by the example-based texture synthesis commu-
nity, we show that it remains the better solution for stochastic
textures, especially if targeting rendering applications. This
is because of the many advantages that a procedural descrip-
tion provides compared to explicit data arrays. Compared
to [BD04] no pre-existing database of shaders is required in
our case. Stated shortly, our main contribution consists in
proposing a new original way of decomposing the 2D spec-
tral domain into ellipses, by exploiting some spectral prop-
erties of the recently introduced Gabor noise [LLDD09].

2. Multiscale random decomposition

Following up [DG97], our approach consists in defining a
texture function T (X), X = (x,y) in the form of a sum of
N noise functions, combined with a histogram function H.
To account for anisotropy, we further introduce a rotation
Rα(X) = (xcos(α)− ysin(α),x sin(α)+ ycos(α):

T (X) = H[
N

∑
i=0

wkGk
n(Rαk (skX))] (1)

c© The Eurographics Association 2010.

http://www.eg.org
http://diglib.eg.org

G. Gilet,J-M. Dischler & L. Soler / Anisotropic Noisy Textures by Example

with wk weights, sk = (sk
x,s

k
y) scales and αk rotation angles.

A suitable random basis function for Gk
n is Gabor noise as it

unifies a spatial (Gaussian) and spectral (cosine) component.

3. Spectral decomposition using ellipses

Our technique, concisely summarized in what follows, is
based on some simple mathematical properties: it is estab-
lished that for a given 2D Gabor noise Gn(X) with cosine
frequency f , stripe orientation θ, and isotropic standard de-
viation σ the spectral domain matches a disk, with its center
position cu,cv depending on f and θ, e.g. cu = f cos(θ),cv =
f sin(θ) and with radius r related to σ (in fact, Gabor noise
allows one to define rings centered on the origin, but we have
chosen to use disks, because these can be shifted on any
location in spectral domain, which allows use to consider
even the most complex spectral energy distributions). See
figure 1, top row, left two pictures, showing a Gabor noise
and its corresponding spectral domain (there are two visible
disks because of symmetry). Calling h(X) a 2D function and
F(h) = ĥ(ξ) its Fourier Transform, we have:

F(h(aX)) =
1
|a| ĥ(

ξ

a
) (2)

F(h(Rα(X)) = ĥ(Rα(ξ)) (3)

Figure 1: Gabor noise spectral properties that we exploit.
The spectral disk becomes an ellipse by scaling. It can be
further rotated by spatial rotation. The ellipse is centered if
the Gabor noise frequency component is null (bottom, right).

with a = (ax,ay) non-zero scaling factors and ξ = (ξu,ξv)
frequency coordinates. The first property means that if we
apply a scaling a to a 2D Gabor noise Gn(X) with fixed value
σ, the corresponding disk in spectral domain becomes an
axis aligned ellipse E with center (Eu = cu/ax,Ev = cv/ay)
and radii ru = r/ax,rv = r/ay (see figure 1 first row, two
pictures on the right). The second property means that if we
further apply a rotation α to the scaled Gn, the ellipse will
be also rotated by angle α, thus modifying its position and
main radius direction (see figure 1 second row, two pictures
on the left). We note that when the frequency component
f of Gn is null, the ellipse becomes centered on the origin
(see second row, two pictures on the right). Let us now re-
verse the problem. Given an ellipse E in spectral domain,

defined by its center position (Eu,Ev) 6= (0,0), its main di-
rection Eα, and its two radii (ru,rv), we are able to asso-
ciate a scaled and rotated Gabor noise, since the parame-
ters are linked by a simple equation system. By considering
the scaled and rotated Gabor noise parameters f , θ, s and
α as unknowns (σ is assumed to be fixed, thus r is known
and also fixed), this system can be straightforwardly solved
to obtain:α =−Eα, s = (r/ru,r/rv), θ = arctan((Ev cosα−
Eu sinα)/(Eu cosα+Ev sinα)) and f =

√
E2

u +E2
v . The par-

ticular case of an ellipse centered on origin is even more
easy.

Since we are able to retrieve Gabor noise parameters from
any ellipse in spectral domain, our proposal consists in de-
composing the spectral domain of an example image into
a set of N ellipses, each being associated with one Gk

n,
k ∈ [1,N]. To approximate the spectral domain by a set of
ellipses, we propose to apply quantization. That is, the en-
ergy spectrum is quantized into q values, q chosen by the
user, see figure 2. On the first row, the left shows the exam-
ple, the middle its spectral domain and the right quantization
using q = 3.

Figure 2: Analyzing an input texture in frequency domain by
quantization and by computing matching ellipses to derive
Gabor noise parameters.

The second row shows the three binary areas resulting
from quantization. A set of ellipses is determined for each
area by a minimization procedure. That is, the ellipses are
computed such that they “best” overlap the area. For one
ellipse E, this is numerically expressed by following mini-
mization: minEu,Ev,ru,rv,Eα

|{E(i, j)⊕A(i, j)}|, where ⊕ rep-
resents the binary “exclusive or” operator and || the cardinal
number of a set of pixels and A(i, j) the binary area. We
note that more than one ellipse might be necessary to cover
one area. In practice, we start the procedure with one ellipse,
computed iteratively using the previous minimization for-
mula, and then add a second ellipse. The latter is kept only
if the area overlap is improved by a minimum factor. For
computational efficiency, we never exceed two ellipses per
area. The resulting ellipses are highlighted on figure 2. Five

c© The Eurographics Association 2010.

78

G. Gilet,J-M. Dischler & L. Soler / Anisotropic Noisy Textures by Example

Figure 3: Results for noisy isotropic (left side) and anisotropic (right side) textures. From left to right: the input example,
quilting [EF01], tsvq [WL00] and our procedural texture.

ellipses are visible, thus resulting in N = 5 Gabor noises.
Whenever the radius of an ellipse is very small, we replace
the Gabor noise by a cosine wave. Strongly focused high am-
plitude components in spectral domain, usually correspond
to periodic components in spatial domain.

The only remaining unknown noise parameter in for-
mula 1 is wi. As value, we use the amount of energy in spec-
tral domain covered by the corresponding ellipse. But these
values need to be further refined since ellipses overlap. In
addition, the histogram function H has an influence on the
final energy distribution of T in frequency domain. To pro-
gressively adjust the weights, we use the iterative relaxation
technique described in [DG97]. The histogram function H is
computed as in [DGF98] to make the histogram of the ex-
ample match the histogram of T . We use a table of 128 bins
that are stored in texture memory.

4. Results

All results in this section have been obtained with a PC with
Intel Core 2 Quad Q9300 CPU (4Gb RAM), and a NVidia
GeForce GTX 280, with 1Gb RAM. To process color, we
use, as for early pyramidal and spectral approaches, a de-
composition into principal components in order to decor-
relate the three color channels. These are then processed
separately. This approach is known to have drawbacks (e.g.
sometimes the separate color processing does not well pre-
serve the initial color spectrum), but in our case it has a ma-
jor advantage: the transformation is linear. So, it is possible
to get back to the usual RGB color space by using a simple
3× 3 matrix product, which can be performed directly on
the GPU. Figure 3, left part, shows three examples of noisy
isotropic textures (granite, animal skin and carpet) and, right
part, three examples of anisotropic textures (wood, denim
and fur). Note that denim contains some regular aspects. For
each example, we show from left to right: the input example,

Figure 4: Two examples of procedural textures applied to
3D surfaces: (top row is the example). Second row: render-
ing on a infinite planar surface. Third row: (left) distortions,
(right) discontinuities due to parameterization. Fourth row:
extension to 3D to avoid these issues.

result from quilting [EF01]), from tsvq [WL00] and finally
our result. In fact, we expected classical pixel- and patch-
based methods to perform much better than our technique,
since these are aiming at good quality. This is true for some
textures, especially with quilting, which often provides the
better qualitative result. Yet, our approach remains highly
competitive. In some cases, it even provides better results
as it avoids repetition impression, especially when the input
example is small (see carpet). Our textures, however, have a

c© The Eurographics Association 2010.

79

G. Gilet,J-M. Dischler & L. Soler / Anisotropic Noisy Textures by Example

Figure 5: Left and middle: extension to solid (3D) texture.
Right: extension to 4D (animated 3D) texture.

major advantage that compensates a lot limitations: they are
all fully procedural. Two examples of resulting advantages
are shown on figure 4 (top row are the examples: red stone
and rust). Since our textures are defined on a per-pixel shader
basis, they can be straightforwardly applied to an infinite pla-
nar surface without any repetition (second row). The user
can select in real-time the apparent resolution of textures,
which can be infinitely high. Another advantage is shown
on third and fourth rows. The third row illustrates texturing
based on a 2D surface parameterization using 2D noises. But
surface parameterization might cause texture distortions (see
left) or discontinuities (see right). Our procedural textures
can be easily extended to 3D by using a 3D noise instead
of a 2D one, thus avoiding these problems (see last row).
Beyond 3D extension to fill the interior of objects (see fig-
ure 5, left and middle), even 4D extensions are possible for
time variation (figure 5, right is one frame out of an anima-
tion shown in the accompanying video). The parameters of
the third and fourth dimensions can be taken from one of
the other two dimensions. Extension to arbitrary dimensions
is a major advantage, since even in full 3D or 4D, our tex-
tures still require less than 0.5 Kb memory (for storing H).
To our knowledge, 4D textures have not been addressed so
far, because of timing and memory issues. All textures pre-
sented here are defined by less than 10 noises, plus some
cosine waves in some cases (maximum 18 waves for the
denim). The parameters of all noises have been computed
quite fast. In the worst case, it took 3 minutes for the wood
texture that uses 7 noises and 6 cosine waves. Antialiasing is
also possible with our approach, because of the underlying
multi-scale description of the procedural texture (using the
filtering scheme proposed in [LLDD09]). We note that we
did not compare our approach to [BD04], that also produces
procedural textures. The reason is that the result depends a
lot on the quality of the underlying shader database. A fair
and objective comparison, without previously analyzing and
comparing the contents of the shader databases, is thus diffi-
cult. One could criticize the fact that only unstructured tex-
tures can be addressed. But as shown by figure 6 noisy pat-
terns are actually quite common. They can be present inside
structured textures, in the form of small scale “sub-patterns”.
Since our method works well even for very small texture
pieces, we believe that a subdivision of input textures into

Figure 6: Examples of subtexture synthesis.

sets of small scale patterns could be a good starting point for
obtaining procedural descriptions of structured textures. On
the performance side, all of the textured objects are rendered
at more than 60fps with a on-the-fly reconstruction of the
texture in the pixel shader.

5. Conclusions

In this paper we have presented a new approach for noisy
procedural texture synthesis based on examples. It extends
previous work as it allows us to process a wider range of
stochastic textures (anisotropic, like wood, as well as semi-
regular, like denim). We have based our approach on a mul-
tiscale formulation using Gabor noise functions summed
with different weights. We believe our approach can be a
good starting point for a more complete analysis technique
that would automatically produce procedural descriptions of
structured textures.

References
[BD04] BOURQUE E., DUDEK G.: Procedural texture matching

and transformation. Computer Graphics Forum 23, 3 (2004),
461–468. 1, 4

[DG97] DISCHLER J., GHAZANFARPOUR D.: A procedural de-
scription of geometric textures by spectral and spatial analysis of
profiles. Computer Graphics Forum 16, 3 (1997), 129–139. 1, 3

[DGF98] DISCHLER J. M., GHAZANFARPOUR D., FREYDIER
R.: Anisotropic solid texture synthesis using orthogonal 2d
views. Computer Graphics Forum 17, 3 (1998), 87–96. 3

[EF01] EFROS A. A., FREEMAN W. T.: Image quilting for tex-
ture synthesis and transfer. In SIGGRAPH 2001 (2001), ACM
Press, pp. 341–346. 3

[EMP∗98] EBERT D., MUSGRAVE K., PEACHEY P., PERLIN
K., WORLEY S.: Texturing and Modeling: A Procedural Ap-
proach. 1998. 1

[HB95] HEEGER D. J., BERGEN J. R.: Pyramid-based texture
analysis/synthesis. In SIGGRAPH (1995), pp. 229–238. 1

[LLDD09] LAGAE A., LEFEBVRE S., DRETTAKIS G., DUTRÉ
P.: Procedural noise using sparse gabor convolution. In SIG-
GRAPH 20909 (2009), pp. 1–10. 1, 4

[LVLD09] LAGAE A., VANGORP P., LENAERTS T., DUTRÉ P.:
Isotropic stochastic procedural textures by example. Tech. rep.,
May 2009. 1

[WL00] WEI L.-Y., LEVOY M.: Fast texture synthesis using
tree-structured vector quantization. In SIGGRAPH 2000 (2000),
pp. 479–488. 3

[WLKT09] WEI L.-Y., LEFEBVRE S., KWATRA V., TURK G.:
State of the art in example-based texture synthesis. In Eurograph-
ics 2009, State of the Art Report, EG-STAR (2009), Eurographics
Association. 1

c© The Eurographics Association 2010.

80

