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Abstract
We propose a novel approach to create generative models for distinctive stylistic locomotion synthesis. The approach is inspired
by the observation that human styles can be easily distinguished from a few examples. However, learning a generative model
for natural human motions which display huge amounts of variations and randomness would require a lot of training data. Fur-
thermore, it would require considerable efforts to create such a large motion database for each style. We propose a generative
model to combine the large variation in a neutral motion database and style information from a limited number of examples.
We formulate the stylistic motion modeling task as a conditional distribution learning problem. Style transfer is implicitly ap-
plied during the model learning process. A conditional variational autoencoder (CVAE) is applied to learn the distribution
and stylistic examples are used as constraints. We demonstrate that our approach can generate any number of natural-looking
human motions with a similar style to the target given a few style examples and a neutral motion database.

CCS Concepts
• Computing methodologies → Animation; Motion processing;

1 Introduction

The synthesis of human motion with large variation and different
styles has a growing demand for simulation applications such as
games, psychological experiments and ergonomic analysis. There-
fore, data-driven motion synthesis approaches based on machine
learning have captured considerable research interest. However,
constructing a representative motion model usually requires a large
amount of example data. Therefore, it is of interest to efficiently
reuse recorded motion data for different scenarios [MC12]. Motion
style transfer provides the possibility of creating a synthetic styl-
ized motion database from existing data without additional motion
capturing efforts.

In this work, we present a novel approach to combine statisti-
cal motion modeling and style transfer. We follow the assumption
from [MC12], although human motion has infinite variations, the
high level structures (motion primitive) are finite. A motion prim-
itive contains structurally and semantically similar motion clips
and can be modeled by a statistical distribution. We formulate the
stylistic motion modeling task as a conditional distribution learn-
ing problem. A large amount of neutral motions which contain rich
variation in content is used as training data, and a limited number
of style examples are taken as constraints. The content and style
motions are encoded by a pre-trained convolutional autoencoder
and used to train a conditional variational autoencoder (CVAE) to
model the conditional distribution. In summary, our contribution
is to propose a novel method to create a generative model for the

style motion by combining the variation from a large neutral mo-
tion database and a few style examples.

2 Background

Our work is constructed upon previous successful work on the gen-
erative statistical models for human motion synthesis and human
motion style transfer. In this section, we first briefly discuss the de-
velopment of generative models for human motion data. Then we
review the various methods for motion style transfer.

2.1 Generative Statistical Motion Modeling

Bowden [Bow00] uses Hidden Markov Models (HMMs) to model
human motion distribution. Min and Chai [MC12] project motion
data into low-dimensional space and use Gaussian Mixture Model
(GMM) to learn the distribution of motions in low-dimensional
space. Wang et al. [WFH08] address the dynamics of human
motion by introducing the Gaussian Process Dynamical Model
(GPDM) to model the temporal sequence of human motion. A
smooth low-dimensional space is found for motion data by tak-
ing dynamics as the constraint. haha Recently generative models
based on deep neural networks have demonstrated outstanding per-
formance on motion modeling. Holden et al. [HSKJ15] employ
convolutional autoencoders to learn a continuous manifold space
for motion representation. Motegi et al. [MHM] apply variational
autoencoder to model the distribution of a large motion database.
Variants of recurrent variational autoencoders are used to model
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the dynamics of motion data. Habibie et al. [HHS∗17] use a re-
current variational autoencoder to model the sequence of motion
data. Fragkiadaki et al. [FLFM15] propose the Encoder-Recurrent-
Decoder model for human body pose prediction.

Crowd simulation [NGCL09] models the large-scale behavior
of human as well. However, they are more interested in high-level
planning, for instance, crowd steering, collision avoidance and so
on. In this work, we focus on enriching the variations and styles of
the motion itself.

2.2 Style Transfer for Motion Data

A significant amount of effort has been spent on the problem of
style transfer for human motion data. One set of approaches is try-
ing to separate style components from the content of the motion.
Brand and Hertzmann [BH00] apply HMMs to learn a set of style-
specific models and a generic model to encode style from motion
content and generate new stylistic motions. Min et al. [MLC10]
construct a multi-linear model to learn the parameters for content
and style from a motion database of the same action with different
styles. Xia et al. [XWCH15] use local mixtures of autoregressive
models to achieve realtime style transfer for unlabeled heteroge-
neous human motion. Yumer and Mitra [YM16] observe that the
magnitude of spectrum is more relevant to the style of action and
the phase is more relevant to the content. They formulate motion
style transfer as an optimization problem and achieve style transfer
between different actions in the spectral domain. Deep learning has
also been applied to learn style transfer. Holden et al. [HHKK17]
automate this requirement by using the Gram matrix [GEB15] to
extract the style of motions from features learned by 1D convolu-
tion. In this work, we do not focus on explicit style transfer between
motions, instead we apply the style as a constraint in conditional
distribution modeling.

3 System Overview

The goal of the work is to create a generative model for stylistic
motion modeling and synthesis, based on a neutral motion database
and a few of style examples. Our motion synthesis pipeline is based
on previous work [MC12, DHM∗16]. Each action is represented
by a directed graph. The nodes are high-level structures of the ac-
tion named motion primitives. The edges represent the possible
transitions between the nodes. For instance, six motion primitives
can well represent arbitrary normal walking: "leftStance", "right-
Stance", "beginLeftStance", "endLeftStance", "beginRightStance"
and "endLeftStance". The main difference between our work and
previous work [DHM∗16] is that instead of a parametric model
like GMM, we use a variational autoencoder (VAE) to model the
distribution of motion primitives and encode the style of motion
as a conditional distribution. New motion can be generated by first
taking a graph walk in the motion graph, then sampling each mo-
tion primitive to find the target motion clip. The advantage of this
framework is that variations of motions are encoded in the model
while the high-level structures of the action are also maintained.

4 Motion Data Acquisition

Our motion database is recorded by an OptiTrack system with three
male actors. The whole database contains 40 minutes of locomo-

tion, including walking, running and jogging. We use our captured
motion as a neutral motion database since the style in the captured
motions are relatively similar. For the style data, we use stylistic
walking data from [XWCH15]. A retargeting approach [MBBT00]
is implemented to retarget all motion data to a MakeHuman† game
engine skeleton.

All motions in our motion dataset are parameterized as 3D joint
positions. The reason we use joint position is because joint po-
sitions are more coherent with the visual observation of motion
[DHM∗16], which is suitable for training. In our work, we use a
skeleton with 21 joints. In addition to joint positions, the global
speed on the 2D ground and the rotational velocity about the verti-
cal axis are computed and added to each frame. So in our dataset,
each frame is represented as a vector of length 66.

All frames are normalized to have the same global position on
2D ground and face the same direction. Similar to [HSK16], we
decompose the long recordings into small motion clips using an
overlapping window size of 60 frames with an overlap of 30 frames.

5 Stylistic Motion Modeling

Figure 1 shows the modeling pipeline for each motion primitive.
Our goal is to learn a conditional distribution P(X|xs) based on a
large number of content motion clips X and a style constraint xs. If
there is no style constraints given, the model simply learns the dis-
tribution of content motion clips P(X) for each motion primitive. If
there are style examples, the distribution can be deformed to a new
distribution based on different style input xs. Similar to [HSK16],
we use a single layer convolutional autoencoder to encode motions
into feature space Y = Φ(X). Style is encoded in feature space us-
ing a Gram matrix. The distribution of motion clips in feature space
is learned by VAE. We formulate the Gram matrix as a style con-
straint term in the loss function of VAE. Therefore, a conditional
distribution can be learned by training the model.

5.1 Motion Feature Extraction

Using a Gram matrix to extract styles from features produced by
convolutional neural networks has achieved great success in image
style transformation [GEB15]. Similar to [HSK16, HHKK17], we
construct a single layer convolutional autoencoder to perform 1d
convolution on motion data to extract features.

5.2 Variational Autoencoder for Human Motion Model

In this section, we will briefly review variational autoencoder
(VAE) proposed by [KW13]. VAE assumes that data Y can be
encoded in a low-dimensional latent space z and the distribution
P(Y) can be computed by the integral of the marginal likelihood as
P(Y) =

∫
Pθ(Y|z)Pθ(z)dz. The detailed explanation of VAE can be

found in [KW13].

In our work, the encoder and decoder are both modeled by a
four-layer feed-forward network. The hidden units for the encoder
are 512, 256, 128 and 32, and for the decoder are 32, 128, 256 and

† MakeHuman: http://www.makehumancommunity.org/
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Figure 1: The overview of stylistic motion primitive modeling. The input is a large set of content motions with rich variations and a single
style example. The input motions are encoded into feature space by motion decoder, which is trained on all motion clips. The conditional
variation autoencoder (CVAE) is used to model the conditional distribution. New motion can be generated from CVAE and back to motion
space via motion decoder.

512. Tanh is used as activation function for all layers except for
output layer in both encoder and decoder. The loss function L is
defined as follows:

L = Lcontent +LKL

=−Ez[log(Pθ(Y|z))]+D[Qφ(z|Y)||P(z)]
(1)

For the first reconstruction term, Ez can be approximated by
sampling z:

−Ez[log(Pθ(Y|z))] =
1
L

L

∑
l=1

(
1
N

N

∑
i=1

log(e−
1
2 ||decoder(zi,l )−yi||2 )) (2)

D is the Kullback-Leibler divergence, which serves as regular-
ization term. The analytical solution can be computed since Pθ and
Qφ are both multivariate Gaussian.

5.3 Conditional Variational Autoencoder

Creating a generative model for a certain style can be formulated as
a conditional distribution modeling P(Y|ys). The stylistic example
xs is first encoded into feature space ys using convolutional encoder
Φ. The style is extracted using a Gram matrix, which is defined as
the sum of inner product of features over the temporal axis.

Gram(ys) = ∑
i

ys,iyT
s,i (3)

As the Gram matrix sums over frames, it does not require frame
alignment between content motion and style motion. So for style
constraints, single or multiple style examples can be used. The
distribution should deform based on different style inputs. This is
achieved by adding style constraint into the loss function of VAE.

Lstyle = α||Gram(decoder(z))−Gram(ys)|| (4)

where α is the style weight to control the magnitude of the effect
of the style. We empirically set α to 200. Our final loss function for
conditional VAE model is:

L = Lcontent +LKL +Lstyle (5)

6 Experiments

We evaluate our method on a fairly large content database and six
distinctive styles, which are: depressed, proud, old, childlike, sexy
and angry.

The convolutional autoencoder is trained on a large dataset with
122624 clips, which not only contains locomotion, but other ac-
tions as well. We train the model with 300 epochs and training
rate 0.00001 on a NVIDIA GeForce GTX 760. The training takes
roughly 10 hours. For training each motion primitive, we use the
pre-trained convolutional autoencoder to encode motion clips into
feature space. We set epochs to 300 with a training rate 0.0001.
The training time depends on the number of samples in each mo-
tion primitive. For instance, for walk leftStance, there are 749 clips
which takes about 50 minutes to train. All networks are imple-
mented using Tensorflow.

6.1 Motion Primitive Evaluation

Motion primitives serve as the core of our motion synthesis frame-
work. The quality and variation of generated motions will decide
the quality of the completed motion. Figure 2 shows some random
samples generated from two motion primitives: walk leftStance and
run rightStance. They are modeled using VAE on neutral database
without style constraints. All characters start in a line with equal
spacing. The last frame of each clip is displayed in Figure 2.

6.2 Stylistic Motion Primitive Evaluation

Figure 3 shows random samples from six stylistic variants of walk
left and right stance. We use one stylistic clip as style constraint
to train conditional variational autoencoder. All the style examples
are selected to walk in a straight line to minimize the variations be-
tween style examples. From the sampling results, we can see that
the stylistic models have good variations in both poses and trajec-
tories.
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Figure 2: Random samples from motion primitives trained on neu-
tral dataset. From top to down: walk leftStance, run rightStance.

Figure 3: Random samples from six stylistic motion primitives de-
formed from neutral walk leftStance. The left side is the style con-
straints. For top to bottom, the styles are: proud, depressed, angry,
sexy childlike and old. The right side is the samples generated from
each stylistic motion primitive.

7 Conclusion

In this work, a new approach to create generative models for stylis-
tic locomotion has been presented. Our approach does not require
a large amount of stylistic motions for training. Our model makes
use of motion style transfer to implicitly convert neutral motion to
a target style during training. In order to demonstrate our method,
we test six different styles on walking. For each style, a walking
motion graph with six stylistic motion primitives are constructed.
The work we presented in this paper focuses on stylistic locomo-
tion modeling and synthesis. However, our approach is not limited
to locomotion. We believe the approach to combine the variations
in a large neutral motion database and the style from a few stylistic

examples to learn generative models could be applied to all kinds
of actions.
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