
EUROGRAPHICS 2004 / M. Alexa and E. Galin Short Presentations

A Quick and Automatic Image Based Modeling and
Rendering System

Keith Yerex and Neil Birkbeck and Dana Cobzas and Martin Jagersand

Computing Science, University of Alberta, Canada

Abstract
We present a complete and automatic system for object capture from video, Internet delivery, and real-time photo-
realistic rendering. Shape from silhouette is used to capture an approximate enveloping geometry, the visual
hull. Texture coordinates are generated automatically under a minimum distortion criterion. To account for the
difference between the true shape of the object and the captured visual hull we use Dynamic texturing, a view-
dependent texturing method, which explicitly captures geometric deviations and applies a texture based correction.
These models are then efficiently coded, and delivered over the Internet.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications

1. Introduction

Using images to partly, or completely replace the need for
detailed geometric models, image based modeling and ren-
dering (IBMR) promises to enable quick and easy model-
ing of complex objects from photographs or video. How-
ever, few methods have actually achieved the “quick and
easy” goal, and as a result, there are few commercially avail-
able IBMR systems. The most well known consumer appli-
cation is the Quicktime VR system [Che95], which renders
panoramic images. Even with the restricted nature of these
image based objects the QTVR system has been success-
ful due to its robustness and ease of use. Most other avail-
able software only provide tools for creating conventional
3D models from images, rather than image based models. In-
teractive modeling tools such as PhotoModeler, and RealViz
ImageModeler, build geometry and acquire textures from
images by having the user manually identify correspond-
ing features in multiple images. Some more automatic com-
mercial systems exist, such as Canon’s 3D S.O.M. [ABT03]
which uses shape from silhouette, but models are still geom-
etry based, which results in low quality renderings, since the
visual hull captured from silhouettes only approximates the
object.

Here, we present a complete system for acquiring, encod-
ing, and rendering image based objects. Our image based
models use the visual hull as an approximate geometry,
onto which dynamic texturing, a view-dependent texturing

method is applied. The entire process takes place as follows.
We take an input video sequence of a target object rotating
on a turntable. From the input sequence, we extract object
silhouettes, and compute the visual hull from them. A set of
texture coordinates is generated automatically for the visual
hull geometry. Each example view is them projected into that
common texture space where we build the dynamic texture
basis. The geometry and dynamic texture are compressed in
a progressive format, in preparation for Internet distribution.
Finally, the user downloads these models using our viewer,
where they are rendered in real-time with hardware acceler-
ation.

2. Shape from silhouette

The silhouette of an object sv is the set of points where the
object projects on an image plane from a particular view.
Given sv, and camera parameters v we know the object is
inside the volume of the silhouette cone Sv defined by all
rays from the camera center passing through all points in sv.
Since this holds for all views, given a set of views V , we
can constrain the object’s volume further, to the intersection
of all silhouette cones:

⋂
v∈V Sv. The limit of this volume as

the number of distinct views |V | → ∞ is known as the vi-
sual hull of the object, provided that no views in V are are
centered inside the convex hull of the object. From a finite
number of views, the volume acquired is called the approx-

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

K. Yerex & N. Birkbeck & M. Jagersand / A Quick and Automatic Image Based Modeling and Rendering System

Figure 1: Marching intersections data structure

imate visual hull, but we will simply refer to it as the visual
hull.

Before these intersections can be performed, the silhou-
ettes must first be detected in the images. We segment the ob-
ject from the background using a statistical color segmenta-
tion method. The user selects some region(s) in one or a few
example image(s) to identify a set of pixels in the solid col-
ored background. Principle components analysis is applied
to the selected RGB pixels, giving us a color space that is
well aligned to the statistical properties of the selected back-
ground pixels. We apply a simple distance threshold after
transforming each pixel into the new color space.

Each image is automatically calibrated using the pattern
described in detail in [ABT03], and it’s silhouette is ex-
tended into a cone. To represent and intersect these cones,
we use Marching Intersections (MI). Developed and used for
SFS recently by Tarini et al [TCMR02], the MI data struc-
ture consists of 3 sets of rays, each parallel to one of the three
axes (X Y or Z). For each set, there is an NxN grid of rays,
so they combine to form an NxNxN cube. Each ray stores
all points along its path where the volume being represented
is entered or exited. This data structure stores precisely the
information necessary to for the marching cubes algorithm
to render the surface properly without interpolation. Figure
1 shows a 2D illustration of the structure.

The SFS algorithm iteratively intersects a single MI struc-
ture with each silhouette cone. Each intersection is per-
formed in 2D by projecting MI rays into the image plane
of the current silhouette, intersecting those rays with the 2D
silhouette, and lifting the 2D intersection points back onto
the corresponding rays in 3D.

3. Texturing

3.1. Texture Atlas

Dynamic texturing requires that our geometric model have
a globally consistent set of texture coordinates, as op-
posed to using different texture coordinates for each view
which is common in other view dependent texturing meth-
ods [DTM96]. Previous dynamic texturing implementations

have used simple methods, such as manually assigned coor-
dinates (for very simple models) and average observed point
positions (for small variations in viewing angle) [CYJ02]. In
the case of the visual hull, neither option is reasonable. Tex-
ture coordinates must be generated automatically under the
following constraints:

• No overlap: a point in the texture should map to a unique
point on the model’s surface

• Minimal surface distortion: equal areas and distances on
the surface of the model should be represented by equal
areas and distances in the texture

• Maximal texture resolution usage: as many pixels as pos-
sible in the texture should be used (no big blank regions)

An automatically generated mapping of this kind is often
referred to as a texture atlas. We generate a texture atlas us-
ing the conformal mapping algorithm described in [LPRM]
by Levy et al. The result is then stretched to maximize tex-
ture usage with space optimized texture maps [DS02]. We
simplify the algorithm by weighting occupied areas fully,
and empty areas with zero, rather than using image fre-
quency information as weights. Texture atlas results are
shown in figure 2.

Figure 2: The left image shows a textured rendering, the
center shows the subdivided model, with lines representing
features of high curvature, and colored surfaces represent-
ing different charts. The right images show the texture atlas
of the same model before and after space optimization.

3.2. Texture acquisition

We must warp the images from every sample view into tex-
tures. However, some parts of the object’s surface - and
therefore regions of the texture - are not visible in every im-
age.

We grab texture from visible portions of the surface, while
filling unavailable regions with an average texture. Finding
the visible portion of the texture is somewhat difficult, since
the model may be self-occluding. We use a z-buffer based
method with OpenGL to calculate texture visibility per texel.

c© The Eurographics Association 2004.

K. Yerex & N. Birkbeck & M. Jagersand / A Quick and Automatic Image Based Modeling and Rendering System

3.3. Dynamic Texture

The dynamic texture is a generalized form of view dependent
texturing, where rather than blending between observed tex-
ture images, to generate the texture for a new view, we blend
a general linear basis. This basis can be derived from the
observed textures in such a way that many fewer basis vec-
tors than there are observed textures are used to represent the
same texture variability.

First, consider interpolated view dependent texturing as
in [DTM96]. When rendering, a new view with parameters
identical to one of the original sample views Ik, the texture
derived from image Ik, Tk = w(Ik) is used to texture the
model, where w is defined by a 3D mesh with texture co-
ordinates as discussed in section 3.1. At all other viewing
positions, some linear blending of near views is used, with
a vector of weights x based on their similarity to the cur-
rent view. This can be expressed mathematically by a matrix
multiplication, Where the columns of T contain the sample
views.

t = T x (1)

The major variability in T is due to geometric parallax
error and illumination differences. Through an analytical
derivation, a first order linear basis can be found to rep-
resent these types of variability [CYJ02]. Meaning that for
large image sets, we can find a new basis B with many fewer
columns than T , such that T ≈ T̃ = BY . Textures are then
generated as t = BY x, and the number of basis images, and
overall memory consumption is reduced.

While B could be be computed analytically, given exact
geometric knowledge of the scene, camera and lighting, this
is seldom feasible in image-based approaches. Instead we
use the knowledge that there exist a subspace spanning T to
obtain the best (in the least square sense) B through Principle
components analysis. We calculate M as the eigen-vectors
of T T T . A dimensionality reduction is achieved by using
only the first n eigen-vectors M1..n. Thus, our texture basis
is B = T M1..n and our coefficients are Y = MT

1..n.

To estimate the coefficients for intermediate poses, we in-
terpolate between the coefficients of sampled poses. For ef-
ficient implementation, cubic interpolation is applied during
preprocessing, and results are stored in a set of 2D look-
up tables (one for each basis image) which map view direc-
tion to blending coefficient. Entries in the blending tables are
then bilinearly interpolated during rendering.

The benefits of using the dynamic texture basis rather than
standard view-dependent texturing, is that significantly less
storage is required. The down-side is that every element of
the texture basis will have an effect on the result at any view,
instead of only the nearest few. This will require a little more
work when rendering. However, in current graphics architec-
tures, bandwidth and memory limitations are a greater prob-

lem than computation when it comes to image based render-
ing methods.

3.4. Rendering

Rendering of dynamic textures consists of blending a large
basis and transforming colors to the RGB color space of the
frame buffer (YUV color space is used as described in sec-
tion 4). These operations are well suited for implementation
in graphics hardware or MMX, and we support both.

In the hardware implementation, each RGBA texture
stored in OpenGL represents 4 basis textures from a sin-
gle color channel (Y,U or V) scaled and biased to fit in the
range (0,1). In each rendering pass, as many basis images
as possible (4 times the number of available texture units)
are multiplied by their coefficients, the results are summed,
and multiplied by the row of the color conversion matrix
that applies to the current color channel. Between passes, we
use OpenGL blending to add/subtract results with the frame
buffer contents.

4. Coding

Conventional image based objects rely on numerous im-
ages to generate novel views. The associated storage require-
ments for such objects can be quite large, [GGSC96] reports
uncompressed objects requiring up to 1GB. In our case, the
uncompressed storage requirements are typically on the or-
der of 5-10MB. Although the dynamic texture method al-
ready compresses the data by reducing the number of im-
ages stored compared to standard view dependent texturing,
10MB is still too large for quick Internet viewing. Data is
organized and compressed as follows.

The dynamic texture process described in section 3.3 is
applied separately to each color channel in YUV color space.
We use more, and higher resolution basis textures for the
luminance component (Y) than the color components (U and
V). We have found that typically 16 128×128 basis textures
are sufficient for each of the U and V channels, whereas we
use 32 or 64 256×256 basis textures for Y.

Geometry is stored first in the file, followed by basis im-
ages and their corresponding blending tables. Since the basis
images are computed using PCA, they have a natural order
of importance based on their eigen-values. Progressive dis-
play of partially downloaded models is done by coding the
basis in this order in the file, so models can be displayed as
soon as the first few basis images are available.

Optionally JPEG compression is used to further compress
both basis images and blending tables. Although neither are
really images, lossy image compression works quite well.
As shown in figure 4, artifacts caused by modulating a com-
pressed basis are similar to artifacts one would find by JPEG
compressing a rendering generated by an uncompressed ba-
sis. Additionally, JPEG compression of the look-up tables
did not introduce any noticeable visual artifacts.

c© The Eurographics Association 2004.

K. Yerex & N. Birkbeck & M. Jagersand / A Quick and Automatic Image Based Modeling and Rendering System

Figure 3: Renderings of captured models of a Homer Simpson figure, and a sheep finger puppet

Compression None gzip jpeg 100% 50% 25%

Size(MB) 8.79 4.71 4.37 0.68 0.42

Figure 4: close-up comparison of an object rendered un-
compressed (left) vs JPEG compressed at 25% (right). Table
shows the size of this model with various settings.

We also apply GZIP compression to all data. This reduces
the size of geometric data as well as providing loss-less com-
pression of basis images when the highest possible quality is
required.

5. Results and Conclusion

We have developed and described a robust and automatic
system for capturing objects. An approximate geometric
structure is first built from the object’s silhouette in multi-
ple images (all taken automatically using a video camera and
turntable). A texture coordinate mapping is then built for this
geometry, and a view dependent texturing is applied in the
form of texture basis modulation (dynamic texture).

With hardware accelerated rendering, dynamic texturing
is easily performed in real-time, even with multiple simul-
taneously rendered dynamic textured objects. Results shown
in figure 3 were captured from 64 views. Textures applied to
the Homer Simpson model are blended from a basis of only
16 textures, the knit ornament, and the pig shown in figure
2 are rendered with 32 basis textures for the Y channel, and
16 for each of the color channels.

Downloadable software and models are available at
http://www.cs.ualberta.ca/~vis/ibmr.

References

[ABT03] A. BAUMBERG A. L., TAYLOR R.: 3d s.o.m -
a commercial software solution to 3d scanning.
In Proceedings of Vision, Video and Graphics
(2003).

[Che95] CHEN S. E.: QuickTime VR — an image-
based approach to virtual environmen naviga-
tion. Computer Graphics 29, Annual Confer-
ence Series (1995), 29–38.

[CYJ02] COBZAS D., YEREX K., JAGERSAND M.: Dy-
namic textures for image-based rendering of
fine-scale 3d structure and animation of non-
rigid motion. In Proceedings of Eurographics
(2002).

[DS02] DRETTAKIS, SEIDEL H.: Space optimized tex-
ture maps. In Proceedings of Eurographics
(2002).

[DTM96] DEBEVEC P. E., TAYLOR C. J., MALIK J.:
Modeling and rendering architecture from pho-
tographs: A hybrid geometry- and image-based
approach. Computer Graphics 30, Annual Con-
ference Series (1996), 11–20.

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI

R., COHEN M. F.: The lumigraph. Computer
Graphics 30, Annual Conference Series (1996),
43–54.

[LPRM] LEVY B., PETITJEAN S., RAY N., MAILLOT

J.: Least squares conformal maps for automatic
texture atlas generation.

[TCMR02] TARINI M., CALLIERI M., MONTANI C.,
ROCCHINI C.: Marching intersections: an ef-
ficient approach to shape from silhouette. In
Proceedings of VMV 2002 (2002).

c© The Eurographics Association 2004.

http://www.cs.ualberta.ca/~vis/ibmr

	Introduction
	Shape from silhouette
	Texturing
	Texture Atlas
	Texture acquisition
	Dynamic Texture
	Rendering

	Coding
	Results and Conclusion
	References

